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A new coupled method for finite element viscoelastic flow simulation is presented. Although the
method is not free of instabilities, it allows high Weissenberg number flows to be modeled with a
simpler mixed element than that of Marchal and Crochet. Numerical results for the planar four-to-
one contraction are included that illustrate the good performance of our scheme.

This work is based upon the fundamental contributions made by M.J.Crochet and J.M.Marchai
[10,11] to the finite element modeling of viscoelastic flow (see also [6]. To say it in just a few words,
MJC and JMM proposed that a numerical method for viscoelastic fluids sbould work if:

(i) The three-fields (stress-velocity-pressure) discrete formulation is stable in the zero-elasticity limit.

(ii) A streamline diffusivity (SU) proportional to the local mesh size is added to the equations
expressing extra-stress transport.

(iii) The resulting non-linear system is solved using fully-coupled techniques, such as Newton-
Raphson schemes.

As a result of these ideas, in [11]they propose a new method involving a non-standard mixed element
which interpolates velocity components biquadratically, pressure bilinearly, and extra-stress compo-
nents bilinearly on a 4 x 4 subdivision of each element. This element was later proved convergent in
the zero-elasticity case by M.Fortin and R.Pierre [8].

Remark: In what concerns condition (i), replacing the extra-stress approximation of the JMM-MJC
element by simply Q3 would still yield a convergent scheme [8]. However, the piecewise bilinear
approximation seems to match particularly well the SU upwinding.

To our knowledge, the method of Marchal and Crochet remains as one of the very few that do not
exhibit the so-called High Weissenberg Number Problem (HWNP), i.e., lack of convergence of the
nonlinear algorithm at a moderate amount of fluid elasticity.

In a previous paper [1], we have shown that the decoupled method of M.Fortin and A.Fortin [7J
with low-order interpolation could be an alternative, as we reached a Deborah number of 18 in the
4-to-l contraction problem. However, a, decoupled approach needs far more nonlinear iteration than
a coupled one, so that as far as differential constitutIve laws are considered the latter should be
prefered. Also, coupled methods seem to be more robust in what concerns the HWNP.

In this paper, we present a new coupled method for viscoelastic flow simulation, involving much
simpler elements than that of Marchal and Crochet. The underlying ideas have not changed, we
try to fulfill (i)-(iii) above, but discontinuous interpolation of the pressure allows us to use more
standard extra-stress spaces.



2. GOVERNING EQUATIONS

We consider the Johnson-Segalman model with additional viscosity, also used in [11. The governing
equations are the following:
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div u

Above, Tis the extra-stress tensor, >. is a characteristic time related to elastic effects, u is the velocity
field and p the pressure. Du stands for the symmetric part of the velocity gradient, which we will
also call d (the antisymmetrie part will be denoted by r). Also, p stands for the density, f for the
volumetric force, and Ill,1'2 for the polymer and solvent viscosities, respectively.

Finally, the objective time derivative ~ is defined as:

o
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where II is a real parameter E [-1,1]. II = 1 corresponds to the upper-convected derivative.

In the following, we will concentrate on the inertia-less flow (p = 0) of an upper-convected fluid with
III = 0.89 and 1'2 = 0.11. These are standard values used to test numerical methods, in particular
because the inertia term seems to have an stabilizing effect on the discrete problem [7]. A more
exhaustive study will be presented in [4].

3. ABOUT EQUAL-ORDER STRESS INTERPOLATION

In a recent paper [2] (see also [3]), we have studied stress-velocity-pressure mixed finite elements
for newtonian flows (>. = 0) in which we used the same interpolants for velocity and extra-stress
components. At first glance, this procedure could be cast into equal-order schemes framework and
thus be presumed to yield unstable approximations in the 112= 0 limit.. However, we numerically
showed that, if the incompressibility constraint is strong enough, or equivalently the pressure space
rich enough, some stable approximations can be obtained. In fact, the discrete incompressibility
constraint reduces the space of admissible velocity fields, and thus the approximation is no longer of
equal order.

