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Es presentado un estudo nu~rico y experiMental de porticos
elasteplasticos. El procedimiento numerico usado es incre-ental
-iterative y permite la descripciOn de la respuest. estructural
de porticos espaciales con desplazamientos finitos. Fueron rea-
lizados tambien ensayos sobre modelos metalicos planas. Los re-
sultados numericos y experimentales son coaparados.

A numerical and experimental study of elastic-plastic frames is
presented. The numerical formulation is incremental - it~ative
and allows the description of the structural behavior of space
frames with arbitrarily large displacements. T•• ts on small
scale medels of metallic plane frames were performed. Numerical
and experimental results are compared.

The use of very slender metal structures and the need to take full
advantage of materials strength have increasead the importance of
geometrical and material nonlinear effects in formulations for
structural analysis. Two of the pionner works that used computational
resources fo~ the elastic-plastic analysis of space frames -ere
proposed by BRUINETTE(l) and MORRIS[2). Among the formulations that
take into account geomet~ical and material nonlinear effects we can
mention those by ARGYRIS[3] and SHI(4].

In this work we present a numerical and experimental study of elastic-
plastic frames with finite displacements. The numerical proc-aure is
incremental-iterative and allows the analysis of space frames in the



pre and post-critical stages, inclUding the situations where
displace~ent increase occurs together with loading decre~ent, or when
decrease of displacements occurs with increasing loads. The kinematics
relations[~] allow the .anipulation of arbitrarily large displace.ents
associated with small strains. For the numerical solution of the
iterative-incremental problem the Work Control ~ethod[6] is employed.

The elastic-plastic behavior 01 the ••• bers is .cdelled using the
plastic hinge concept based on generaliZed yield criterium. For
ele.ents that present one or two plastic hinge. in their ends, an
elastoplastic stiffness matriM is presented. The eMpression for this
matriM includes a parameter that ai.s to take into account,
approMimately, the strain-hardening of the material. The geometrical
stiffness aatriM is based on s•• itangential .oments[7].

The formulation was implemented into a computational code in FORTRAN
language for microcomputers. To check the numerical results, tests on
s.all metallic models were also performed. The results of eMperi.ental
and numerical examples are presented.

1) The displacements are arbitrarily large and the strains are small
2) The loads are nodal and Change proportionally.
3) The ~aterial has elastoplastic behavior, perfect or with isotropic

hardening.
4) The members are straight, prismatic and have doubly symmetric

sections.
~) The plastification only occurs at the ends of the elements and is

concentrated in one section; that is, the plastic hinge concept is
adopted.

6) The concepts of the associated plasticity are employed.

The criteri~ for plastification of a element
considering isotropic hardening, may be writen as

where {P} is the member stress resultants vector and k is a parameter
which depends on plastic displacements.

If {U·} and {Up} denote, respectively, the elastic and plastic parts of
the displacements {U} of a element, we can write 1n terms of rates that



where [Ke] i. the elastic stiffness ~trix which i. the 'UM of the
conventional stiffness ~atrix[8] with the geoMetrical stiffne.. .atrix
of the element[?]. A is a scalar function[9] and (B)'.(~/6(P»' is the
gradient vector of ~. corresponding to the stress resultants (P)'at end
i (i • 1 or 2) of the el••ent.

For an element with one plastic hinge at it. end 1. the use of (2) and
(3) leads to
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Now. jf we make {B)ST{p}S. Als• being A the strain-hardening para •• ter.
then
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For an element with a plastic hinge in its end 2. the matrix (Kep] is
given by (71, changing the jndex 1 to 2 and making (B] •• [CO) (B]ZT).

When the element has two plastic hinges we can show, considering the
same strain-hardening parameter for both ends, that
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Tradicionally, the plastic hin;e concept "as related to limit a~lysis
and thus to perfectly plastic materials. Besides .ild steel structures
conform fairly "ell to t~ perfectly plastic model. On the other
hand, modern materials, particularly new steel and alUMinium alloys,
show a strain hardenin; that .ay present an important influence on the
structural behavior, particularly with reference to stability, see
[10]. Thus, as early as lQbb, DAVIES(10] proposed a method to determine
collapse loads for plane fra••s takin; hardenin; into account. In this
method "as used a empiric forMUla to compute t~ hardenin; parameter.

In fact, the introduction of harden in; is not too ea.y, principally for
t~ tridimensional fra•• case. Perhaps t~ simplest procedure that may
be used consists in consider in; the concept of a lumped harden in; hinge
as a sprin; with a rotational stiffness. If only the influence of a
bendin; MOment is taken into account, this MOdel leads to a value of

"here ~p is the plastification moment of the section
rotation in t~ plastic hinge. T~ value of ~/de is

p
experimental aoment-curvature dia9ram derived from a
the relation

and e is
p

obtained from
bendin<;l test
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"here a is the length of the real hinge and .p is the curvature of
bar in the nei;hbourhood of the plastic hin;e.

