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RESUMEN: Presentamos estimadores a posteriori del error adeetl(ld06para refinamiento automcitieo
de mal/as en la evaluaci6n numerica de la sensibilidad por medio del metodo de elementos finitos. Se
consideron los problemas de difusi6n (tipo Poisson) y de elasticidad, y se prueba la equivalencia entre
el error y el estimador prapuesto. Se expone brevemente la aplicaci6n a la sensibilidad de forma.

ABSTRACT: We present a posteriori error estimators suitable for automatic mesh refinement in
the numerical evaluation of sensitivity by means of the finite element method. Both diffusion (Poisson-
type) and elasticity problems are considered, and the equivalence between the true error and the pro-
posed error estimator is proved. Application to shape sensitivity is briefly addressed.

In the last ten years or so, computational mechanics has evolved, from being essentially an analysis tool, to
an integrated part of the design process. Sensitivity analyses, which playa central role in the optimal design
of mechanical systems, are becoming standard and can nowadays be found even in some commercial finite
element packages (see, e.g., [6)). The recent World Congress STRUCTURAL OPTIMIZATION'93, held in
Rio de Janeiro (August 2-6, 1993), has been a clear example of the many relevant applications that can be
faced with current algorithms and computers.

The purpose of the present paper is to briefly present a posteriori error estimators specifically designed for
sensitivity analyses, which can be used to automatically adapt the mesh so as to increase the accuracy of finite
element computations. We will concentrate, in this first incursion into the problem, in error estimation for
the so-called direct method of evaluating the sensitivity, and the variations in the design will be restricted to
the choice of material parameters. Also, the governing equations considered are linear and time-independent.
Our scope, however, covers many situations of technological interest, such as steady thermal fields, torsion of
cylinders, and linear elastostatics. Error estimation in shape sensitivity analyses is also considered. Further
extensions, such as Kirchoff or Reissner-Mindlin plates in bending, are left for future work. Our conclusion
from this first work on error estimation in sensitivity analyses is that, if a suitable estimator is available for
the error in the solution itself, then it is not difficult to adapt it so as to estimate the error in the derivatives
of the solution with respect to the design parameters.



inside a domain fl with (polygonal) boundary &fl. For simplicity, we will assume homogeneous Dirichlet
conditions on &fl. The solution u(p), where p is a design real parameter, can be interpreted, e.g., as the
temperature. In this case, k(p), with known dependence on p, is the thermal conductivity and f(p) a source
term. An analogous equation appears in the torsion of a cylinder of arbitrary section and in electrostatics.
The variational formulation of (1) is: Find u(p) E HJ(fl) such that

where HJ(fl) is the Hilbert space of square-integrable real functions defined over fl, with square-integrable
derivatives and zero trace on afl. In this way, we obtain a function u(p) for each p in some real interval. It
is known that, if k and f are smooth functions of p, so is the solution u itself. We will denote by u(p) the
derivative of the solution u with respect to p, which is again an element of HJ(fl) and satisfies the following
variational equation

f k(p)Vu(p)' Vv = f ddf(p)v - f ddk(p)Vu(p)' Vv V v E HJ(fl)
in. in p in p

Higher order derivatives of u are obtained in the same way.
We now consider the finite element discretization of (2) and (3). Let Vh be a finite-dimensional subspace of
HJ(fl), and let us define as usual u,,(p) as the element of V" which satisfies

in k(p)Vu,,(p)' Vv = in f(p)v V v E Vh

Denoting by u,,(p) the derivative of u" with respect to p, which is also an element of V", we get the following
equation for u,,(p)

f fdf fdk
in k(p)Vu,,(p)· Vv = in dp(P)v - in dp(P)Vu,,(p), Vv V v E v"

where dk/dp, df /dp stand for the derivatives of k and f (which in general will depend not only on p but also
on the space variables) with respect to the parameter p.

With the previous definitions, it is well-known [4]that, if V" is a finite-element space and we consider a regular
family of triangulations Th parametrized with the diameter h of the largest element, then lu(p) - u,,(p)II,n =
O(hk), with k the order of the finite element approximation and ,. h,n the seminorm of HJ(fl). As shown
in [7] under weak hypotheses, a similar estimate holds for all the derivatives with respect to p; i.e., for first
order sensitivity, lu(p) - u,,(p)II,n = O(hk). It is remarkable that taking derivatives with respect to the
parameter implies no loss of .accuracy in the spatial approximation.

