# UNA FORMULACION PETROV-GALERKIN PARA LA ECUACION DE REACCION-ADVECCION-DIFUSION

M. Storti, N. Nigro and S. Idelsohn

Grupo de Tecnología Mecánica del INTEC, CONICET - U. N. del Litoral Güemes 3450, 3000- Santa Fe, ARGENTINA Fax: 54-42-55.09.44, e-mail: rngtm@arcride.edu.ar

### RESUMEN

Presentamos un esquema de discretización basado en la formulación Petrov-Galerkin para problemas de reacción-advección-difusión. El esquema presentado exhibe superconvergencia (valores exactos en los nodos) para una cierta clase restringida de problemas unidimensionales, de la misma forma que ocurre con SUPG cuando el parámetro de upwind es elegido a través de la "función mágica". Más aún estos resultados son extendidos a sistemas, donde, como caso particular, mostramos la aplicación a las ecuaciones simplificadas que rigen los flujos viscosos en sistemas en rotación (capa límite de Eckman). Se presentan ejemplos numéricos uni- y bidimensionales, con y sin fuente, y también en el contexto de la capa límite de Eckmann.

#### ABSTRACT

A discretization scheme based on a *Petrov-Galerkin* formulation for the reaction-advectiondifusion problem is presented. The scheme exhibits superconvergence (exact nodal values) for a restricted class of one-dimensional problems, in the same way as SUPG does when the upwind parameter is chosen according to the "magic function". Moreover, these results are extended to systems of equations, as the equations governing the Eckmann layer, for instance. Numerical examples for one- and bidimensional scalar problems are presented, as well as for systems in the context of the Eckmann layer problem.

# 1. INTRODUCCION

En este trabajo se estudia la resolución numérica mediante el método de los elementos finitos de la ecuación de convección-difusión-reacción. Estas ecuaciones representan un modelo simplificado para muchos problemas industriales, por ejemplo en la simulación de procesos de separación por electroforesis y la operación de reactores químicos. Otra aplicación interesante es la simulación de fluidos en un marco de referencia no inercial que está rotando con velocidad angular constante. En este caso el modelo matemático es un sistema advectivo-reactivo-difusivo, en el cual las fuerzas inerciales están incluidos en el término advectivo, la fuerza de Coriolis en el término reactivo (i.e. son proporcionales a la velocidad), y finalmente los efectos viscosos se incluyen en el término difusivo. El desarrollo numérico presentado en este trabajo tiene como último objetivo la aplicación a flujos en turbomaquinarias, es decir, en sistemas rotantes con velocidad angular constante. Sin embargo, sólo trataremos el caso escalar y el caso unidimensional de sistemas.

Tezduyar y Park[1] han extendido el clásico esquema SUPG de Brook y Hughes[2] a casos dominados por reacción. Sin embargo, el método no es *"unificador"* en el sentido de que no es aplicable en forma continua a toda la gama de posibilidades desde reacción dominante hasta advección dominante, sino que funciona como dos métodos separados para cada una de las situaciones mencionadas. Más aún, no es clara cuál debe ser la elección de los parámetros sensibles del esquema (la magnitud de los "aditivos" numéricos) en situaciones intermedias, ni mucho menos puede demostrarse que sea óptima. Otra crítica importante proviene de consideraciones de simetría ante inversión de coordenadas  $x \to -x$ . En el caso de advección nula, el operador diferencial es invariante bajo esta operación de simetría y es claro que la función de peso debería ser simétrica. Este no es el caso para el esquema de Tezduyar y Park[1], muy por el contrario, la función de perturbación es antisimétrica. De hecho, es la misma que en el caso de advección-difusión, con la salvedad de que en este caso tal elección sí es justificada ya que el operador de advección es también antisimétrico.