Let us denote a given three-fields mixed element by "Extra-Stress / Velocity / Pressure interpolants".
As an example, the element of Crochet and Marchal would be labeled (16 x Ql)/QdQl' III [2], we
found that P:j / P2+/ PI, Q2/Q2/ PI and QdQI/ Po elements exhibited stable numerical behaviour. P:j
stands for quadratic triangles plus the usual cubic bubble-function, and all pressure interpolants are
discontinuous across interelement boundaries.

Remark: Recently, M.A.Hulsen used a variant of the p:j / P:j / PI (namely the P2/ P:j / PI) element
within a decoupled method, with quite successful results [9].

As an application of the observations above about the importance of the discrete incompressibility
constraint, let us compare the QzlQ2/QI element (known to be unstable [8]) with the Q2/Q2/PI
one (stable in our tests). Asymptotically, the former has one pressure freedom per element, while
the latter has three times this number. On the other hand, an element with discontinuous pressure
interpolants with one pressure unknown per element is the Q2/Q2/ Po, which in fact is unstable [2].
To overcome this difficulty, JMM and MJC enriched the discrete-stress space. Our proposal is to
reduce the admissible velocities space by enriching the discrete-pressure space. Of course, the limit for



this is the compatibility between velocity and pressure interpolants (the well-known Babuska-Brezzi
condition).

The results in [2] concerning P:J / P:J / PI element, which performs best in the newtonian limit, are
extended to viscoelastic flows in the following sections. Although this extension proved to be far
from obvious, we expect the reader to keep in mind that condition (i) of Section 1 is fulfilled by
our elements (this assertion is up to now only based upon strong numerical evidence), which are
simpler than that of Marchal and Crochet. In a forthcoming paper, we investigate the Q2/Q2! PI
and Qd Qd Po in viscoelastic simulation. We expect that other simple elements can be found that are
stable in the newtonian limit, perhaps one involving continuous pressure interpolants, the P/ !pt !PI
(natural extension of the mini-element) being a good candidate.

4. THE NUMERICAL METHOD

We implemented a coupled scheme based on Newton-Raphson's algorithm. The incompressibility
constraint is treated by iterative penalization, allowing the elimination of pressure unknowns at
element level. In fact, our iterative scheme can be viewed as the viscoelastic version of the method
introduced by R.Codina for the NaviercStokes equations [5].

Let Eh, Vh, Lh be the discrete linear manifolds of extra-stress, velocity and pressure, respectively. For
simplicity, we will assume in this section that the boundary conditions are sl1chthat these manifolds
are vector spaces, so that we can identify the space of test -functions with that of weight functions.
The discrete variational formulation of (1)-(3) corresponding to the SU mixed method of Marchal
and Crochet thus reads:

Discrete variational problem: Find (Th' Uh, Ph) E Eh X Vh X Lh such that
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where n is the domain under consideration, over which a finite element mesh Th has been specified.
Once T" is given, ~h, Vh and Lh become defined by the p:J / P:J / PI (or some other to be introduced
later) interpolation inside each triangular element, together with the boundary conditions. h! stands
for the local mesh size in the flow direction and I for the unit tensor.

A lengthy explanation would be needed to completely describe our iterative scheme, so we will only
sketch the most relevant features:

• The whole system (5)-(7) is solved by classical Newton-Raphson iterations. As usual, the
characteristic time for SU hJ Ilukl is updated after each iteration in a Picard-like manner .

• At each iteration, the incompressibility equation (7) is replaced by

1o(€p~+1+divu'h+I)q= 1o€p~q VqELh

so that, upon convergence (Pl.+! = Ph), (7) is satisfied exactly.



• At each it.eration, equation (8) allows the elimination of pressure unknowns at element level,
so that these unknowns do not enter the Jacobian matrix .

• In order to obtain a solution at a certain elasticity value A, we performed several steps beginning
with the solution at A = O. Usually, we performed a linear extrapolation of the results obtained
with two previously comput.ed A'S to generat.e t.he initial guess for the iterative algorithm.

It has become usual to test viscoelast.ic flow methods in the w-called 4-to-l contraction problem,
which for this reason is only briefly described in this sect.ion.