The a priori error estimates presented above, being of global nature, cannot be used to locally refine the
mesh. After a first analysis, with a rough mesh Tho, a local error indicator 11K is needed, for each element K
in TIIO, so as to decide which elements are too big to accomodate spatial variations in the exact solution and
then construct an improved mesh Thl' As the exact solution is obviously not known, 11K must only depend
on the already computed approximate solution, and on the data of the problem.



For problem (4) several such indicators exist to determine elements where the difference u - Uh is largest.
We consider here the Babuska-Miller-type [2]error indicator, given by

1Jk = IKj ( IR(lLhW + L 11111 [k+V'ut - k-V'uh] . nl2
lK leaK I

wherJ IKI is the measure of element K and III the measure of an edge I belonging to the boundary EJK of
K. 1'he supraindices + and - indicate the limits

f±(x) = lim f(x ± sn) n: outward normal (7)
.-0+ .

and R( Uh) is the residual of the differential equation,

R(uh) = V'. (k'V'Uh) + f

It can be proved that LK 1J1-'is equivalent to lu - uhl~.rl' and computer experiments have shown that 1JK
can be coupled with mesh-refinement or remeshing procedures so as to obtain improved meshes, in which
the error is more homogeneously distributed than in the original one.
Remark: It is quite usual to neglect the jump term along element edges in (6), and consider only the residual
term. This procedure can only be justified when the exact solution does not contain singularities [3, 8].
Let us now turn to the original contents of this section and build an a posteriori error indicator for U- Uh.
We only sketch the main ideas here, a more rigorous presentation is included in Appendix A.
Consider problems (3) and (5), their left-hand sides are equivalent to those of (2) and (4), and thus one is
tempted to use some modification ofthe error indicator (6). To do this, we must first construct the differential
equation for U, so as to be able to evaluate its residual for (6). Also, the jump term k+'V'ut - k-V'uh in
(6) arises because the differential equation contains the divergence of kV'u. Integration by parts in (3)
immediately yields the desired result

. (dk ) df- V'. (k(p)'V'u(p)) = V'. dp (p)V'u(p) + dp (p)

At first sight, we are now in position to write down an error indicator ~K for U- Uh, something like

~k = IKI [IQ(Uh)12 + ,~;/I11 [(kV'Ud ~:V'Uhr-(kvud ~~VUhf] .{ (10)

Q(Uh) = 'V'. (kV'Uh + ~;VUh) + ;~
and we would be almost right, but a closer look at the equation for Uh (Eq.5) reveals that it is not an
approximation to (9) but instead to

- 'V'. (k(p)Vu'(p)) = V'. (~:(P)V'Uh(P)) + :(p)

where the approximate solution Uh appears in the right-hand side. This observation is quite natural: As
the exact derivative of the approximate solution Uh(P) (u'(p) in Eq. 11) is not in general an element of Vh,
what we obtain as the solution of (5) is an approximation to the derivative of the approximate solution. This
difficulty can again be easily avoided, just because the difference between the right-hand sides of (9) and
(11) can be bounded by some multiple of Iu - Uhh,O,which can in turn be bounded by (EK 1J1<)1/2. The
final result is that an adequate indicator for Iu- uhll,Ois (1Jk + ~k)I/2. In other words, for the refinement
procedure one must use not only ~K, related to u(p), but also the error indicator for the solution u(p) itself,
1JK·

In most cases, it is not the derivative U what matters but instead the sensitivity of some real objective or
cost function 1J. Also, in problems of optimal design, the derivatives of the 50-called inequality constraints



are needed during the optimization process. We are thus faced with a real function lII(p, v), defined over
R x HJ(O) (or some suitable subset), and we must evaluate its derivative with respect to P with v subject
to be the solution. u(p) of the Poisson problem (1) or (2). We will denote by 1/J the composed function

In this paper we are dealing with the so-caned direct method for evaluating ¢. Its derivation is straightfor-
ward: Differentiating (12) we obtain

[D21I1(p, u(p»J. u(p) d;j lim ..!. [lII(p,u(p) + au(p) - lII(p,u(p)]
0'_00

It should be clear that D21I1 is a linear function from HJ(O) into R. From (13) and (9) or (3) the desired
sensitivity ¢ is obtained. In the numerical realization, ¢h is computed using (13), with u(p) and u(p)
reptaced by their approximations Uh(p) and Uh(p).

