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ABSTRACT

This work pr the devel of an adaptive time integration procedure for the
nonlinear dynamic analysis of large~scale structural systems. The adaptive algorithm
performs the following tasks: a) Automatic time step adjustment: the time step may
vary during the the analysis, according 1o the modal composition of the dynamic res-
ponse and to the nonlinear behavior of the structural system; b) Automatic determina-
tion of stiffness recvaluations, in order to minimize the costs related to the calcu-
lation of elcment matrices, and assembling and decomposition of global matrices. An
application on the nonlinear dynamic analysis of a compliant guyed tower for deepwater
oil exploration and production is presented, and the positive characteristics of the
resultant computational system in terms of efficiency, robusiness, user—friendliness
and quality of the response are evaluated.

RESUMO

Este trabalho apr 2 um procedi ndéintegraqioadaputinnotempopnraaob-
tencio da resposta ndo-linear dinamica de sistemas estruturais. O procedimento adapta-
tivo efetua as seguintes tarefas: a) Determinagio automitica do valor do intervalo de
tempo, que pode variar ao longo da andlise de acordo com a composi¢ico modal da respos—
ta ¢ com o comportamento nlo-linecar do sistema estrutural; ¢ b) Determinacho
automética dos instantes de tempo com reavaliagdes da matriz de rigidez tangente, de.
modo a minimizar as ocorréncias de calculo de matrizes de elementos, ¢ de montagem e
decomposicho de matrizes efetivas globais. Para a avaliaclo das caracteristicas do
sistema computacional resultante em termos de economia, robustez ¢ qualidade da res-
posta, apresenta-se uma aplicagdo na andlise nlo-linear dinamica deterministica de uma
torre complacente estaiada para exploragio de petréleo em aguas profundas.

INTRODUCTION

An increasing demand for efficient numerical tools for the noslinear dynamic analysis of
structures has been observed in the last years, motivated particularly by the trend towards
the development of new structural coacepts which cannot be analyzed and dimensioned without
proper coasideration of their nonlinear dypamic behaviour. This is the case, for instance,
of the Brazilian oil exploration industry, where the compliant structure concept has been
introduced as an alternative for structural systems designed to support deepwater offshore
platforms.

An efficient computational system for the nonlinear dynamic analysis. of large—scale structu-
ral systems should, ideally, meet the following requirements: 1) Present significant reduc-
umineomp\uu'oo‘uwheuoomparedwmvennmusystm.uxdu)Allowalsoareducu
on in the “engineering time”™ required to obtain a desired analysis response. The objective
of this work is, then, to present an adaptive time integration strategy devised having in
mind these requirements, particularly oriented towards the analysis of compliant structures
for decpwater oil exploration and production, and addressing the following aspects:

= The automatic and adaptive determination of the time step value, which will be free to
vary alang the analysis according to the modal composition of the response., and aiso to the
nonlinear behavior of the structure at each time instant. The user is then relieved of the
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task, required in conventional programs, of selecting a fixed time step following guidelines
usually found in the literature, see for instance [1]. Considering first the case of a line-
ar dynamic analysis, these guidelines request the user to estimate the range of frequencies
excited by the loading; this estimation requires a free-vibration analysis of the structure,
in order to assess its natural frequencies, and also a Fourier analysis of the loading to
identify its significant harmonic components. In the more general case of nonlinear dynamic
problems, the selection of a time step value is further complicated by the fact that the
natural frequencies of the structure will vary along the analysis.

- The automatic and adaptive determination of the time instants when the tangent stiffness
matrix is to be reevaluated, consequently minimizing the occurrences of reevaluation of ele-
ment stiffness matrices, and of bly and d nposition of global effective matrices.
Conventional noalinear dynamic analysis programs leaves to the user the task of def ining a
stiffness reevaluation policy, usually based on an input parameter arbitrarily defining the
number of time instants between reevaluatioas.