We consider the planar flow of an inert.ia-Iess upper-convected fluid which ent.ers the domain through
a channel of half-widt.h 4, with a parabolic vertical velocity profile of mean value 0.25. At X2 = 0,
there is a sudden contraction int.o a narrower channel of half-width 1, its downstream end being
imposed a parabolic vertical velocit.y profile of mean value l.

At t.he ent.ry section, it is customary to impose fully-developed conditions for T, but we instead
prefered to specify T t.o vanish there. This causes no serious trouble, as t.he stress field soon develops,
well before reaching the region perturbed by the contraction.

The lengths of the upst.ream and downstream channels (l"p and Idown), for the boundary conditions
not to perturb the flow, depend upon the elasticity time A. We have performed some test with the
same values of [1] (lup = 16, Idown = 20), and some others with lup = 30 and Idown = 50. Symmetry
conditions are imposed at Xl = 0, while no-slip ones at the solid walls.

With the above definitions, the Deborah number of the flow is defined as De = 3\ because the shear
rate at the downstream wall is 3 in fully developed flow. The methods exhibiting t.he HWNP usually
fail to converge at. a limit De of ~ 2 to ~ 7, so that. we will regard Deborah numbers greater than 7
as high (also, numerical results will show that for De > 7 t.he elastic effects significantly modify the
flow).

6. FINDING A NEW MIXED ELEMENT

Let us begin by introducing t.hree meshes that will be refered to in the sequel. 11 is a structured
mesh wit.h 194 elements, involving 3185 stress-velocit.y unknowns. 7; has 248 elements, which results
in 3985 unknowns, and 73 cont.ains 492 elements (7905 unknowns) (see Fig. 1). 7j and 7; have
I"p = 16 and Idown = 20, while 73 has lup = 30 and Idown = 50.

6.1 The Pi /Pi / PI element

Encouraged by the good behaviour of the pi /P2+/ PI element in newtonian flow, we tested it in t.he
viscoelastic situation. We considered three treatments of equation (1): Galerkin, full SUPG, and
the SU method of (5). The first two yielded oscillatory results for T on mesh 71 at De as low a~3,
confirming that these methods do not work for viscoelastic fluids.

More promising were the results of the SU method. With mesh 71, we were able to reach De = 9
with no convergence difficulties. Although the pressure and velocity fields at this De were smooth,
the T field exhibit.ed strong oscillations downstream of the cont.ract.ion. In Fig. 2 we plot T22 along
the vertical line Xl = I for De = 1 to 9. These results are dearly unacceptable.

To see if these oscillations could be removed by mesh refinement, we performed an analogous study
on 7;. On this mesh we could not find a converged solution for De > 5.5. Moreover, comparing
the results of both meshes the method seems to be unstable. In Fig. 3 we plot T22 along Xl = 1 for
both meshes at De = 3,4 and 5. It can be seen that t.he first oscillation behind the peak at X2 ~ 0
becomes .5tronger on the finer mesh.
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We think that the above numerical evidence is enough to justify the sake of a new element, although
the P2+/ Pi / PI allowed us to reach high Deborah numbers on quasi-regular meshes. It should be
kept in mind that any existing method for viscoelastic flow is sensitive to abrupt mesh-size changes.

6.2 A new element

Turning back to conditions (i) to (iii) iu Section 1, the three of them were fulfilled by the previous
method, which nevertheless does not behave satisfactorily. The explanation we conjecture for this
deduces from the apparent bad behaviour of SU with quadratic interpolants already remarked.

Let liS now turn to consider a modificat.ion of the Pi / Pi / PI element. We keep pressure and velocit.y
interpolants as before, but replace the quadratic interpolat.ion by a piecewise linear one, obtained by
subdividing each triangle into four equal ones (joining the midpoints of each side) and interpolating
stresses linearly inside each sub-triangle. This modification is obviously inspired in the work of
Marchal and Crochet, but, as we only perform one subdivision, the stress nodes still coincide with
the velocity ones. Furthermore, we will keep the bubble function for stresses so that, except for
boundary conditions, the discrete spaces are the same for each velocity and stress component. This
new element will be labeled (4 X Pt)+/ P:} / PI hereafter.

