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In the present work an aIgotithm for a local mnulation of the enero' transfer phenomenon in
a binary (solid-fluid) moving saturated mixture is proposed. An iterative procedure is used to
simulate (by means of a F"mite Difference approach) the heat transCer in a saturated flow (through
a porous medium) between two parallel isothermal plates in which the fluid constituent's inlet
temperature is the only boundary condition prescribed on x-direction. An exaustive number of
tests have shown that the mentioned procedure (which is independent from initial estimates for
both constituent's second order parliaI derivatives on x-direction) coosa'" of an effective way to
perform this simulation.

Tbe interest on flow througb porous media, taking into account heat and/or mass transfer is
crowing significantly nowdays. Interactions between fluids and solids are present in many industrial
processes. These fluids may be passed over packed beds of solid material, 10 that a large ratio
of surface area to volume is obtained and phenomena such as beat and mass tr&Dllferor chemical
reactions may occur. Tbe main purpose of this work is to present a procedure which, despite
its simplicity, is an effective way to perform a local simulation of the forced convection heat
transfer process "'hich occurs when a fluid flowing through a porous channel with realistic boundary
conditions ill considered.

While the well known classical (llincle continuum) energy transfer model II] describes adequately
the thermomechanical behaviour of materiala such as steel, water, rubber or au, it is not so
appropriate for a local descriptio!! of the heat transfer process in a Row of a newtonian fluid
through a porous medium. Such a descriptio!! would require the IOlution (for the fluid) of both
Navier-Stokes and Energy equationa, in a domain defined by all active pores. Boundary conditions,
such as n~slip condition and prescribed temperature (and/or heat fluxes), should be considered
on all pore walls. The currently aniable tools are Dot adequate to allow a aimulation of 10 great
degree of complexity.

In order to make p08ible a local description, the problem is felarded throush a Continuum



Theory of Mixtures viewpoint 12). A binary (1OIid-fluid)mixture is considered, in which the fluid,
represented by the wfluidconstituent-, is assumed newtonian and incompressible, while the porous
medium, represented by the -lOlid constituentw,is assumed ricid, homogeneous, isotropic and at
rest.
This model, which is supported by a Theory, with thermodynamical consistence, that generalizes
the Cluaica1 Continuum Mechanica, anow. a local description of the heat transfer phenomenon
in a polOWlmedium saturated by a fluid. The forced convection heating of a bid which Bows
through a porous channel, bounded by two impermeable isothermal Bat plates, is limulated with
the mentioned model
When the energy transfer be~ lOUdand fluid constituentl is Itudied in a Continuum Theory
of Mixtures viewpoint, the existence of two temperatures a.t ea.chIpatial point of the domain (the
fluid and the IOlid constituentl' tempera.tures) give. rise \0 the EBerlY Generation Function 13)
(which provides the thermal intera.ction between both constituents of the mixture). The Con-
tinuum Theory of Mixtures demands each constituent to sa.tisfy the ba.lance equations, while a
globa.lbalance equa.tion must be satisfied by the mixture. The existence of the Energy Generation
Function provides IOlid a.ndfluid constituents'enere equa.tionacoupling.
When the forced convection heating of a fluid flowing through a porous channel is considered,
in a two-dimensional geometry (u shown in Figure I), a. system of two lIeCondorder partial
differential equations on both x- and y-variablea is to be IOlved. The characteristic nature of
the enercy equations allows this ayatem to be IOlvedwith only one boundary condition on x-
direction. From a.mathematical viewpoint, this statment may sound a.bsurd, but from a physical
viewpoint, if both constituentl' temperatures are preacribed on the channel's superior and inferior
boundaries (y-direction) and the fluid inlet temperature illknown, no aditionaJ boundary condition
seems necessary to determine both constituentl' temperature fields. The use of aditional boundary
conditions could, even, give rise to an unrealistic behaviour near the boundaries.
The main objective of the present work ill to present a simple, but effective, procedure, capable
of solving a system of second order partial differential equations, in two variables each, employing
only five boundary conditions (instead of the usual.ven or eight); four on y-direction and only
one on x-direction.
In fact, an ex&ustivenumber of examples talr.eninto consideration, has shown that the domain's
interior is not affected by aditional boundary conditions on x-direction, which can lead to unrealistic
situations on the boundaries.
Since both constituents' energy equations are eDiptic, four boundary conditions should, in prin-
ciple, be prescribed on x-direction. The fluid constituent's energy equation, however, because
of its physical nature, is treated as a sequence of para.bolic equa.tions, suggesting tha.t only one
boundary condition (at the channel's entrance) would be expected to be necessary for its IOlution.
Some tests, in which the fluid constituent inlet temperature was known and several values of the
solid constituent partial heat flux (defined 10 as to be proportional to the solid a.nd fluid con-
stituentl' temperatures difference) at the channel's entrance a.nd exit were used, have confirmed
the mentioned hypothesis.
The coupling of both energy equa.tioIlllsuggested a step forward: to prescribe no condition for the
solid const.ituent, either at the channel's entrance or at itl exit. The verification of this hypothesis,
which allows the phenom~n to be Itudied ill a more (phyUcally) realistic way. hu motivated the
present work.

