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ABSTRACT

Viscoelastic wmaterials have thelr mechanical properties affected by
microcracking. A continuum damage model 1s proposed to represent the
behavior of the material and applied for the fracture analysis. It is
considered that the crack grows when the damage in a point reaches a
critical value.

RESUMO

Materiais viscoeldsticos tém suas propriedsdes mecdnicas degradadas devido
4 microfissuracio. Assim sendo, propSe-se ua modelo de dano continuo pera
representar o comportamento do material e aplica~se este modelo para
andlise de fraturas. Considers-se que haja propagacio da trinca quando o
dano em um ponto atinge um valor critico.

INTRODUCTION

In this paper we study the crack propagation problem for a material whoee
global behavior is linearly viscoelastic; the subject has great interest
in the integrity analysis of structures made of materials as polymers and
concrete.

The 1literature available on the subject 1is scant and sometimes
contradictory, but from the classic theoretical and experimental studies
of Knauss [S)} and Schapery [B] we can learn.

1. A cracked solid of linear viscoelastic material has a critical stress
oYe under instantaneous loading that is determined using its instantaneous
elasticity modulus and the equations of LEFN (linear elastic fracture
sechanics). For a sustalned stress ewre we will have 2 delayed fracture;
the time delay depends on the creep compliance of the material. Usually a
stress ord exists , such that for ewre no fracture occurs ia a {inite
time.

2. In order to model theoretically this behavior 1t 1is necessary to
postulate the existence of a process zone at the tip of the crack of
initial length a. The material behavior in this zome 1is assumed as
strongly non linear but other ways unspecified; the rupture condition is
given indistinctly by stress, strain or energy limit criteria. On this
setting, using several simplifying hypotheses and a special viscoelastic
law, Schapery [8] obtained a relation between the propagation speed a and
the acting stress intensity factor K .
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It would be useful to have an equivalent model amenzble to numerical (i.e.
finite elements) analysis. Them we could model arbitrary geometrical,
loading and support comnditions and reeal viscoelastic relations. No such
procedure has yet been developed.

Experimental observations tell of intense aicrocracking at crack tip, and
thus a strongly momlinear viscoelastic behavior, that can be represented
using Continuous Damage Mechanics (11], [12]. For this zone, it 1is
proposed a3 formilation developed by Saraive e Creus (7] that couples
viscoelasticity with contimsum damage mechanles.

This model was incorporsted imto a finite element program for viscoelastic
snalysis and fracture {6) and several eoamples were amalyzed. Damage
accumulation at the crack tip is observed and the corresponding stress
redistribution. Vhen damage reaches the critical wvalue at a given
integration poimt, the crack propagates, say, to this integration point.
At sach time interval, a J integral determination could be performwed. When
the critical value J i1s attained, an elastic propsgation condition
should be expected.

THERMODYNAMIC FORMULATION
The Helmholtz enmergy for viscoelastic saterials is [11):
'-%czcﬂ:c-q:c*o(l:') (1)

where ¢ is the total strain, ® the elastic temsor, q the viscoelastic
pseudo~stress ¢ 8 a viscoelastic potential, function of viscoelastic
strain ¢'. q is given by:

q= e (2)

The Belmholtz complementary emergy is:
0-%0:(6)":'0:':'00(:') (3)
where ¢ is the stress temsor and Q a viscoelastic complementary potential.
Stress and strain are forces thermodynamically associated:
r-g-cﬂzc-qta:(c-t') (e)
c-g-(co)":roc'-c'Oe' ()

CONTBRIUM DAMAGE MOOEL FOR VISCOELASTIC SOLIDS

The damage 1is assumed to be isotropic and to modify only elastic
material properties. Helmholtz and Helaholtz complementary energles are
given by:
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wvhere d 1is the damage variable. From both expressions we obtaim
the viscoelastic stress-strain relatlonship:

e+ s @ (¢3]

=Pt (e~ (8)
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The relation obtained using Helmholtz energy resulted the same as the one
obtained using Helmholtz complementary energy, showing the consistency of
the formulation.

v

€= (9)

Introducing equations (8) and (9) into general viscoelastic relatlom {11,
we obtain:

t

1 -1 ap(t, t)
clt) = oty : (e | LT or) ar (10}
e fo
t
olx) = (1 - d) % et) + (1 - d) J’E—fh‘—"- elt) dr (11)
T
o

where D(t,r) and E(t,T) are the creep and relaxation functioans,
respectively.

For the finite elements forsulation we use, as usual, the virtual work
principle and the interpolation relations:

u=N g‘ (12)

where u is the displacement vector inside the element, \_:' is the nodal
displacerment vector and N is the shape functions matrix. From the
straln-displacement relation we also have:

c-Bu' (13)

where matrix notatiom 1s used throughout. The balance equation is then
written:

~oxt

Ju-d)g’g'gmru‘-? qu-d)g’g"g'dv (e
A\ v




vhere P is the vector of external loads. The numerical solution of the
integral equation above is simplified using a state variable approach {1].
Although the inclusiom of damage Introduces nonlinearity in the
viscoelastic relstionship, the usual incremental solution is used as a
first approach. An iterstive procedure could be used to control numerical
error.