Adaptive techniques regarding the preceding aspects should, then, constitute the most natu-
ral tool for the time integration of nonlinear structural dynamic problems; however, this
field is still under active research and the use of such tools is not established. Concwrni-
ng techniques for the automatic time step determination, the authors are aware of the follo-
wing developments, grouped according to the particular concept employed: a) Control of time
Step variation based in approximate error measures 12,3,4). In [3]l, for instance, this con-
trol is based oo the “half-step residual®, which is the error evaluated at the time instant
corresponding to tal/z= (ta + tae1)/2; and b) Control of time step variation based in pure-
ly heuristic considerations [S]. These techniques do not properly calculate time step valu-
es, but rather adjust or control the variation of user-supplied walues. In [S), for instan-
ce, the user has to supply allowable upper and lower limits for time step values, which is a
requirement not very less severe than that of the selection of a fixed step value.

A third group, introduced in [6] referring to a similar concept presented in [7), consists
in the determination of a “characteristic® or “dominant” frequency value at each time ins-
tant, from which a time step value can be estimated. The adaptive time integration strategy
presented in this work employs this “"dominant frequency” concept, allowing the modal compo-
sition of the response to be reflected in the calculation of time step values. This strategy
is enhanced with new criteria for the rejection of dominant frequency values, and with the
consideration of the nonlinear behavior, which is not taken into account in [6). The nonli-
near behavior is also considered through the determination of time instants with stiffness
reevaluations. This adaptive strategy presented here was first outlined in [8), and is one

of the develop s on ical tools and algorithms for nonlinear dynamic analysis presen-
ted in [9].

PRELIMINARIES ON THE NONLINEAR DYNAMIC ANALYSIS OF STRUCTURAL SYSTEMS

The mathematical representation of the nonlinear dynamic behavior of structural systems is
expressed by an initial value problem consisting of a set of partial differential equations
(PDE), with associated boundary conditions in space and initial values in time. The solution
of this problem is in general obtained through the use of numerical methods; the usuval pro-
cedure is t0 employ a semidiscretization technique (10}, where the PDE are first discretized
in space by the Finite Element Method [L1], yielding a set of second—order ordinary diffe-
rential equations (ODE) also known as the semi-discrete equations of motion. This set of ODE
may then be discretized and solved in time by an appropriate time integration algorithm.

For nonlinear elastody ic probl . the semidiscrete equations of motion can be written
as:

M W(t) » R{u) = F{t) (1

where G(t) and w(t) are vectors containing unknown values of, respectively, accelerations
and displacements corresponding to the nodal degrees of freedom; M is the mass matrix, and
M U{t) is equivalent to a vector of inertia forces; R{u) is a vector of internal forces in-
cluding contributions of elastic and damping forces, and Fit} is a vector of external loads.

Implicit aigorithms are the most suited for the time discretization and integration of the
class of inertial problems which comprises the applications studied in this work [9]. These
algorithms operate on the following form of the equations of motion, now discretized with
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respect to time:

M s, l(d_.l) = FN @)
In this expression, ans1 and dses represent stepwise approximations to the “exact” values
ti(tae1) and ultaet) respectively. The implicit algorithm empioyed in the developments pre-
sented in this work is a member of the Newmark family (121, the unconditionally stable and
second-order accurate algorithm known as “constant average acceleration method” or “trapezo-
idal rule” {1).

The strategy usually employed for the treatment of the nonlinear effects with implicit time
integration algorithms i in ing a linearization in the neighborhood of the dis~
placed position corresponding to the instant taet (13]. This linearization is expressed as a
truncated Taylor series, leading to the definition of a tangent stiffness matrix Kr and to
the following incremental expressions for the nonlinear equations of motion:

Ma +K &d = F - R(d) )
nel T mel n

d =d +4d 4)
ot »

As a consequence of the linearization assumed, the incremental equations (3) do not assure
equilibrium at the end of time step ta«i. Although earlier approaches ignored this fact and
employed purely incr al technig to obtain the dynamic response [1,14], it is nowadays
established {1,15] that the use of iterative techniques for the solution of nonlinear sys-
tems of equations is mandatory in order to obtain reliable dynamic responses. The develop-
ments of this work employ the Modified Newton-Raphson (MNR) method {1,11], where the tangent
stiffness is kept constant along the iteration process and, as will be seen in the next se-
ction, is also kept constant along a certain number of time steps.