Otra alternativa, introducida por Codina[3], consiste en usar una formulación SUPG con operador de captura de discontinuidades ("shock-capturing"), incluyendo en este último término la estabilización de los efectos reactivos. En el mencionado trabajo se demuestra que la ecuación original puede ser transformada en una nueva ecuación de advección difusión con una velocidad transformada, y entonces se aplican los esquemas bien conocidos apropiados para este tipo de problema. Un inconveniente de esta formulación es que transforma el problema lineal del continuo en un problema discreto nolineal, incluso en problemas unidimensionales.

En este trabajo, la idea subyacente del método SUPG es extendida al caso general, sin limitaciones en cuanto a la importancia relativa de cada uno de los términos. Más aún, esta importancia relativa puede variar en el dominio, por ejemplo, cuando en una zona exista una fuerte contribución de los términos reactivos mientras que en otra primen los términos convectivos. Pueden formarse dos parámetros adimensionales libres para la ecuación discreta de advección-reacción-difusión. Uno es el conocido número de Pèclet Pe y relaciona los términos convectivos con los difusivos. El otro relaciona los términos reactivos con los difusivos y será llamado de aquí en adelante número de reacción r. En el trabajo de Hughes et-al se considera el caso r = 0. mientras que el trabajo de Tezduyar y Park considera los casos r >> Pe. La contribución de este trabajo es lograr una formulación tipo Petrov-Galerkin que se adapte a cualquier situación introduciendo la perturbación necesaria en la función de peso de forma tal de estabilizar espacialmente el esquema numérico. El fenómeno de superconvergencia que presenta el esquema clásico SUPG es extendido para todas las condiciones de operación Pe, r mediante la inclusión de una segunda perturbación a la función de peso simétrica, y una elección cuidadosa de los parámetros. En contraposición con el esquema propuesto por Codina[3], el esquema discreto es lineal para problemas unidimensionales. Para problemas multidimensionales, puede aplicarse un operador de captura de discontinuidades al igual que en SUPG.

## 2. EL PROBLEMA ESCALAR UNIDIMENSIONAL

Consideremos la siguiente versión unidiminesional simplificada de la ecuación de adveccióndifusión-reacción :

$$-k\phi'' + u\phi' + c\phi = f, \quad \text{en } \Omega = \{x \mid 0 \le x \le 1\}$$

$$\tag{1}$$

con condiciones de contorno tipo Dirichlet:

$$\phi(x=0) = \phi_0, \quad \phi(x=1) = \phi_1 \tag{2}$$

 $\phi$  es la concentración de la especie, k la constante de difusividad, u la velocidad del fluido, c la constante de reacción y f el término fuente. Esta ecuación es discretizada por el método de los elementos finitos dividiendo el intervalo en N elementos de igual tamaño h = 1/N, con funciones de interpolación  $w_i, i = 0, \ldots, N$  de primer orden (lineales) por elemento. Como es usual en el método de Petrov-Galerkin, las funciones de peso  $\tilde{w}_i$  no son iguales a las de interpolación sino que contienen una perturbación  $p_i$ :

$$\tilde{w}_i = w_i + p_i, \quad p_i = \alpha h w'_i + \gamma P_{2i} \tag{3}$$

El primer término de la perturbación es el estándar en SUPG, mientras que el segundo será especialmente diseñado para estabilizar el esquema numérico en problemas con efectos reactivos importantes.  $\alpha$  y  $\gamma$  son constantes de proporcionalidad que regulan la cantidad de aditivo numérico necesaria para estabilizar el sistema.

La formulación débil del problema discreto es:

$$\int_{\Omega} (kw'_i \phi' + uw_i \phi' + cw_i \phi) \ d\Omega + \sum_{e=1}^N \int_{\Omega_e} (\alpha hw'_i + \gamma P_{2i}) (-k\phi'' + u\phi' + c\phi) \ d\Omega = \int_{\Omega} \tilde{w}_i f \ d\Omega, \quad i = 1, \dots, N-1 \quad (4)$$

Los pasos a seguir para el diseño de este aditivo numérico son los siguientes. Primero, encontraremos el "stencil" numérico que se obtiene de (4) para una  $P_2$  general. Veremos que este stencil depende sólo de tres parámetros geométricos de  $P_2$ . A continuación, encontraremos expresiones para  $\alpha$  y  $\gamma$  de manera de obtener "superconvergencia" (este término será explicado más adelante en §2.1.). Veremos que, para obtener valores acotados de las constantes de proporcionalidad surgen ciertas restricciones entre los parámetros geométricos de  $P_2$ . Finalmente, elegiremos  $P_2$  de manera de satisfacer estas restricciones.

