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ABSTRACT

In this work an adaptive scheme to solve diffusion problems using linear and quadratic
triangles is presented. The densification algorithm, based on the subdivision of the selected
elements, and the error estimator used are first described. We pay special attention to the
behavior of the estimator. It has two contributions: the residual term and the fluz-jump
term. Babuska and co-workers have shown that for bilinear quadrilaterals, the first term is
negligible, but for biquadratic, it is the dominant term. We show evidence suggesting that
these results can not be exlended to triangular elements when the problem has a singular
solution. We found in this case that if the fluz-jump lerm is neglected, the expected rate of
convergence can not be obtained. Finally, some remarks about the whole adaptive process
are discussed.

1 INTRODUCTION

In the numerical approximation of partial differential equations, one often encounters the problem
that the overall accuracy of the numerical solution is degraded by a non-uniform distribution of
the error, specially when the solution of the continuous problem has local singularities. The need
for accurate solutions has made the use of adaptive procedures very attractive and necessary for
large scale problems. This procedure involve two steps: the evaluation of an error estimate and
local error indicators (i.e.: estimates per element), and the mesh refinement process based upon
these indicators.

For the mesh refinement process we use an algorithm based in the subdivision of simplices which is
briefly described in section 3. This idea was successfully used by several authors (see for example
[6] or [7]) and is specially attractive for adaptive process because it is possible to guarantee that
elements will not degenerate.’

In section 4 we describe a posteriori error estimator for diffusion problems, based on the compu-
tation of the residual and flux jump of the approximate solution. Babuska and Miller {2] studied
the contributions of the two error terms for linear elliptic systems. They showed that for a mesh
of rectangular elements the residual term can be neglected when estimating errors of bilinear
approximations, and Babuska and Yu 3] showed that if the solution is locally sufficiently smooth
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then the boundary term can be neglected when estimating errors of biquadratic approximations.
From the implementation point of view, the flux-jump term has more technical difficulties than
the residual term, and these difficulties increase when working in three dimensional problems,
therefore the idea of dropping that term results very attractive. It is natural to ask whether
in a triangular mesh the previous results hold. In this paper we study the behavior of the error
estimator and error indicator for different type of problems and the possibility that we can remove

one of the error terms for linear or quadratic approximations. The results are presented in section
5. ‘

Finally, in section 6 the behavior of the whole adaptive process is discussed.
2 THE MODEL PROBLEM

Let © be a bounded polygon in ®2. We consider elliptic problems:

—div(kVu)+bu = f ond
u = §1indy (1)
o .
a-é-—z = 4 indQ,
i} .
agg +au = Bindls

where k is a Lipschitz function such that k(z) > ko > 0 and b(z) > 0 are bounded functions .
The boundary of € is the disjoint union of 8;. Let us denote:

a{u,v) = /ﬂkVuV'v + buv + /893 auv (2)

and

F(v)=/ﬂfv+/an2'yv+ v 3)

I3

the bilinear and linear form associated to 1. We use the standard notation for Sobolev spaces,
H*(R) for s > 0 and H}(§); and the usual norms and seminorms || ||s.a. | ls0. We introduce, as
usual V = {u € HY() : u |on,= 6} and Vo = {u € H(Q) : u |sa,= 0}. Hence a(, ) is Vo-elliptic.
The weak formulation of problem 1 may be written in the form:

Given f € HYQ),6€ H¥(0%),v € H ¥(30,), 8 € H#(80)
findu € V suchthat : (4)
a(u,v) = F(v) Wwe Wy

Let 75, be a regular family of triangulation of {2, i.e. there exists a constant o such that hx < opx
where, as usual, hx denotes the diameter of K, px the supremum of the diameters of the spheres
inscribed in K and h the maximum of hx .
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Let X» = {v € HY(Q) : v }r€ Pi,VI' € T} be the finite dimensional space of continuous
functions where P, denotes the set of polynomials of degree not greater than k. We shall assume
that § € ®o(X;) where ®g is the trace operator on 94, , ie. ®p(u) = u |an,. Now, we can scl
Vi = X, NV and Vi, = X1 1 Vo. The finite element solution uy € V, is defined by:

a(up,v) = F(v) Yo € Vi, )

Let e = u — u; denote the error of this approximation . It is well-know {4] that if u € H k1)
then :

lelua £ C h* lulisra (6)
3 THE DENSIFICATION ALGORITHM

"The densification algorithm‘ we use is based in the idea proposed in [7}. Basically it has two
steps, subdivision of the selected elements (triangles in 2D, tetraedra in 3D), and the conforming
process.

For the two dimensional case, the algorithm is:

Each triangle with the error indicator 71 greater than a certain cote 7, is subdivided in four
similar triangles (see figure 1b).

. All the non-conform triangles in the mesh are subdivided in two by his longest edge (see figure
lc).

The last step is repeated until the mesh is completely conform (see figure 1d)

a b

Figure 1: Densification algorithm

To use this algorithm in an adaptive environment it is necessary first to guarantee that the new
elements generated will not degenerate. In 2D it is easy to show that the interior angle of all
triangles generated by this procedure are greater or equal to the half of the smallest angle of the
initial triangulation. Then, if the initial mesh has good elements, the new meshes generated will
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also have. In 3D there is not a similar condition, but is possible to say that the new elements will
not collapse to a zero or negative volume.