Considering the ma.asa.ndlinear momentum balance equations for the fluid constituent (the porous
l medium is Ulumed rigid md lot retlt md, therefore, doean \ need \0 Iltisfy such balance equa·



tions), assuming the two-dimensional geoDlletry,presented in Ficure I, and one-dimensional steady-
state flow, the followinc velocity profile is obtained [4J:

( CNhm)
fir =C 1- jfl_It Xl

for -H/2 ~ JI ~ H/2
in which C is a constant 14J, B the cbaDDefawidth., K the porous Dllediumspecific permeability,
aDd ~ a parameter depeDdina on the porows matrix.
The energy balance 12J DlUlItbe atistied by each constituent of the mixture. Supposing steady..•tate
conditions and zero he&tgeneration for both constituents, it can be stated as:

where i E S and i E F stand for the solid aacI the luid constituents, respectively, ,. stands for
the Konstituent density, T. for its temperature. Cb aDd tIJ. tepresent., respectively its partial heat
flux and energy generation function and. lina1ly,eo represents the specific heat of the i-conatituent,
regarded as a continuum.
Both energy equations are to be solved, in order to determine the two temperature lields (T,.
and Ts ),as the mixture theory viewpoint an- the aistence of a different temperatUft for each
constituent, at each spacial point.

Equation (2) requires some constit.utive hypotheses. The partial heat fluxes for solid and luid
constituents (qs and qr), according to the model proposed by Saldanha cia Gama 13), are stated
a.s:

where A represents an alw&)'llpositive parameter which may depend on both the internal struct.ure
and the kinematics of the mixture, ks and k,. are, respeetivelly, the solid and the Buidconstit.uents'
thennal conductivity and'P the Buid fraction (coincident to the porosity, for saturated flows).
The tot.aI heat flux (per uuit of time and area) for the mixture is given by the sum of q. and qp.

The energy generation funct.ion, .p, which is an internal contribution, tepresents the energy supply
to a given constit.uent, arising from ita (t.hermal) interaction with the other constituents of the
mixture. The t/J function is zero at a given point OIllyif all the constituents are at the same
tempera.ture at this point. According to Martina Costa I5J, the enercYgeneratioe function for solid
and Buid constituent.a are given by:

where R is an always positive factor, which will be considered constant in this work.
Considering these constitutive hypotheses, the balance of enercY for the luid aDd the solid c0n-
stituents can be written as:



Since the fluid velocity is non zero only in the l[-direction and considering the ~imensionaJ
geometry of the problem, as shown in Figure I, the balance of eDercYcan be reduced to:

oT, [o2T, 02T,]
a az = az2 + or + II{Ts- T,)

iPTs O'Ts
0= -- +--+"J{T, -Ts)az2 ar

p,c,v,a=---A.Ic,tp
R..,=

.us{1 -lP)