Como fuera mencionado en la introducción, razones de simetría indican que  $P_{2i}$  debe ser simétrica con respecto al nodo *i*. Además, supondremos que se anula en los nodos vecinos  $i \pm 1$ , como puede verse en la figura 1. Como se muestra en la figura, la función de peso debería reducirse a la de interpolación (Galerkin) cuando la reacción es despreciable (bajos números de reacción), y debe concentrarse en el nodos central para reacción dominante (altos números de reacción). Integrando los términos elementales en (4), llegamos al siguiente stencil numérico.

$$\frac{k + u\alpha h + k\gamma P_{20}}{h} (-\phi_{i+1} + 2\phi_i - \phi_{i-1}) + (\frac{u - \alpha ch}{2} + u\gamma a)(\phi_{i+1} - \phi_{i-1}) + \frac{ch}{6}(\phi_{i+1} + 4\phi_i + \phi_{i-1}) + c\gamma hm(\phi_{i-1} - 2\phi_i + \phi_{i+1}) + c\gamma ha2\phi_i = f_i$$
(5)

donde  $P_{20}$  es el valor que asume  $P_{2i}$  en el nodo *i*, a y *m* son el área y el primer momento de  $P_{2i}$ , calculados sobre el elemento  $i + \frac{1}{2}$ , respectivamente, convenientemente adimensionalizados:

$$ha = \int_{x_i}^{x_{i+1}} P_2(x) \, dx$$
  
$$h^2 m = \int_{x_i}^{x_{i+1}} (x - x_i) P_2(x) \, dx$$
 (6)

Dos parámetros adimensionales independientes que relacionan los diferentes términos a nivel elemental pueden ser definidos, a saber el conocido número de Pèclet Pe, y el número de reacción r definidos como sigue:

$$Pe = uh/2k, \quad r = ch^2/k \tag{7}$$

# 2.1. Elección de las constantes de proporcionalidad

Las constantes de proporcionalidad son elegidas de manera de obtener la solución exacta para una cierta clase de problemas simplificados, a saber paso de malla constante, ausencia de término fuente y parámetros físicos contantes. Este fenómeno es conocido como "superconvergencia". Para el problema advectivo-difusivo, esto es, sin reacción, este procedimiento lleva a la bien conocida "función mágica" que relaciona la constante de proporcionalidad  $\alpha$  con el número de Pèclet:

$$\alpha(\text{Pe}) = \coth \text{Pe} - \frac{1}{\text{Pe}}$$
(8)





Figura 2: Segunda función de perturbación P<sub>2</sub> propuesta.

Figura 1: Funciones de peso "ideales" para el caso de reacción-difusión. Las funciones de peso siguén siendo simétricas con respecto al nodo central y se van concentrando en éste a medida que los efectos reactivos predominan.

Sin embargo, para problemas generales donde alguna de las mencionadas restricciones es violada, el fenómeno de superconvergencia se pierde y se obtienen, en el mejor de los casos, los órdenes de convergencia normales del método de los elementos finitos. Más aún, los mismos órdenes de convergencia pueden obtenerse con otras relaciones  $\alpha$ (Pe), mientras se respeten los límites para  $\alpha \to 0$  y  $\alpha \to \infty$ . Esto muestra que el carácter "mágico" de (8) es más bien fortuito. Sin embargo, usaremos este procedimiento como una forma automática de calcular las constantes de proporcionalidad, sin perjuicio de que, a posteriori, puedan encontrarse expresiones asintóticas más simples para las mismas.