DAMAGE EVOLUTION LAW
The damage evolutiom law is defined as [10]):

d=Gle ,d)¢ (15)
- oq

where G is the damage potential and ceq the equivalent strain, that we
define as:

e - (o o) (16)

where < > are the McAuley brackets (<> = (x + |x|)/2) is used, so that
the damage is assoclated to temslon strains.

The damage criterion is given by:

g-c.‘-r‘so [6¥2]

where g is the damage function and r 1s the damage parameter, given by:

rttux{ro, max ¢ (s)} (18}
s€(-a, t)
The damage potential used in this work is that proposed by Kachanov {3] to
creep damage:
«
ea
G(t.‘.d) = A [ m ] (19)

swhere A ¢ a are material psrameters.

FRACTURE ANALYSIS FOR VISCOELASTIC MATERIALS

For several stress-strain relationships, J-integral is used as a critical
parameter and evaluated as:

L1
J= s a - T: — [ ds (20)
a
r 1
where I' i3 an arblitrary contour whose beginning and end lay over the crack
faces and follows a counterclockwise sense, m is the component in the x1
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direction of a unit vector normal to I', and u 1s the displacement vector.

The positicn and orientation of x1 and x2 axes are shown 1n Figure 1.
' T

Figure 1: J lntegral

There are direct relatilons between J and the stress intensity factor X in
the linear elastic case or the crack opening displacement (COD) in the
general case. J approach 1s wused for approximate analysis of
viscoelastic materials [9].

The J Iintegral 1is meaningful only for linear and non-linear elastic
materials. For other stress-strain laws, its use is restricted to
monotonically increasing loads.

Crack growth is predicted when J reaches a critical value Jc,
characteristic of the material. A crack propagatiom study can be performed
displacing the contour I' whenever a rupture at the crack tip occurs,
increasing the crack length. For a finite element analysis of this kind of
problem, it is necessary an algoritha for mesh redefinition in order to
follow the crack growth. A work on this subject wvas presented for the
linear case by Ingraffea et al. (2].

In the present paper, we develop a simpler method that uses only Continuum
Damage Mechanics. As the cracked body is modeled by a3 finite element mesh,
localized failure occurs at the points under high stress and strain
levels, mainly at the crack tip, due to the damage process.

The damage variable d is evaluated at the Gauss points of finite elements
and 1t is considered that rupture occurs when d reaches the critical value
der, characteristic of the material. In these points, s residual stiffness
is preserved in order to avoid numerical singularities ln the stiffness
matrix.

NUMERICAL ANALYSIS: EXAMPLE
Ve consider a center-cracked plate under traction, whose geometry 1is
shown in Figure 2. All the parareters used are hypothetical, so mo unit
systea is indicated.

The viscoelastic properties of the material are characterized by the




functions:
E(t) = 50000 + 50000 ¢ */*
G(t) = 50000 + 50000 ¢ */*

Figwre 2: Center-cracked plate
The damage parameters are:
A=0.1
«=0.01

L 1]

d = 0.95
or

where der 13 the critical value for damage. When an integration point
reaches der we assume s residusl stiffness equml to 5X (1 - d = 0.05).

We consider an applied load of 400 units and taking advantage of symmetry
we modeled a quarter plate using 8-nodes isoparametric elements for plane
stress. The mesh has 119 elements and 406 nodes. Along the fracture line
there exist 12 square elements of 0.5 units side length. The time interval
used was 0.25 and the Gauss integration order 2x2.

Crack propagation began at t=5; Figure 3(a) shows a graphic of the crack
length variation s with time; fallure with complete divisiom of the body
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occurs at t=6.25. Crack propagation velocity a2 was determined by
interpolating a fifth order polynomial on the data of Figure 3(a) and
differentiating this polynomial. The result is given in Figure 3(b),
showing increasing velocity, as expected for this type of specimen.
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Figure 3: (a) a x t ) axt

CONCLUSIONS

The results obtained seea to validate the proposed method for the
description of crack growth and propagation ln viscoelastic wedia.

Computationally, the method 1is relatively simple, since no mesh
redefinition or any special procedure to find crack propagation direction
are required. Besides, this method allows the analysis of cyclical loads,
instead of J integral, which is meaningful Jjust for monotonically
increasing loads.

Researches in the sense of evaluating the influence of the mesh and the
time step over the convergence process are necessary. Preliminary tests
show that problems may occur when coarse meshes or too great time
intervals are employed.

Probably, the inclusion of am incremental~iterative solution algoritha
will improve the process convergence and decrease the Influence of the
time interval.
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