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We present a stabilized algorithm for the incompressible or nearly incompressible Navier-
Stokes equations, allowing equal order interpolations. The stabilization terms are obtained
as a straightforward extension of the SUPG (for Streamline Upwind Petro~'-Galerkin) method
to multidimensional advective-diffusive system of equations. We show also how the explicit
scheme can be used in the incompressible regime through the use of a specially devised
preconditioning. Using this techniques, rates of convergence independent of Mach number
are achieved and compressible explicit codes can be used in the incompressible limit.

1. INTRODUCTION

Solving flow problems in compressible or incompressible regime has been, historically, a very
different matter. There are mainly two difficulties associated to incompressible flows, namely
a compatibility condition on the interpolation spaces and bad conditioning of the system matrices.
Compressible codes generally use equal order interpolations. If such a compressible code is used
in a nearly incompressible flow pattern, i.e. with a Mach number M « 1, then oscillations
in pressure ("checkerboard modes") are likely to appear. Moreover, this oscillations are likely to
occur in locally incompressible regions, like stagnation points, embedded in a globally compressible
flows[l}. The subject has been extensively studied by numerical analysts and the conclusion is that
the interpolation spaces must satisfy a stability condition named the LBB condition [2,3}. On the
other hand, compressible flows can be solved with explicit schemes. If the objective is to reach
steady state, then with techniques like local time stepping and absorbing boundary conditions,
an efficient, easy to code and highly paralellizable algorithm requiring a very low amount of core
memory is obtained. However, in the limit of incompressible flows the rate of convergence drops
like 11M due to bad conditioning, and the strategy becomes unfeasible.

In this work, this two difficulties are addressed. In section §2 we present a stabilized algorithm
for the incompressible or nearly incompressible Navier-Stokes equations, allowing equal order
interpolations. The stabilization terms are obtained as a straightforward extension of the SUPG

(for Streamline Upwind Petrov-Galerkin) method to multidimensional advective-diffusive system of
equations. In section §3 we show how the explicit scheme can be used in the incompressible regime
through the use of a specially devised preconditioning. Using this techniques, rates of convergence
independent of Mach number are achieved and the compressible explicit code can be used in the
incompressible limit.
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Consider the r\avier-Stokes equations in conservation form: F~.i = Fd,i + b. U = [p,puT,pejT, is
the fluid local state vector, with p, u, e are the density, velocity and total energy. Fa' F d E lR5X3

are the advective and diffusive fluxes, respectively, that depend on the state vector and its gradient

[

pUT ]
Fa(U) = puu T + pI3x3

(pe + p)uT
F d(U, V'U) = [ ~ ]

(T'U+q)T

where p, T, q are the thermodynamic pressure, the stress deviatoric tensor and the heat flux
vector, respectively. Thermodynamic variables are related through the state equation of the fluid
()= 8(p, p) "nd an expression for the internal energy e = e(p, p).

2.1. Numerical Spatial Discretization - An SUPG Formulation Overview

The numerical formulation is based on Petrov-Galerkin weighted residual method which allows
test functions that can be different from the interpolation ones and not necessarily continuous.
This method introduces the numerical dissipation needed to stabilize the system in advection-
dominated problems, keeping the consistency with the continuum problem [4]. vVesuppose that
F~(U) = AjU, and F~(U, V'U) = KjjU,j, where Ai and Kij are constant matrices. For each
node a there is an interpolation function Na (hat type in ID, bilinear in 2D, and multilinear in
general) and a test function Wa = Na + Pa, where Pa is called the perturbation function. The
Wa (and, of course, P a) are not necessarily continuous through the inter-element boundaries. The
variational formulation employed is:

l (N~ AjU,i+ N~,iKijU,j) dll+

Nel

+2: ( P~T(AiU,;+KijUij-b) dll= { N~b+ ( N~hdr (2)
<=1 In, In lr

h is the diffusive flux. It can be shown, by classical integration by parts, that this is a weighted
residual formulation and, then, consistency is warranted.

2.2. Extension of Superconvergence to Systems

In the SUPG formulation, the perturbation function is of the form: Pa = N~jAjT. The intrinsic
time matrix T controls the amount of numerical diffusion added. For one-dimensional scalar
systems it is chosen as: T = (ll.x/2Ial)1f;(Pe), with: Pe = ull..x/2k andljJ(x) = coth(x) - l/x. ljJ

is called the "magic {unction", since it is related to the phenomenon of "superconvergence", i.e.
the discrete system gives exact nodal values in certain, very restricted, situations (no source term,
constant mesh size).

\Ve extended this result to advective diffusive systems of equations as:

rP(x) = t/J(x)
x

where rP is a closely related, well-behaved "magic" function. As is well known, matrix valued
functional expressions are evaluated through an eig,envalue decomposition. This extension to
systems of e~uations preserves the nice feature of "superconvergence". Of course, this expression
has sense only if K is non-singular, which, actually, is not the case for the Navier-Stokes equations.