La solución general a (1) en la ausencia de término fuente es:

$$\phi(x) = a e^{\lambda_1 x} + b e^{\lambda_2 x} \tag{9}$$

donde  $\lambda_{1,2}$  son las raíces del polinomio característico:

$$-k\lambda^2 + u\lambda + c = 0, \quad \lambda_{1,2}h = \operatorname{Pe} \pm \sqrt{\operatorname{Pe}^2} + r \tag{10}$$

a y b son constantes de integración que deben ser obtenidas a posteriori, de manera de satisfacer las condiciones de contorno. Como deseamos que la solución a (1-2) con f = 0 sea también solución al problema discreto para  $\phi_0$ ,  $\phi_1$  arbitrarios, se deduce que ambas exponenciales en (9) deben ser soluciones al problema discreto por separado. Insertando ambas exponenciales en (5) y simplificando, llegamos a un sistema de ecuaciones lineales en  $\alpha$  y  $\gamma$  de la forma:

$$\begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} \alpha \\ \gamma \end{bmatrix} = \begin{bmatrix} \hat{f}_1 \\ \hat{f}_2 \end{bmatrix}$$
(11)

donde:

$$g_{j1} = [4\text{Pe}(1 - \cosh(\lambda_j h) - r \sinh(\lambda_j h)]$$
  

$$g_{j2} = 2[\cosh(\lambda_j h)(rm - P_{20}) + 2\text{Pe} a \sinh(\lambda_j h) + (P_{20} - mr + ar)]$$
  

$$\hat{f}_{i} = -2[\cosh(\lambda_i h)(r/6 - 1) + \text{Pe} \sinh(\lambda_i h) + (1 + r/3)]$$
(12)

#### 2.2. Elección de los parámetros geométricos de $P_2$

Prácticamente para cualquier elección de  $P_2$ , podemos calcular las constantes de proporcionalidad a partir de (11-12) resultando en un esquema que exhibirá superconvergencia. Sin embargo, en el caso más general, las constantes de proporcionalidad pueden llegar a tomar valores no acotados para ciertas condiciones de operación (Pe, r), lo cual, a su vez, puede llevar a un esquema no convergente en los casos en que alguna de las restricciones que asegura superconvergencia es violada. Por otra parte, también es deseable que se respeten ciertos límites, a saber, que el esquema se reduzca a SUPG con la función mágica (8) en el caso r = 0 y que  $\alpha$  se anule para  $u \rightarrow 0$ . Esta última condición permite extender en forma bastante natural el esquema a más dimensiones y puede demostrarse que se cumple siempre que  $P_{2i}$  sea una función par con respecto al nodo *i*. Un análisis detallado de estas condiciones [6] permite concluir que es deseable que  $P_{2i}$  sea estrictamente negativa en todo el elemento y que se anule en el nodo central.

#### 2.3. La función burbuja

La función polinómica de más bajo orden que satisface todas las condiciones requeridas es la función "burbuja" (ver figura 2):

$$P_2(\xi) = -\frac{1}{4}(1-\xi^2) \tag{13}$$

donde  $\xi$  es una coordenada sobre el elemento de referencia ("master element"):

$$\xi = 2(x - x_i)/h - 1, \quad -1 \le \xi \le 1 \tag{14}$$

para el elemento  $i + \frac{1}{2}$  que comprende a los nodos  $i \in i + 1$ . Los parámetros geométricos correspondientes son  $P_{20} = 0$ ,  $a = -\frac{1}{6}$  y  $m = -\frac{1}{12}$ , a/m = 2.

En las figuras 3 y 4 vemos la dependencia de  $\alpha$  con Pe y  $\gamma$  con r. En algunos límites las expresiones involucradas son indeterminadas, pero en todos los casos esta indeterminación es salvable, de la misma forma que ocurre con la función mágica de SUPG en Pe = 0. De las figuras se desprende que tienen un comportamiento muy suave y se mantienen acotadas:  $0 \le 2\alpha, \gamma/2 \le 1$  para todos Pe, r.