The problem consists of a system of two second order equations, on both l[ and y-variables,
subjected to four boundary conditions on y-direction and to only one boundary condition ou
x-direction. From a mathematical viewpoint, a problem of this kind, composed of two elliptic
equations. on both l[- and y-variables, even if physically realistic, could give rise to an infinite
number of IOlutiona. However, a great number of tested situations has shown that aditional
boundary conditions on x-direction have no influenceon both IOlidand fluid constituents' bulk
temperatures.
An iterative procedure is used, so that twosecondorder equations on x-variable can be solved with
the help of a single boundary condition on x-direction: the fluid constituent's inlet temperature.
The problem is treated as a sucessionof modifiedproblems in which the second order derivatives
on x-direction, for both constituents, are treated as previously known fields, that is: the fluid
constituent's energy equation is treated as a sequenceof parabolic problems on x-variable, while
the solid constituent's enercYequation can be considered as a sequence of elliptic problema on y-
variable. This procedure can be summarized in the followingway: at the first iteration initial values
are estimated for these two fields, approximations for them being calculated after the solution of
the modified problem. These approximations are used as the second order derivatives' values in



U1e next iteration, instead of the initial ftlues, and new approximations for the derivatives are
calculated after the modified problem'• .a1ution. In mort, the proce&aconsist. of calcu1&tinCthe
n-th iteration, usinc, for the ditruaive terJm on x-direction, approximations calc:ulated in the .1
iteration. This proe_ is repeated _til further iterations ceue to produce .ipifu:ative alteration
cia temperature values. The aricina1 ~ of equations. modiAed to:

[ n IP~ ]' [IPT ]'-1o a: - a.:-peTs-T,) = a:
[

IPT. ]' [IPT ]'-1- a,,: -'Y(T, -Ts) = 8;
where the derivatives It;;», aDd It;;». are ea1c:ulat.edfrom a previa,. iteration.
Since no analitical solution to the system of equations deaeribinc the problem is ltDOWll, DUJDerieal
apprax:imations to its solution are searched with the help of a finite difference approach (6). For
the diffusive terms, a central finite differencescheme disc:retization was used, while an ·Upwind"
scheme 161 was employed in the convective term discretization.
As the temperature c:oefieients'matrix (associated to the modified system of equations) is a sparse
one, a crid description, in which each constituent's temperature poe&esae8two indexes, according
to its position on the crid, is used. Each iteration Iis then solved with the help of the Gauss-Seidel
method, aeeordinc to the followincdiseretised system:

,,[~+I(i,J1f = 6{[~1(i -1,J1f + [T;(i + I,J1f}+

+vl~+l (i,j -I)Y + P[T; (i,J1Y+ F [~; ]'-1
1£[r:+1(i,J1f = 6{[17+1(i -I,j)y + [T;(i + I,j)()+

+'Y[~+I(i,Jlf + F [a;~(1
In (13) and (14), 2 ~ i ~Nz aDd 2 ~ j ~Nil, in which Nx and Ny are the number of divisions
on x- and y-directions, respediftlly. The approximations for both constituents' second order
partial derivative, c:alc:ulatedfrom & previous (1-1)iteration, are given by the followinc disc:retized
equations:

F [iPTT]' r,.-I(i,i + 1) - 2Tk-1(i,i) + r,.-l(i,j - 1)
or AI (t..z)2

F [02Ts]' AI T$-l(i,j + I) - 21'1,-1(i,Jl + T$-l(i,j -I)
or (t..z)2

where t.. x is the mesh size on x-direetion, I represents the Clobal iteration, It the GauD-Seidel
iteration and:

1
6 = (611)2

Q

v= (6%)

Equations (13) and (14) represent the modified problem in a very simple _y, which a1lowsan
c1rcttiYC IItorllc Kbcmc, with memory ItUWiAtion.