4 THE ERROR ESTIMATOR

In this section we present two results: the error equations and the equivalence between the error
and the estimator. The first result is a consequence of the integrating by parts and the second
result, is an easy extension of standard theorems [1] , [5] . Let us call I' the union of all edges of
the triangulation 7; and Ty, = I' — 8Q the union of all the interior edges .For each ! C Ty, let
us choose an arbitrary normal direction n and denote the two triangles sharing this edge T, and
Tout , where the normal n points outwards of T}, . Let

[ duhﬂ V(kun |7ou) = V(kup |1,,)] - (M

denote the jump of k@‘l across the edge [ , this value is independent of the choice of n .
Now, we can establish the following error equations : .

LEMMA : The error e = u — uy, satisfies Vv € V the following equation :

ale, v) [Z/ RKu+j (v - ka“" )+/ (ﬂ—auh—k-—-v)] /[ka“" (8)

ICTin

where Ry = [f + div(kV(us |k)) — bur] |k is the residual on the triangle K .
For any triangle T € 7}, , let Er be the set of its three edges , and let 5y be the following indicator:

= [IT||RellZz + X WIELE (9)

leEr

where |T'| and |!| are the area of T and the length of an edge 1 , resp. , and where

[[k?-%]] if 1 C Tie
J, = fich 10
: [ k3ua], if1CT, (10)

28 - auh—km] iflcTs

THEOREM : Let : 1 !
e= (D np)?

T

be the error estimator . There are two constants ¢g,¢; , which only depend on € and on the
smallest angle in the triangulation 7}, such that the estimates:

coe < lenls < e ay

holds.
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Figure 2: Solution and meshes obtained for the regular problem

5 BEHAVIOR OF THE ERROR TERMS

In this section we studied with some numerical examples the behavior of the two error terms,
in order to know if it is possible to neglect the jumps term as suggested in [3]. We solve three
diffusion problems, one with a regular solution and two with a singular solution.

Regular case: Solve the diffusion problem 1 in the region showed in figure 2a, with coeflicients
k(z,y) =10

b(z,y) = 0.0

f(z,y) = —6zyl(a® + y*)(2ey — z —y + 1) — (= + y)zy]

and zero Dirichlet boundary conditions in I'. The exact solution to this problem is the stooth
function

u(z,y) = (z — 1)(y - 1)’y

Figure 2b show the initial mesh and 2d, 2e, 2f show the progressive adaptation to the solution
using the error indicator 7. In figure 2c we show the solution of this problem for the last mesh.

In figure 3 we show the variation of the global errors along the adaptive process. 1t can be seen
that the jumps term is negligible, and the residual is dominant for all meshes. This agrees with
the same result obtained in [3] for quadrilateral elements.

Singular case I: Solve the diffusion problem 1 in the region showed in figure 4a, with coeflicients

k(z,y) =10
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Figure 3: Error behavior for the regular problem

bz,y) = f(z,y) = 0.0
and with boundary conditions:

9y _ 1 [3 - du
se=gcos(y)onThu=00nT; 52 =00n T

The exact solution to this problem is:

u = r%sin(%)

Observe that u € H¥¢(f2) for any € > 0 but not for € = 0.

Figure 4b show the initial mesh and 4d, 4e, 4f show the progressive adaptation to the solution
using the error indicator 5. In figure 4c we show the solution of this problem for the last mesh.

In figure 5a we show the variation of the global errors (residual, jumps, whole estimator, and true
error) along the adaptive process when the whole estimator is used. The rate of convergence is
the expected, and the true error is lower than the estimated error like was predicted. It is also
possible to see that the jumps term is always lower than the residual' term but not negligible. In
figure 5b we show what happen with the global errors when the jumps term is neglected, and the
adaptive process is carried out only with the residual term. It is possible to see that the rate of
convergence is deteriorated.

‘The last result motivate us to study another problem with a singular solution. We choose a
classical one illustrated in figure 6.

Singular case 2: Solve the diffusion problem 1 in the region showed in figure 6a, with coefficients
k(z,y) =10

b(z,) = f(z,9) = 0.0

and with boundary conditions:

u=0inT;u=1inT, g—::OinFa

Figure 6b show the initial mesh and 6d, 6e, 6f show the progressive adaptation to the solution
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Figure 4: Solution and meshes obtained for the singular problem 1
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Figure 5: Error behavior for the singular problem 1

using the error indicator yr. In figure 6c we show the solution of this problem for the last mesh.

In figures 7a and Tb we show the variation of the global errors for this problem using the whole
estimator or neglecting the jumps term. It is possible to see that in the first case, the expected
rate of convergence is obtained, but not in the second. We found this is caused by the difference
in the error distribution when the whole estimator or just the residual term is used. This can be
observed in the figure 8 where the meshes obtained after six densification processes with these
two indicators are shown.
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Figure 6: Solution and meshes obtained for the singular problem 2
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Figure 7: Error behavior for the singular problem 2

6 SUMMARY

The results of the previous section invalidate the assumption that the jump term of the error
estimator can be neglected for quadratic elements when the optimal rate of convergence is desired,
specially because the problems of practical interest in general have singular solutions.

The refinement strategy and error estimator combined with an automatic setting of boundary
conditions, allows us to construct a robust and practical software to solve diffusion problems in
2D. The control over the error and the savings in preparing data make it an interesting tool for
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Figure 8: Meshes obtained using the whole estimator o just the residual

the engineering.

The generalization to three dimensions is possible bul not straight forward, specially the densifi-
cation algorithm. We have in progress a development in that direction.
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