Figura 3: Constante de proporcionalidad α, correspondiente a la función de perturbación estándar como función de Pe para varios valores de r.



Figura 4: Constante de proporcionalidad γ como función de r para varios valores de Pe.

Los límites deseados mencionados en §2.2. son satisfechos. Por ejemplo, la función mágica de SUPG es obtenida en el caso de reacción nula:

$$\left.\begin{array}{l} \alpha = \frac{1}{2}(\operatorname{coth}\operatorname{Pe} - \frac{1}{\operatorname{Pe}})\\ \gamma = 0 \end{array}\right\} \quad \text{para } r = 0 \tag{15}$$

Por otra parte, para advección nula:

$$\alpha = 0 \gamma = 12 \frac{\cosh(\sqrt{r})(r/6 - 1) + (1 + r/3)}{r \left[1 + \cosh(\sqrt{r})\right]}$$
 para Pe = 0 (16)

Esta última expresión ( $\gamma(r)$  para Pe = 0) toma el valor  $\gamma = 2$  para  $r \to \infty$  y  $\gamma = 0$  para r = 0. La familia completa de funciones de peso para el caso de advección nula es mostrado en la figura 5 para  $0 \le \gamma \le 2$ . Estas se concentran alrededor del nodo central a medida que  $\gamma$  se incrementa. Para  $\gamma = 2$  (reacción pura), la función de peso correspondiente toma valores negativos cerca de los nodos adyacentes y puede verificarse que el esquema discreto resultante corresponde a un esquema de colocación en los nodos.



Figura 5: Familia de funciones de peso para el Figura 6: Ejemplo unidimensional sin fuente, caso de reacción-difusión.



Figura 6: Ejemplo unidimensional sin fuente, dominado por advección. Arriba: solución numérica (\*) y exacta (-). Abajo: errores nodales de la solución discreta.

Para el caso multidimensional  $P_2$  es extendido como producto cartesiano de funciones  $P_2$  según cada dirección. Los detalles pueden ser consultados en [5,6].

# 2.4. Resultados numéricos

2.4.1. Ejemplos 1D sin término fuente



Figura 7: Ejemplo unidimensional sin fuente, dominado por reacción. Arriba: solución numérica (\*) y exacta (-). Abajo: errores nodales de la solución discreta.



Figura 8: Ejemplo unidimensional sin fuente Pe = r = 2.5. Arriba: solución numérica (\*) y exacta (-). Abajo: errores nodales de la solución discreta.

Empezamos con un ejemplo unidimensional que consiste en resolver (1-2) con  $\phi(0) = 0$ ,  $\phi(1) = 1$ para tres condiciones de operación. El primero corresponde a reacción nula y advección dominante (Pe=25), el segundo a reacción dominante (r = 2.5) y advección nula y el tercero a Pe = r = 2.5. La malla es uniforme y tiene 20 elementos. Los resultados númericos pueden verse en las figuras 6-8. En todos los casos se muestra en la parte superior la solución discreta con asteriscos y la exacta en trazo continuo. En la parte inferior de la figura se muestran los errores nodales. Se verifica que los valores numéricos coinciden con los exactos a precisión de la máquina.



Figura 9: Ejemplo unidimensional con fuente dominado por reacción. Arriba: solución numérica (\*) y exacta (-). Abajo: errores nodales de la solución discreta.



Figura 10: Problema bidimensional con fuente Figura 11: Idem figura 10, resultados y campo de velocidades no uniforme. Descripción y solución numérica obtenida con el esquema propuesto.

obtenidos con SUPG.