The problem of the singularity of K is solved by replacing K by a regularized non-singular' matrix
K. = K + El, only for tile sake of computing T. The choice of € is € = h2/1/ and is.discussed
in detail in [5]. With this election of the intrinsic time. numerical instabilities due to low ~Iach
number (incompressibility) and high element Reynolds number (advection) are stabilized.

u=1. v=O

.~"""""~""~~~~~,............................... =:t!:oA 0

p=1. v=1lRe

In figure 1 we show the numerical results for Re = 1000 in the lid-driven cavity flow benchmark.
They have been obtained with the simplest Ql/Ql interpolation, stabilized with the scheme
described above:

3. INCOMPRESSIBLE FLOWS WITH FULLY EXPLICIT SCHEMES

Now we will present a simple example that allows us to understand the main factors affecting
convergence rate in advective systems. The analysis will be restricted to the continuum system
since the lowest rates are those of the smoother modes. We consider a onedimensional, linear and
homogeneous system like:

M
a;: + A ~~ = 0, 0 < x < L, 0 < t < 00

where U E m.2 is the state vector and A E m.2X2 is the advective flux jacobian. We suppose
that A has two eigenvalues {a+,-a-}, with a± > 0, and the boundary and initial conditions are:
HoU(O,t) = 0, BLU(L,t) = 0 and U(x,O) = Uo(x). M is a preconditioning matrix, so that
M = I for the non-preconditioned system. The rate of convergence r.o.c. can be determined
by Laplace transform and: r.o.c. = Clogro(1/IRoRLi)/[N(1 + 1\;)] with: I\; = amax/amin and
amax = max{a+,a-} ~d a similar expression for amin0 C = t:.tamax/h is the Courant number.
RO.L sre reflection coefficients at x = 0, L. Note that the rate of convergence can be seriously
deteriorated if the problem is bad conditioned, i.e. if the maximum and minimum characteristic
speeds are very different. This is so for the subsonic (~ :::::I/M) and transonic (I\; ::::: 2/IM - 11)



speeds. It is required also to have good (absorbing) boundary conditions and a stable discrete
algorithm (C '" 1).

For multi-dimensional adveetive systems, the condition number is defined as " = Iv9"lmax/lv 9" Imin,
the sub-index 9 indicates that group velocities are considered[6]. "is called group velocity condition
number. The idea is to modify the original system, by including a preconditioning mass matrix
(PMM) M ::f= I in such a way that the preconditioned system has a " much lower than the non-
preconditioned one [7].

3.2. The Proposed Preconditioning

The preconditioning we propose here is written [8], in primitive variables (p, u, p), as: Mine =
diag{2M, 2M, 2M, 11M}. The corresponding condition number behaves, in the incompressible
regime (M -+ 0), like" -+ 2 and the Courant number is bounded from below by 0.78. This
means that a rate of convergence independent of Mach number is achieved. Comparison with
the artificial compressibility method of Chorin [9,10] is performed in [8]. Surprisingly enough,
we have experimentally found that the numerical solutions are very much improved when this
preconditioning is used, as will be reported in the numerical results.

3.3. Numerical Results
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In figure 2 we can see the convergence history for the circular bump (thickness=12%) at M = 0.001
with the non-preconditioned scheme (left) and with the preconditioning mass matrix presented in
this paper (right). We can appr;ciate that a significant improvement in the rate of convergence is
achieved regardless the very low Mach number, due to the improvement in the condition number.
We show also the Cp distribution for the non-preconditioned and preconditioned schemes on a
coarse mesh. The non-preconditioned solution is polluted with spurious oscillations, ("checkerboard
modes"), whereas the preconditioned one is smooth. We compare also the numerical results



obtained with a finer mesh with others obtained with a very accurate BEM (incompressible flow)
result that can be taken as the reference. Good agreement is observed.

The second example is a flow around a Joukowski profile (12% thickness, 4.6% camber) with an
angle of attack C\' = -0.8872 degrees and a Mach number M = 10-3, see figure 3. Again we
conclude that the rate of convergence experiments an important improvement with similar rates
for each equation. The -Cp distribution is compared against the analytical solution.
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Figure 3: Joukowski prome 12% thickness, 4.6% maximum camber at M = 0.001.

The authors wish to express their gratitude to Consejo Nacional de Investigaciones Cientfficas y
Tecnicas (CONICET, Argentina) for its financial support.

REFERENCES

1. M. Bristeau, R. Glowinski, L. Dutto, J. Periaux and G. Roge, "Compressible viscous flow
calculations using compatible finite elements approximations", Int. J. Num. lltleth. Fluids,
vol. 11, pp. 719-749, (1990)

2. T. J. R. Hughes, L. Franca and M. Balestra, "A new finite element formulation for CFD: V.
Circumventing the Babuska-Brezzi condition", Compo Meih. App. Mech. Engng. , vol 59,
pp 85-99, (1986)

3. S. L. Frey, L. P. Franca and R. Sampaio, "Stabilized methods for the incompressible Navier-
. Stokes flow", in Num. Meth. in Engng. and App. Sci., by H. Alder et.al., (edts.), CIMNE,

(1992).

4. T.J.R Hughes and M.Mallet, "A new finite element method for CFD: IV. A discontinuity-
capturing operator for multidimensional advective-diffusive systems", Compo Mdh .. 4pp.
Mech. Engng. 58, (1986), 329-336

5. M. Storti, N. Nigro and S. Idelsohn, "Stabilizing equal-order interpolations for mixed
formulations of Navier-Stokes equations via SUPG method", submitted to Compo Meth.
App. Mech. Engng. , (1992).

6. R. Vichnevetsky and J. B. Bowles, "Fourier analysis of numerical approximatiOIJs of
hyperbolic equations", SIAM Studies in Applied Mathematics (1982)



i. M. Storti, C. Baumann and S. Idelsohn, "A preconditioning mass matrix to accelerate the
convergence to the steady Euler solutions using explicit schemes", Compo ,\Ieth. App.
Mech. Engng. ,vol. 34, pp. 519-541, (1992).

8. M. Storti, N. Nigro and S. Idelsohn, "Steady state incompressible flows using explicit schemes
with an optimal local preconditioning", in preparation, (1993).

9. A. Rizzi and L. Eriksson, J. Fluid lVfech. ,vol. 153, pp. 275-312, (1985)

10. J. Farmer, 1. Martinelli and A. Jameson, "Fast multigrid method for solving incompressible
hydrodynamic problems with free surfaces", AIA.4 J. ,32, pp. 1175-118, (1994)