We now look for a suitable error indicator for ¢, so that we can adapt the mesh and reduce the error I¢- ¢h!'
Much of the work has already been done, we first use (13) to write

The function 111 is now assumed to be twice continuously differentiable, its second derivative with respect to
the i-th and j-th variables will be denoted by D?jlIl. Performing a Taylor series expaI\sion we get

tb(p) - tbh(P) = D~21I1(P, Uh(P» . (u(p) - Uh(P» + D~21I1(P, Uh(P»: (Uh(P), u(p) - Uh(P» +
+ D21I1(p, Uh(P»)' (u(p) - Uh(p» + h.o.t.

where h.o.t. stands for terms which are of higher order in U- Uh and U- Uh. Also, we have used the notation
D~21I1:(V, w) to denote the application of the bilinear form D~21I1 on the two elements v and w of HJ(O). It
is now clear from the previous equation that, as the derivatives of 111 are bounded, if we reduce the error in
U and U we will automatically reduce the error in ¢. So, in general, taking into account the actual form of
the cost function 111 does not modify our indicator (11k + ~k)1/2.

If the error indicator (11k + ~k)1/2 is used, and thus a sequence of meshes is constructed with increasing
accuracy for Uh and Uh, no problem should appear with the accuracy of ¢h. In fact, as proved by M.Masmoudi
using an argument quite similar to the Aubin-Nitsche trick (see (7)), in many cases Itb - tbhl converges to
zero not with O(hlc) but with O(h21c), where k is the degree of the finite element space.
Remark: If the cost function 111 can be written in integral form, i.e.

lII(U) = ~ g(u, Vu)

where we have assumed for simplicity that there is no explicit dependence on the pa~ameter, then the leading
terms in the Taylor expansion of tb - tbh are

tb - tbh ~ 1, [D1g(u - Uh) + D2g' V(u - Uh) + D~lguh(U - Uh)+

+D~29:(V'Uh, V(u - Uh)) + Dhg' (UhV(u - Uh) + (u - Uh)V'U,,)]
As a consequence, if in some region of the domain one of the derivatives Dig, D2g, D~lg, D~2g or D~2g
has a sharp peak, then the elements in this region should be refined to keep I~' - tbhl under control. As



an informal example, if g(u, vu) = urn, with m a positive integer, then DIg = mum-I, D2g = 0, D~lg =
m( m - 1)um-2, D~2g = 0 and D~2g = O. Thus, if m ;» 2 it could be necessary to refine the mesh in regions
where lul (in practice IUhl) is large.

The extension of the results of the previous section to linear problems in elasticity is straightforward. In
this case, we must deal with the following differential problem: Find u E [HJ(fl)Jn such that

R(u(p»= diu u(u(p»+f(p)=O

u(u) = >.(p)(diu u(p» 1+ 2J.1(p)c(u(p))

holds in the weak sense, where [HJ(fl)]n is the space of square-integrable vector fields with square-integrable
derivatives and zero trace on the boundary, >.(p) and J.I(p) the Lame coefficients which could possibly have
spatial variations and depend on the parameter p, 1 the identity tensor, c( u) the strain (the symmetric part
of the gradient of u), and n the number of space dimensions.
The corresponding variational formulation is

in u(u(p»:c(v) = in f(p)' v "Iv E [HJ(fl)]n

and the approximate solution Uh (p) is obtained restricting this variational problem to a finite-dimensional
subspace Vh of [HJ(fl)]n.
We need also to construct a differential equation for the derivative u(p), namely (ommiting the argument p
for brevity),

where it is assumed that u has been previously obtained from (15) and the only unknown is u. Turning to
the variational form of (17), it reads

in u(u):c(v) = 10 [;~ ·v- E(U):C(V)] "Iv E [HJ(fl)t

The discrete problem to be solved in order to find the approximation Uh to u is the restriction of (18)
to Vh with u in the right-hand side replaced by Uh. Higher order derivatives and its approximations are
constructed in the same way.
The a pasteriori error indicator for u, again of the Babuska-Miller type, is

In Appendix B we include a mathematical result that supports the use of these indicators for error estimation.
The proof is completely analogous to that of Appendix A for Poisson-type problems.