#### 2.4.2. Ejemplo 1D con término fuente

La malla y condiciones de contorno son como en §2.4.1. pero ahora con un término fuente f = x ycondición de contorno  $\phi = 2$  en x = 1. Los parámetros adimensionales son  $r = 2.5 \times 10^5$ , Pe = 0correspondiendo a reacción-difusión dominado por reacción, y los resultados se muestran en la figura 9. Puede verse que, a pesar de que ya no se cumplen las condiciones de superconvergencia, se obtienen errores nodales muy bajos.

# 2.4.3. Ejemplo 2D

El siguiente ejemplo consiste en un problema bidimensional con un campo de velocidades que no es constante propuesto por Codina[3]. El dominio es el cuadrado unitario  $0 \le x, y \le 1$  y la velocidad  $\mathbf{u} = (u, v)$  consiste en un perfil parabólico:

$$u(y) = u_{\max}y^2, \quad v \equiv 0$$

Los parámetros físicos son c = 5,  $k = 10^{-8}$  y  $u_{max} = 1$ . La malla es uniforme de  $20 \times 20$  elementos. Las condiciones de contorno son naturales (flujo nulo) en tres de los cuatro lados, y en el cuarto la concentración está fijada a 1 (véase el esquema descriptivo en la figura 10.). Las figuras 10,11 muestran los resultados numéricos obtenidos con el esquema estabilizado y el clásico SUPG (sin la función  $P_2$ ). Puede observarse que las oscilaciones obtenidas con el SUPG clásico cerca de la zona donde existe un alto número de reacción han desaparecido con el esquema estabilizado, mientras que, en el resto del dominio, ambas soluciones son equivalentes debido a que allí el problema está dominado por advección.

## 3. EXTENSION A SISTEMAS

#### 3.1. El caso general

Consideremos ahora la extensión a sistemas de (1)

$$-\mathbf{K}\mathbf{U}'' + \mathbf{A}\mathbf{U}' + \mathbf{C}\mathbf{U} = \mathbf{F}, \quad \text{en } \Omega = \{x \mid 0 \le x \le 1\}$$
(17)

donde K, A y C son matrices de  $m \times m$  elementos, U es el vector de estado de longitud m y F es un vector término fuente. La extensión sigue bastante de cerca el caso escalar, con la única excepción de que la solución general no es más de la forma (9). Sin embargo, asumiendo que K no es singular, podemos considerar a (17) como un sistema de ODE's y dados los valores de U<sub>i</sub> y  $U'_i$  en un nodo dado  $x_i$ , éstos pueden ser tomados como valores iniciales para integrar la ecuación sobre el elemento  $i + \frac{1}{2}$ . Como resultado, se obtienen los valores en el nodo siguiente  $U_{i+1}, U'_{i+1}$ . Por linealidad y en la ausencia de término fuente (F = 0):

$$U_{i+1} = W_{00}U_i + W_{01}U'_i$$

$$U'_{i+1} = W_{10}U_i + W_{11}U'_i$$
(18)

donde  $W_{jk}$  son matrices de evolución de tamaño  $m \times m$ . Es importante notar que, como las matrices de coeficientes K, A y C son constantes, las matrices de evolución  $W_{jk}$  son son las mismas para todos los elementos. El próximo paso es obtener una ecuación en diferencias para la solución exacta eliminando las derivadas. Para ello, escribimos conjuntamente el sistema de ecuaciones (18) para los elementos  $i \pm \frac{1}{2}$ , obteniendo un sistema de 4m ecuaciones en 6m incógnitas  $U_j$  y  $U'_j$  para j = i - 1, i, i + 1. Eliminando las 3m incógnitas correspondientes a los valores nodales de las derivadas obtenemos un sistema de m ecuaciones donde no aparecen las derivadas:

$$\mathbf{U}_{i+1} = \mathbf{B}\mathbf{U}_i + \mathbf{D}\mathbf{U}_{i-1} \tag{19}$$

con:

$$\mathbf{B} = (\mathbf{W}_{00} + \mathbf{W}_{01}\mathbf{W}_{11}\mathbf{W}_{01}^{-1}), \quad \mathbf{D} = \mathbf{W}_{01}(\mathbf{W}_{10} - \mathbf{W}_{11}\mathbf{W}_{01}^{-1}\mathbf{W}_{00})$$
(20)