The numerical procedures are based on an incremental-iterative updated
Lagrangian formulation which adopts the kinematics relations proposed
by ORAN(S] and the Work Control Method presented by YANG[bJ for
numerical solution.

The Work Control ~ethod uses the follo"in<;lcondition to determine the
load increments in each incremental step of the analysis: the work
performed by the load increments during the first iteration of the step
is equal to a pre-determined value AW and null for the next iterations
of the same step. In the present paper, AW is defined as a fraction
(example, 1/10) of the work performed by the yield loading of the
structure which is obtained by means of a linear analysis.

During the development of the analysis, the stiffness matrix of each
element is updated at the end of each iteration with base on the
current nodal coordinates and stress resultants actin; on the element
ends. When the unbalanced forces vector of the structure obtained at
the of an iteration satisfies a certain conver;ence criterium, the
incremental step is terminated and thus a verification whether the
stress resultants on t~ ends of the elements satisfy the



plastification criterium is performed. When this occurs, the elastic
stiffness matrices of the ele ••nts with plastic hinges are replaced by
the corresponding elastoplastic stiffness Matrices. Besides this, a
verification of de.activation of already existent plastic hinges also
MUst be perforMed. The desactivation of.a plastic hinge is detected
with the signal of the scalar function AI a negative signal indicates
elastic unloading(9).

At the beggining of each step we must compute, using a linear analysis,
the miniMum increment of loads needed to activate one or more new
plastic hinges. Thus, to control the distance betMeen the str •• s
resultant point and the plastification function ., we impose the
condition that the load incre-ent of the first iteration of the step
should not be greater than that MinimUM value.

In the computational code the following approxiMated plastification
criterium for rectangular section was implementedl
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My' "z - normal force and bending moments acting on the section
•• ,M normal force of plastification and bending MOMents

py pz

More details on the numerical forMulation may be seen in the referenc ••
(9) and (11).

The e"periments were performed on small scale models fabricated with an
aluminium alloy, whose stress-strain relation was determined in a
strain-gages instrumented tension test(Figure 1).

The e"periments on the models were made in a steel test frame of
cubical shape. Loading was applied through direct weights calibrated to
~ 1%. Displacements of a caracteristic point of the structure were
measured over a three-di-ensional reference scale system fixed in the
test frame. Measurement of horizontal and vertical displacements could
be determined with a ~ 0.5 me appreciation, that is reasonable for the
case of large displacements.

This e"ample is frequentely used as a benchmark(12). For the ela.tic
case the present formulation gives results very close to the analytical
solution(12J. To check nUfterical results of the elastoplastic analysis,
tests were performed on c~tilever beams fabricated with aluminium
alloy, with the geometrical caracteristics shown in the Figure 2.



yield stress of 180 MPa was adopted. following the 0.2 7. plastic strain
criteria. In the nUMerical solution considering hardening was adopted
A- O.OO~ N-1cm-l

• This value was estimated 0.sed in the moment
curvature diagram determined in the neiQhbourhood of the fixed end and
obtained from the strains measured with strain gag~ instalated in the
faces of the beam. The real size of the plastic hinQe was taken equal
to 2 em.
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Figure 3 presents a COMparison between the experimental results and the
numerical solutions in which the cases of perfectly elastoplastic and
strain-hardening elastoplastic material were considered. The aajor
differences observed may be explaind by following reasons. In the
reality, the elastic-plastic transition occurs smoothly, while in the
numerical solutions this transition is considered to occur abruptly.
Furthermore, the plastic effects are not concentrated in one section,
but they occur over a finite length. Figure 3 shows also that due to
the strain-hardening effect, the perfectly elastoplastic solution
deviates from the experimental results as the plastic deformation
increases, On the other hand, the strain-hardening numerical solution
is in better agreement with experimental results, as was to be
expected.

A Z-shaped cantilever beam as shown in FiQure 4 has been proposed as a
benchmark problem for testing capabilities of codes for nonlinear
analysis[13]. This problem was called "Cologne Challenge",

Our numerical analysis used a 10 elements discretization and a
perfectly plastic relation with 57~ Mpa yield stress. Comparison of
numerical and analytical results are shown in Figure 5. (v = vertical
displacement at free end of the beaml,



It------r

100
- perfect EP
_ ••••••• ni ••• EP. .x,.n_tel

10z..
••.... 60.J

40

2

Figure 3. Load - displace~nt5 relation of the cantilever beam
(u, v - hor~zontal and vertical displacement of the free end)

The Z-shaped beam model of aluminium alloy shown in Figure 6 Nas
studied experimentally and the results obtained are presented together
Nith the numerical solution in Figure 7. The same comments made for the
former example are valid for this case.
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The numerical forMulation described allows the elastoplastic analysis
of frames with finite displace ••nts. The isotropic hardeninQ MOdel
presented seems to improve the perfectly elastoplastic MOdel. The
experimental results for the tested models shown reasonable agreement
with the numerical solutions.

The authors are Qrateful to CAPES and CNPq for the financial support
received during the preparation of this work.
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