Our numerical tests have shown that this element is stable for newtonian flow. In the viscoelastic
case, and using the SU method, we reached without difficulty De = 12 with meshes Ti and 1;. In
Figs. 4 and 5 we include plots similar to the previous ones for De = 4,8 and 12, as obtained with
the new element on Ti and 72 respectively. It can be seen there that the oscillations not only do not
propagate as far downstream as with the previous element, but also decrease with mesh refinement.
\Ve believe this to be an evidence of h-convergence of the method.

As meshes Ti and 72 are not long enough to carry out simulations at De > 12, we conducted a last
test on mesh 73. We found no convergence difficulty up to the high De value of 19 (for De > 15 the
mesh proved to be inadequate). In Fig. 6 we plot 7'22 along XI = 1 for De = 3,7,11,15 and 19. At
the highest values some oscillations appear, that we attribute to two facts: First, that this mesh has
similar element sizes near the contraction as 1;. Second, the oscillations near X2 ~ 10 occur where a
sudden mesh-size change occurs (see Fig. 1 (c)), and thus can probably be removed by making this
transition smoother.We stopped the calculations here because this pathology where the mesh-size
abruptly changes strongly deteriorates the results (see also Fig. 7 below).

As we have already said, the stress field is the most sensitive field of the flow, particularly at the
downstream wall, and for this reason it has strong numerical int.erest. Some other flow features serve
better for comparison and for the visualization of the effect of elasticity on the fluid behaviour. In
Fig. 7, we plot the vertical velocity along the symmetry axis for De = 3,7,11,15 and 19. These were
obtained with mesh 73 but do not differ substantially from mesh to mesh. The results at De = 19
clearly show that the mesh is not appropriate for De > 15. Also notice the substantial modifications
to the flow introduced by elastic effects.

As a final remark, it is clear that neither theoretical nor numerical proofs of convergence in mesh are
contained in this article. We believe that, considering that the four-to-one contraction problem has
proved to be a highly challenging test for the model considered, and that we have tested the method on
quite different meshes (some of them are not shown here), our conjecture that the proposed method
converges is quite reasonable. Further analyses are under way to better assess these important
questions.

A new mixed element has been presented that performs sa.tisfa.ctorily for viscoelast.ic flow simulation
and is much simpler than that of Marchal and Crochet. In fact, in planar flow the (4 x PI)+ / Pi / PI
element yields meshes containing 9 stress unknowns per element (asymptotically), while the 16 x
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Figure 3: 1"22 viscoelastic stress along the line Xl = 1. A comparison of the results obtained with
meshes 1i and 72 at De = 3,4 and 5.



100.00 -

N
N
I-

Iii lillil.'!'I'!II'II"I'I' Ii iilll

2.00 4.00 6.00 800
X2

Figure 4: 722 viscoelastic stress along the line Xl = 1, for De = 4,8 and 12 as obtained with the
(4 X Pd+ / P:}J PI element on mesh Ti .
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Figure 6: Tn viscoelastic stress along the line Xl = 1, for De = 3,7,11,15 and 19 as obtained with
the (4 x PI)+ / Pi! PI element on mesh ~ .



QdQ2/Ql raises this number to 48. If condensable unknowns are eliminated at element level our
element is still less costly by a factor 6/21.

This should not be taken as an argument against Marchal and Crochet's work. Very much on the
contrary, the development of this new method was inspired and based upon their ideas, which we
briefly summarized in conditions (i)-(iii) of Section 1 and the subsequent remark. This is of course a
personal interpretation of their work, and is confirmed by the results shown in this paper. We believe
that some other appropriate elements for this problem can be found following the same methodology
that was used here. We are now studying two of them, and the results will be the subject of a
forthcoming paper. It should be remarked that the presence of limit points in our calculations was
thoroughly investigated, and some current results indicate that limit points indeed exist near De == 12
for several meshes.
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