Finalmente, reescribimos (19) de la siguiente forma:

$$\mathbf{U}_{i} = \mathbf{W}^{+}(\mathbf{U}_{i+1} + \mathbf{U}_{i-1}) + \mathbf{W}^{-}(\mathbf{U}_{i+1} - \mathbf{U}_{i-1})$$
(21)

donde:

$$W^+ = B^{-1}(I - D)/2, \quad W^- = B^{-1}(I + D)/2$$
 (22)

La forma (21) es más conveniente, ya que separa la parte impar de la par. Por ejemplo, en un problema sin advección  $W^-$  debe ser nulo, ya que en ese caso el operador es par ante inversión de coordenadas  $x \to -x$ .

Reemplazando (21) en la forma matricial de (5) llegamos a un sistema de ecuaciones matricial en  $\alpha$  y  $\gamma$ :

$$\alpha \mathbf{F}_{11} + \gamma \mathbf{F}_{12} = \mathbf{H}_1$$

$$\alpha \mathbf{F}_{21} + \gamma \mathbf{F}_{22} = \mathbf{H}_2$$
(23)

Una formulación Petrov-Galerkin para reacción-advección-difusión

6

donde:

$$\mathbf{F}_{11} = (2\mathbf{W}^{+} - 1)\mathbf{\dot{A}} \qquad \mathbf{F}_{12} = -(h\mathbf{C}/12)(1 + 2\mathbf{W}^{+}) \\ \mathbf{F}_{21} = (h\mathbf{C}/2) + 2\mathbf{A}\mathbf{W}^{-} \qquad \mathbf{F}_{22} = (\mathbf{A} + h\mathbf{C}\mathbf{W}^{-})/6 \\ \mathbf{H}_{1} = (\mathbf{K}/h)(1 - 2\mathbf{W}^{+}) - \qquad \mathbf{H}_{2} = \mathbf{A}/2 + 2(\mathbf{K}/h + \mathbf{C}h/3)\mathbf{W}^{-}$$

$$(24)$$

La solución al sistema (23) se obtiene en forma análoga al caso escalar, pero recordando que, en este caso, el producto de matrices no es necesariamente conmutativo:

$$\begin{aligned} \boldsymbol{\alpha} &= (\mathbf{H}_2 - \mathbf{H}_1 \mathbf{F}_{12}^{-1} \mathbf{F}_{22}) (\mathbf{F}_{21} - \mathbf{F}_{11} \mathbf{F}_{12}^{-1} \mathbf{F}_{22})^{-1} \\ \boldsymbol{\gamma} &= (\mathbf{H}_1 - \boldsymbol{\alpha} \mathbf{F}_{11}) \mathbf{F}_{12}^{-1} \end{aligned}$$
(25)

El camino seguido aquí es más general incluso aplicado al mismo caso escalar. Por ejemplo, para Pe = 0 y r = 0 (difusión pura) las dos raíces son iguales  $\lambda_1 = \lambda_2$  y (9) ya no es la solución general de (1). Por el contrario, la relación (21) o (19) son siempre válidas, con la única condición de que K sea no singular.

# 3.2. Ejemplo: la capa límite de Eckman ("Eckman layer")





Figura 12: Problema unidimensional sin advección e indice de reacción moderado.