The iterative procedure. represented by equationa (13) to (11). was repeated to a great nriety of
initial estimate values of the second order partial derivative on x-direction. ranging from -104 to
+104. In all these cases the aame resul•.• for the solid and fluid constituen•.•• temperature fields
were obtained. although the velocity of convergence showed a ,light nriation. In IOmeof the tested
eases. not only the derivatives' initial estimates. but aIao the factor R (whichcauaea both solid and
fluid couatituen •.•• enere equationa coupling) wu varied. Convergence to a same set of temperature
fields (according to the value of R) was observed for all tested cues. This is a strong argument
for the validity of the exposed procedure. Another meaningful argument is that two differenrt se'"
of similar problems. where the complete energy balance equations are considered (ODewithout the
described iterative procedure to cunlate the second order derivative approximations and the other
using it only for the fluid couatituent) together with different boundary conditions, were simulated
and compared to the problem in question. In the first type of problem, leveral fluid constituent's
outlet temperaturea (ranging from 0 to 1) were prescribed. while zero heat flux wu prescribed for
the solid conatituent both at the channel's entrance and exit. For the second type of problem, a
similar iteratift procedure was used only for the fluid constituent. and several values of the solid
conatituent', heat flux were aIao considered. both at inlet and outlet. by varying a heat transfer
coeficient. h. analogous to the one US11&llyemployed in the clusical Newton's law of cooling. in
equatiOlla:

In all these cues no a1teratioll OIl both COJIStituen•.•• temperature profile. euept for the channel's
entrance and/or exit. is obsened.
The •.hove stated arguments ~ sufficient to -valida.tethe numerical procedure employed in the
present work.
Convergence criterium for both Gaus-Seide1 and global iterations was:

where 1 ~ i ~ (Hz + 1). 1 ~ j ~ (Ny + 1). m == 1 represent the global iterations and m == k
represent the Gauss Seidel iteratiolls.
A very quick convergence of the l-iterations wu observed. four global iterations being sufficient for
the worst cue. The velocity of convergence of the intermediate iterations (GaUSll-Seidelmethod)
varied aIao. according to the second order partial derivatiYes' initial values.

In this section some resul•.••ccmsiderinca long porous channel (with 120lenght and 1 heigh) divided
into a 13x13 crid as default. are presented. In Figures 2 and 3 this default problem is compared.
respectivelly to a problem where zero heat flux is prescribed for the solid constituent on both
channel's edges. while several values for the fluid constituent's outlet tempera.ture are prescribed.
and to another problem where two different values of solid constituent's heat flux are considered
(on both channel's edges) while no bounda.ry condition is imposed to the fluid constituent at the
channel's exit.

Figures 4 and 5 plot both conatituen•.•• temperature (at the channel's central point) for different
mellh uile5 iUldill percentual differen", related to the DlO6trefined end comidered, rapectivelly.
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Ficure 6 compares the temperature behaviour when mesh size is reduced 50 % on x-direction.
Finally, in Figure 7, the channel's length is considered five times greater than the default value.

Figure 2 shows both constituents' centerline temperatures versus the x-'l'Viable in two differem
cases. The first one (represented by the dulled lines, for both constituent'. curves) shows the
problem, whose simulation originated the present work: DO boundary conditions are prescribed ei-
ther for the fiuid constituent at the channel'. exit or for the solid constituent both at the channel's
entrance and exit, as stated in equation (10). The continuoua curves correspond to the second cue,
where zero heat fiux was pre-:ribed for the solid constituent, both at inlet and outlet. Six ditrereat
fluid constituent'. curves correspood to the dacribed •• lid CODIItituent'.curve, accordiDc to the
prescribed outlet fluid constituent" temperatura. Several values were considered for tm. temper-
ature, vuyina from 0 (the Buid CODatituentprescribed inlet temperature) to 1 (the impermeable



isothermal aurflLCesprescribed temperature). This lecond problem, in which four boundary condi-
tions were prescribed on x-direction, ahowBan artificial behaYiour, both at the channel'. entrance
and exit. Except for these ••••••ues, complete acreement can be verified between the temperature
fields, fCll'both cues taken in&oconsideration.
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Figure 3 &h0Wlla compariBon between two different problema, the first one, represented by the
dllllhed lines, lIlIin Figure (2), is the one deecribed by equuioDl (7) to (10), while in the other ClIlIC!
IC!veralheat BuxC!llare considered, by varying the heat transfer coeficient h in equation (18), for the
solid constituent, both at the channel'. entrance and exit, while no boundary condition for the Buid
constituent at the outlet is prescribed. The latter problem, repraenied by the continuous lines, is
solved by means of an iterative scheme, in which the elliptic Buid constituent '. problem is solved



