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RESUMEN

€Es presentado un estudo numérico y experimental de poérticos
elastoplasticos. El procedimiento numérico usado es incremental
-iterativo y permite la descripciédn de la respuest® estructural
de pérticos espaciales con desplazamientos finitos. Fueron rea-
lizados tambien ensayos sobre modelos metalicos planos. Los re-
sultados numéricos y experimentales son comparados.

ABSTRACT-

A numerical and experimental study of elastic-plastic frames is
presented. The numerical formulation is incremental - iterative
and allows the description of the structural behavior of space
frames with arbitrarily large displacements. Tests on small
scale models of metallic plane frames were performed. Numerical
and experimental results are compared.

INTRODUCTION

The use of very slender metal structures and the need to take full
advantage of materials strength have increasead the importance of
geometrical and material nonlinear effects in formulations for
structural analysis. Two of the pionner works that used computational
resources for the elastic-plastic analysis of space frames were
proposed by BRUINETTE(1]) and MORRIS(2]). Among the formulations that
take into account geometrical and material nonlinear effects we can
mention those by ARGYRIS(3I) and SHI[4].

In this work we present a numerical and experimental study of elastic-
plastic frames with finite displacements. The numerical procedure is
incremental-iterative and allows the analysis of space frames in the
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pre and post-critical stages, including the situations where
displacement increase occurs together with loading decrement, or when
decrease of displacements occurs with increasing loads. The kinematics
relations(S] allow the manipulation of arbitrarily large displacements
associated with small strains. For the numerical solution of the
iterative~incremental problem the Work Control Method[4) is employed.

The elastic-plastic behavior of the members is modelled using the
plastic hinge concept based on generalized vyield criterium. For
elements that present one or two plastic hinges in their ends, an
elastoplastic stiffness matrix is presented. The expression for this
matrix includes a parameter that aims to take into account,
approximately, the strain-hardening of the material. The geometrical
stiffness matrix is based on semitangential moments(7).

The formulation was implemented into a computational code in FORTRAN
language for microcomputers. To check the numerical results, tests on
small metallic models were also performed. The results of experimental
and numerical examples are presented.

NUMERICAL FORMULATION

Assumptions
The numerical procedures are based on following assumptions:

1) The displacements are arbitrarily large and the strains are small

2) The loads are nodal and change proportionally.

3) The material has elastoplastic behavior, perfect or with isotropic
hardening.

4) The members are straight, prismatic and have doubly symmetric
sections.

3) The plastification only occurs at the ends of the elements and is
concentrated in one section; that is, the plastic hinge concept is
adopted.

6) The concepts of the associated plasticity are employed.

Tangent stiffness matrix of the elements

The criterium for plastification of a element cross section,
considering isotropic hardening, may be writen as

¥(({P})) = & (1)

where {P} is the member stress resultants vector and k is a parameter
which depends on plastic displacements.

1f (U®) and ) denote, respectively, the elastic and plastic parts of
the displacements (U} of a element, we can write in terms of rates that

Uy = ¢4%) + (%) (2)
being
1

(0% = [Kel *(P) (WPrt= Atelr? (3)
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where [(Ke] is the elastic stiffness matrix which is the sum of t@e
conventional stiffness matrix[(8) with the geometrical stiffness matrix

of the element(7]. A is a scalar function(9] and (B)i-(awla(P))‘ is the
gradient vector of y, corresponding to the stress resultants (P)'at end
i (i =) or 2) of the element.

For an element with one plastic hinge at its end 1, the use of (2) and
(3) leads to

(B) T ¢Pyt- {9)":x“3{0)‘ - K'(B)"[K'.J{B}‘ + (8)"[K‘zl(0)' (4

where [Kth represents submatrices of order 6 x 6 of [Kel.