Once the error indicator has been constructed, previous considerations of concerning the evaluation of
derivatives of cost functions or constraints remain valid.

One frequent design criterion is to minimize the total potential energy ll(u), which for Poisson-type problems
is given by

ll(u) = E(u) - T(u) = ~ f klVul2 - f fu2 io io
where E( u) is the "internal energy" and T( u) the "work of external actions". Let us show how the error in
this cost function and in its sensitivity can be estimated in terms of the indicators rJK and ~K previously
introduced.

lelto ~ C L rJk
KeT.

lelto ~ C L (-rJk Hk)
KeT.

E(u) - E(Uh) = ~ f k (Ivul2 -IVUhI2) = -21f k (Vu - VUh) (Vu + VUh) =2 io io'

= E(u - Uh) + in kVeVuh = E(u - Uh)

The last equality follows from the orthogonality of the error. We have then

E(u) - E(Uh) = ~ f klVel2 ~ Clelto ~ C L '7kio KeTo

Ill(u) - II(uh)1 ::;C L '71
KeT.

IE(u) - E(Uh)! = I~in ~;lveI2 + in kvevel ~ C (Ielto + 2Ieh.oleh.o) ~

~ C (le1to + ~Ielto + a1e1to) ::;c: K~. [(1 + a +~) '71 + a~1]

IT(u)-T(Uh)1 = lin (fH ~e)1 = lin (kVuvHkvuve+ ~;vuve)1 =

= lin (kveve + kVeVe + ~;veve)1 ~ C K~' [(1 + a +~) '7k+a~k]
with a any positive number. In the derivation, we have used the property

in (kvevv + ~;vevv) = 0



Notice that this results predicts that the order of convergence of Ih to Ii doubles that of Uh to. U, in
accordance with the a priori estimates of [7]. It does not seem possible to avoid the calculation of ~K (and
thus of Uh) without stronger regularity assumptions on u. This is quite surprising since, as is well-known,
the evaluation of Ii does not require the computation of U.

Similar results can be found for linear elasticity.

We will show now how our error estimation procedure is to be used in shape optimization problems. Consider
a "velocity" field V defined on fl, such that the perturbations in shape to be consid'ered are obtained moving
x E fl to x+pV(x). The deformed domains will be labeled fl+ pV. We first define the family Up of solutions
of the Poisson problem

-v· ("VUp) = q
Up = 0

in fl + pV
on a(fl + pV)

(25)

(26)

av
(Gp);j = 8;j + p ax~

In shape optimization problems we need to evaluate dUp/dp(p = 0) = U. But, from (27), we can immediately
use the results of the second section, with k(p) (now a tensor) and !(p) given by

k(p)
!(p)

det(Gp)KG;TG;l
det(Gp)q

(28)
(29)

dk / dp and dfl dp are obtained by direct differentiation of these expressions. The error estimator of the
second section can thus be applied without change, and the theoretical results in Appendix A remain valid.
An a posteriori error estimator for shape sensitivity in elasticity can also be found analogously.

We have presented a posteriori error indicators for diffusion and elasticity problems, which can be used to
refine the mesh in finite-element sensitivity analyses. To our knowledge, this is the first paper presenting a
systematic approach to improve the accuracy in this kind of problems. Our methodology applies also to any
linear problem for which a residual-based error indicator exists. The main steps to build the extra-term ~K

to be added to the original error indicator TJK are:



2. Replace, in the expression of the error indicator '1/\, the residual and jump terms so that the resulting
~K is consistent with the differential equation for u.

In nonlinear problems, as the differential equation for u does not in general contain the same differential
operator as that for u, a suitable error indicator (instead of TJK) must be used in Step 2. Also, the algorithm
can be easily extended to handle more general boundary conditions that those analysed in this paper.

From the theory, it is clear that the relative weights ofTJK and ~/\ cannot be predicted. In fact, ('1k+C(j,y/2,
with C arbitrary, would yield the same theoretical bound. We thus propose, as a practical algorithm, to
refine in those regions of the mesh where either '1/\ or ~/\ are large (with respect to their mean values). The
remark in 2.4 should also be kept in mind.