Figura 13: Gráfico polar de velocidades para el problema unidimensional de la figura 12

Consideremos el caso de un flujo viscoso en un sistema no-inercial que está rotando con velocidad angular constante  $\omega$  alrededor del eje z. u, v son las componentes de velocidad perpendiculares al eje de rotación y w la restante componente paralela al eje z, que supondremos constante. Supondremos que el flujo es unidimensional según una coordenada paralela al eje de rotación u = u(z), v = v(z). Como el flujo está solicitado sólo por esfuerzos de corte, la presión resulta ser constante y  $u \neq v$ están regidos por un sistema como el (17) con:

$$\mathbf{U} = \begin{bmatrix} u \\ v \end{bmatrix}, \quad \mathbf{K} = \nu \mathbf{I}_{2 \times 2}, \quad \mathbf{A} = w \mathbf{I}_{2 \times 2}, \quad \mathbf{C} = \omega \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
(26)

donde  $\nu$  es la viscosidad cinemática. Las condiciones de contorno son:

$$\begin{aligned} u &= v = 0, & \text{en } z = 0, \\ u &= 1 \\ v &= 0 \end{aligned} \}, & \text{en } z = 1$$
 (27)

El detalle del cálculo de las matrices de evolución puede consultarse en [6].



Consideramos 3 casos unidimensionales de donde los parámetros físicos que se han variado son w y  $\omega$  de la siguiente forma:

Figuras 12, 13:w = 0  $\omega = 100$ Figura 14:w = 0  $\omega = 1000$ Figura 15:w = -50  $\omega = 100$ 

mientras que en todos los casos se ha mantenido  $\nu = 1$ ,  $h = \frac{1}{20}$  (20 elementos en el intervalo). Nótese que este problema difiere ligeramente del problema de Eckmann típico que corresponde a un medio infinito  $z \ge 0$ . Sin embargo, para altas velocidades de rotación  $\omega$  el espesor de la capa límite es muy pequeño con respecto a la longitud del segmento y ambos casos coinciden.

En todos los casos estamos en las condiciones de superconvergencia y se verifica que el método propuesto obtiene valores nodales exactos. Por el contrario, el método de Galerkin produce oscilaciones localizadas en el caso dominado por reacción, y las bien conocidas oscilaciones globales en el caso dominado por advección (figura 15).

## CONCLUSIONES

Se ha presentado un método de residuos ponderados de tipo *Petrov-Galerkin* para problemas con términos reactivos. El esquema se basa en la introducción de una función de perturbación simétrica, de tipo *burbuja* dentro de cada elemento y extiende el fenómeno de *superconvergencia* al caso reactivo. Se presenta varios ejemplos numéricos unidimensionales con solución exacta y también un ejemplo bidimensional. El esquema es extendido a sistemas de ecuaciones, presentándose el caso específico de las ecuaciones que rigen el flujo de un fluído viscoso en un sistema no-inercial rotando con velocidad angular constante.

## AGRADECIMIENTOS

Los autores desean agradecer al Consejo Nacional de Investigaciones Cinetíficas y Técnicas (CONICET, Argentina) por su apoyo financiero.

### REFERENCIAS

- T. Tezduyar, Y. Park, "Discontinuity capturing finite element formulations for nonlinear convection-difusion-reaction equations", Comp. Meth. App. Mech. Engng., vol.59, pp. 307-325 (1986).
- A. Brooks and T. J. R. Hughes, "Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comp. Meth. App. Mech. Engng., vol.32, p.199-259 (1982).

- 3. R. Codina, "A shock capturing anisotropic diffusion for the finite element solution of the diffusion-convection-reaction equation", in Numerical Methods in Engineering and Applied Sciences, by E. Oñate (edt.), CIMNE, (Barcelona, Spain), (1993).
- T. J. R. Hughes and M. Mallet, "A new finite element method for CFD: IV. A discontinuitycapturing operator for multidimensional advective-diffusive systems", Comp. Meth. App. Mech. Engng. vol. 58, pp. 329-336, (1986).
- S. Idelsohn, N. Nigro, M. Storti and G. Buscaglia, "A Petrov-Galerkin formulation for advection-reaction-diffusion problems", enviado a Comp. Meth. App. Mech. Engng. (1994).
- M. Storti, N. Nigro y S. Idelsohn, "Una formulación Petrov-Galerkin ppara la ecuación de reacción-advección-difusión", a aparecer en Rev. Int. Mét. Núm. para Cálc. Dis. Ing., (1994).