Now, if we make (B)'?(ﬁ)’- AA‘. being A the strain-hardening parasster,
then

1T L

. (B} [k )W

A= e " (S)
' A+ (B} {x 182

Using the expressions (2}, (3), (4) and (5) we obtain

T
Py = txel[ 1y - —LB1 8] [xe) ](6) ()
A+ (B Ttx (B!

where [B) = [((B} {(0}) and [1) is the identity matrix.

The equation (&) shows that

T
[Kep] = [Ke]r (1] - {8) (Bl [Ke) 1 (71
L A+ (B)"[K")(B)‘J

represents the tangent elastoplastic stiffness matrix of the element.

For an element with a plastic hinge in its end 2, the matrix [Kepl is

given by (7), changing the index 1 to 2 and making (Bl = [{0) (B)zt].

When the element has two plastic hinges we can show, considering the
same strain-hardening parameter for both ends, that

[Kep] = fKe][ £11 - [BJ[CJ":BJtKeJ] ey
where
A+BY*Tre 3(BY (B Ttx ey * Y
- {(B)"[( ;:B)‘ A*(B)"’[l‘(: J(a)’l o
21 zz 4
and

(e {0}
(B1= . 110)
(o) (8)
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Remarks on the strain-hardening parameter A

Tradicionally, the plastic hinge concept was related to limit analysis
and thus to perfectly plastic materials. Besides mild steel structures
conform fairly well to the perfectly plastic model. On the other
hand, modern materials, particularly new steel and aluminium alloys,
show a strain hardening that may present an important influence on the
structural behavior, particularly with reference to stability, see
[10]}. Thus, as early as 1966, DAVIES{10] proposed a method to determine
collapse loads for plane frames taking hardening into account. In this
method was used a empiric formula to compute the hardening parameter.

In fact, the introduction of hardening is not too easy, principally for
the tridimensional frame case. Perhaps the simplest procedure that may
be used consists in considering the concept of a lumped hardening hinge
as a spring with a rotational stiffness. If only the influence of a
bending moment is taken into account, this model leads to a value of

4 1 ™
3 ": 69’

where Hp is the plastification moment of the section and ep is the
rotation in the plastic hinge. The value of an/aepis obtained from the

experimental moment-curvature diagram derived from a bending test by
the relation

oM 1 o™ (12)

L e Bt S
o0 a Sx
P P

where a is the length of the real hinge and :P is the curvature of the
bar in the neighbourhood of the plastic hinge.

Remarks on the numerical formulation

The numerical procedures are based on an incremental—~iterative updated
Lagrangian formulation which adopts the kinematics relations proposed
by DRAN(S) and the Work Control Method presented by YANG([6)] for
numerical solution.

The Work Control Method uses the following condition to determine the
load increments in each incremental step of the analysis: the work
performed by the load increments during the first iteration of the step
is equal to a pre-determined value AW and null for the next iterations
of the same step. In the present paper, O is detined as a fraction
{example, 1/10) of the work performed by the vyield loading of the
structure which is obtained by means of a linear analysis.

During the development of the analysis, the stiffness matrix of each
element is updated at the end of each iteration with base on the
current nodal coordinates and stress resultants acting on the element
ends. When the unbalanced forces vector of the structure obtained at
the of an jteration satisfies a certain convergence criterium, the
incremental step is terminated and thus a verification whether the
stress resultants on the ends of the elements satisfy the
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plastification criterium is performed. When this occurs, the elastic
stiffness matrices of the elements with plastic hinges are replaced by
the corresponding elastoplastic stiffness matrices. Besides this, a
verification of desactivation of already existent plastic hinges also
must be performed. The desactivation of a plastic hinge is detected
with the signal of the scalar function A: a negative signal indicates
elastic unloading(9).

At the beggining of each step we must compute, using a linear analysis,
the minimum increment of loads needed to activate one or more new
plastic hinges. Thus, to control the distance between the stress
resultant point and the plastification function ¥, we impose the
condition that the load increment of the first iteration of the step
should not be greater than that msinimum value.