We would like to finish this pa.per explaining why we have not included any numerical result. As our
exposition was kept at a general level, numerical applications will be reported in future papers. The point
is that it is quite trivial to show that the error indicator '1/\ is insufficient to conveniently adapt the mesh in
sensitivity analyses: Just consider the case f(p) = pfo, k(p) = ko for the Poisson problem, with fo a given
function in L2(fl) and ko a real number, and try to evaluate U(O). It is clear that u(O} = Uh(O) = 0 and thus
'1K = b for every element K. Also, U(O) is in this case the solution of

-ko~u(O} = fo
which is not in general an element of Vh and thus Uh(O}, obtained from (5) will contain an error that is not
seen by '1K. In fact, '1K would say that any mesh is perfect!

In this appendix the rigorous proof of the equivalence between the true error and our error estimator is sketched,
considering Poisson-type problems. It is as usual assumed that the triangulations of n are always regular (see [4]).

Theorem Ai (Error estimation for Uh): With the definitions and assumptions of the second section, there exist
two constants C1 and C2 depending only on the minimum angle of TA and on the bounds of k(p) = k(p, x) such that,

Proof: The proof will not be given here beCause it is essentially identical to that in [9] ( see also [1]}.0
Lemma Ai : For v E HJ and VAE VAwe have the following error equation,

In kV(u - U'A)VV + In kv(u - UA}VV =

LTET. IT Q(v - VA) +! LtEn III!, it (v - VA)

where it = [(kVUA + (dkjdp)VUA)+ - (kVUA + (dkjdp)VUA)-]' nit
Proof: Using the orthogonality of U - UAto VAand integrating by parts in each element we have

In kV(u - Uh)VV + In kV(u - UA)V(V - VA) =

LTET. IT R(v - VA) +! LtEn III!,[(kVUA)+ - (kVUA)-]' n(v - VA)

and the lemma follows differentiating with respect to p.O

Theorem A2 (Error estimation for UA): With the definitions and assumptions pf the second section, there exist
two constants C1 and C2, depending only on the minimum angle ofTA and on the bounds of k(p} = k(p, x) such that,

Cd I>7k+d·)}' slu-uAI1.nSC2{ L(17kHk)}'
TE~ Te~

Proof: Let w E HJ be such that

in kVwVv= iniv- in kVUAVV



alu - wli,n:5 in 1:V'(u- w)V'(u - w) = - in kV'(u - Uh)V'(U- W) :5 Glu - uhlt.nlu - wlt.n

alw - uhlr.n:5 in V'(W - Uh) + V'[(W - Uh) - (W - Uh)l]

where vI is the Clement interpolated of v [5]. Now, integrating by parts, we have that

alw - tihl?'n:5 L /,Q[(w - U'h) - (w - Uh)l]- L j,(kV'Uh + I:V'Uh)' n[(w - Uh) - (w - Uh)l]
TeT. T tesT t

II" - uIIlL'(T) :5 GITI! IIV'uIlL'(T)

II" - "IIlL'(l) :5 Gill! IIV'"IIL'(T)
we obtain the right inequality of the theorem.

To prove the other inequality we follow the ideas developed by Verfiirth [9] (see also [1]). We use the error equation
of Lemma Al with a particular choice of v E Ht, and <p E Ht, satisfying,

IT Qt· = ITIIIQlli'(T)
It itv = Illllit,nllht)

(A.I)

(A.2)

It is not difficult to see that such v and <p exist. For example, if linear elements are used, <p can be taken as
a continuous piecewise quadratic polynomial vanishing at every vertex of the triangulation and vasa continuous
piecewise polynomial of degree three (in fact, quadratic augmented with local bubbles). We refer to [9] for the details.
Now, Lemma Al together with (A. 1), (A.2) and (A.3) yields,

L (f = L /,(I:V'H kV'e). V'v:5 G(leh,n + leh,n){ L ef}'
TeT. TeT. T TET.

We now state without proof (as it is analogous to that of Appendix A) the equivalence of the true error and the error
estimator for elasticity problems.



Theorem Bl : With the definitions and assumptions of the third section, there exist two constants C1 and Cz,
depending only on the minimum angle of Th and on the bounds of A and J.l such that,

cd L (11k Hk)} i :5 Iu- Uhh.n + Iu - Uhh.n:5 C2{ L (11k Hk)} i
Te~ TE~
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