as a sequence of parabolic problems. This scheme is similar to the one described in t.he present.
work, but only t.he fluid constituent's second order partial derivative on x-direct.ion is treat.ed as
a known field. It is remarkable that. DO variation on the fluid constituent's temperature cune is
observed, when no boundary condition or sero heat flux was prescribed for the M>lidconstitnent.. A
very slight difference between theae mentioned cases is observed at t.hechaJmers exit, while a more
significative difference can be observed at its entrance. The use of a heat transfer coeficient 80

great as h = 1000 is almoat equivalent to pracribe both M>lidand fluid constituents' temperatures
with the same value. As a consequence, a value very close to sero is observed at. the channel'a
entrance for the solid constituent.'s temperat.ure, while apparently the same temperature values for
both constituents can be observed at the channel's exit. This problem was considered for several
values of h, between 0 and 1000, and, except. for t.he channel's entrance and exit, no difference on
both constituents' temperature fields is observed, as occurred on the case shown in Fieure 2.

ci
wa..
~w
I-

~O.5
:J
a::
w
I-
Z
W
U

x
F'\CUft 6 - Centedine Temperatures va 1t

(for 25xl3 and 13x13&rids)

Figure 4 shows both const.ituents' tempa'atures at a point. located at the centerline's center, for
different. meshes, from a 3x3 mesh to a 25x25 one. The percent.ual difference among the latter
mesh and the remaining ones, at. t.hecentral point., is plotted for bot.h const.it.uents'temperat.ures
in Figure 5. Examining Figures 4 and 5 toget.her, it. can be not.iced that. tbe 13x13 grid, used
for t.he majoriry of t.he results presented in this work, shows a reasonable agreement to the most
relined one used: t.he 25x25 grid, for both constit.uents' t.emperat.ures.

Figure 6 shows both constit.uents' centerline temperat.ures for two different.mesh sizes: 25xl3and
13x13. A very slight. difference is observed for the fluid constit.uent.'s temperature, while almost.
no difference can be noticed for the M>lidconstituent.'s, as the grid is refined on x-direction. The
difference between these two curves is more accentuated near the channel's exit.. Comparing bot.h
constituents' t.emperature curves at. a IleCtion% = 110, near the channel's exit, it.can be seen that.,
even near the channel's exit, only a little difference between these curves is obserYeci.
Figure 7 represents both constituents' centerline t.emperatures yersus x-variable, for L = 600, live
times greater t.han L = 120 (the lengt.hconsidered in Ficures 2 to 6). It.can be not.icedthat. both
constituents'centerline temperatures are almOlItcoincident at the second half of t.hechannel. When
t.his Fisure is compared to an)' one in which centerline \emperatlU'Cll'" plot\ed "VIlli x-vari&blc,
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for L = 120, the concept of developed temperature fields, after a certain nlue of the channel's
length, becolDell a natural expectation.

FINAL REMARKS

When a problem like the one lItated in equations (7) and (8) is simulated, usually a total of eight
boundary conditions is requiTed. However, the practical situation considered in the present work
becomes unrealistic if all the usual boundary conditions are prelCJ"ibed.
This work presents an algorithm which allows·the local simulation of the energy transfer process
in a saturated Bow tluogh a rigid poJ'OUi medium. using a Mixtures Theory viewpoint, in y,·hich
a system of two elliptic equations on both x- and y-variables are 80Ived with only one boundary
condition on x-direction: the fluid constituent's inlet temperature. AditionaJ data like the fluid
constituent's temperature 01' heat transfer and the 80lid couatituent's inlet and outlet temperature
and/or h_t transfer, which are not avaiab&e in practical problems, need not to be known.
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