In the computational code the following approximated plastification
criterium for rectangular section was implemented:

¥=(n /M )°
Y uy

e mm By (13)
z Juz
with a=g=2, M =mn (1 ~-N/N) anam =n (1 - NN,
uy Y x 4 uz Pz x P

and

N‘, Hy, H’ - normal force and bending moments acting on the section

NP, H’y,H’: - normal force of plastification and bending moments of
plastification of the section.

More details on the numerical formulation may be seen in the references
£(9) and (11). -

REMARKS ON THE EXPERIMENTAL TESTS

The experiments were performed on small scale models fabricated with an
aluminium alloy, whose stress—strain relation was determined in a
strain-gages instrumented tension test(Figure 1).

The experiments on the models were made in a steel test frame of
cubical shape. Loading was applied through direct weights calibrated to
% 1%. Displacements of a caracteristic point of the structure were
measured over a3 three~dimensional reference scale system fixed in the
test frame. Measurement of horizontal and vertical displacements could
be determined with a * 0.5 mm appreciation, that is reasonable for the
case of large displacements.

EXAMPLES
a)Cantilever beam under concentrated 1oad at the free end
This example is frequentely used as a benchmark{12). For the elastic
case the present formulation gives results very close to the analytical
solution(12]). To check numerical results of the elastoplastic analysis,
tests were performed on cantilever beams fabricated with aluminium

alloy, with the geometrical caracteristics shown in the Figure 2.

In the numerical solution run without consideration of hardening a
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vield stress of 180 MPa was adopted, following the 0.2 % plastic strain
criteria. In the numerical solution ctonsidering hardening was adopted
A= 0.005 N *cm™'. This value was estimated based in the moment -
curvature diagram determined in the neighbourhood of the fixed end and
obtained from the strains measured with strain gages instalated in the

faces of the beam. The real size of the plastic hinge was taken equal

to 2 cm.
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Figure 1. Stress-strain relation for the aluminium alloy

Figure 3 presents a comparison between the experimental results and the
numerical solutions in which the cases of perfectly elastoplastic and
strain-hardening elastoplastic material were considered. The wmajor
differences observed may be explaind by following reasons. In the
reality, the elastic-plastic transition occurs smoothly, while in the
numerical solutions this transition is considered to occur .abruptly.
Furthermore, the plastic effects are not concentrated in one section,
but they occur over a finite length. Figure 3 shows also that due to
the strain-hardening eftfect, the perfectly elastoplastic solution
deviates from the experimental results as the plastic deformation
increases. On the other hand, the strain-hardening numerical solution
is in better agreement with experimental results, as was to be

expec ted.

b) Z2-Shaped beam

A Z-shaped cantilever beam as shown in Figure 4 has been proposed as a
benchmark problem for testing capabilities of codes for nonlinear
analysis[13]). This problem was called "Cologne Challenge”.

Our numerical analysis used a 10 elements discretization and a
perfectly plastic relation with 575 Mpa vyield stress. Comparison of
numerical and analytical results are shown in Figure S. (v = vertical

displacement at free end of the beam).
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Figure 2. Cantilever beam model
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Figure 3. Load - displacements relation of the cantilever beam
(u, v - horizontal and vertical displacement of the free end)

The Z-eshaped beam model! of aluminium alloy shown in Figure 6 was
studied experimentally and the results obtained are presented together

with the numerical solution in Figure 7. The same comments made for the
former example are valid for this case.
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Figure 4. The Cologne Challenge problem
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Figure S. Numerical and analytical sclutions of the Cologne Challenge
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Figure 6. 2Z-shaped beam model
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Figure 7. Numerical and experimental results for I-shaped beam

CONCLUSIONS

The numerical formulation described allows the elastoplastic analysis
of frames with finite displacements. The isotropic hardening model
presented seems to improve the perfectly elastoplastic model. The
experimental results for the tested models shown reasonable agreement
with the numerical sclutions.
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