The incremental-iterative form of the discrete equations of motiom (3) is then expressed by
the following expression, where damping effects are introduced through a Rayleigh
proportional damping matrix C {1}:

Mascv™ ik aa™ - F - R@™Y) (s)
nel el T ol (22}
d(k) = d(k~l) ’Mm 6)
Rel mel

The application of the Newmark time-integration operators to the incremental-iterative equa-
tions of motion (5) finally leads to the following set of effective system of algebraic e-
quations, to be solved at cach iteration of the MNR technique {9}:

Aad™ = B )]
The effective matrix A is defined as
A = xoM «+ KT (8)

where ao is a coefficient expressed in t.:mf of the Newmark parameters, the time step value,
and the Rayleigh damping parameters; b is a vector of effective residuals calculated in
terms of the external loads and of eclastic, damping and inertia forces of the previous ite—
ration. Details of an optimized implementation of this time integration strategy for nonli-
near problems are presented in [9].

ESTIMATION OF TIME STEP VALUE
Many iterative techniques for the solution of generalized eigenvalue problems emplioy the
Rayleigh quotient [1], which is defined by the following expressioa:
x' K x
qlx) = - 9

If, in this expression, vector x is replaced by an eigenvector ¢, the corresponding eigen—
value will k?e.given by q(#i). Considering now the incremental equilibrium equations (3), an
expression similar 10 (9) may be written as:
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ltmbemntht&evﬂuemxthmabukndnfha:themoddmpodumofmdym-
mic response at the time step test [6). This value is considered as an estimation of a domi-

T = 2x/9 )
ne]
An estimation of a time step value, which can adequately allow the istegration of the mode
shapes defining the compogition of the response at this time may then be obtained.
m:emmumhgnmulfmldmwisdcpeﬂodT:
FYSEEE S 12)

computatioomlly expensive, since it would require a matrix-vector. product involving the glo—
bal tangent stiffness matrix. Thiscnlcuhtinnanheperfornedinamoreeoomialuyby
rearranging expression (8) and then replacing it in (10):

\ 8d" (A - woM) ad ad” A ad .
€. .- 3 = 5 - a0 13)
. ad' M Ad Ad” M Ad
Considering now expression (7), the value of the dominan t frequency will be obtained as:
. ad’ b .
» ‘s —_— - a0 (14)
> ad’ M ad

TIME STEP VARIATION

Ewhn(&)ﬂbwstheeﬂmthnd.mﬁmsmpvﬂuf«mdhamtmh&
tant of the integration process. However, the utilization of this expression without further
considerations could lead either to sharp alterations of the time step, or to very small and
" unnecessary alterations, with the consequent reevaluations and decompositioms of the effec-
tive matrix since, according to exp, (8), it depends on the time step value which enters ia
themlmhﬁmdthecodﬁciwtn.ﬁhisappﬂsf&huaruﬂysk.wb.eﬂnmvdn—
atimdthﬁffmm&klueﬂknmmy;htehthkwtﬂhsomsﬁera-
tions pertinent to nonlinear analysis will be presented).

In order to avoid such undesired situations, heuristic rules are employed to determine when
andhovnuterltianofthetimenepvdmshmﬂdeffecdvelybepedormed,hasedonthe
miobetweuthemudmstepwmandmemtmpmue:

€= n'/m. 1s)
These rules are then expressed as:

If€<(m then Al-qlﬁ_““‘: If£>£-.. MMN- E_uAt:

£ § < €<E, then maintain8t =8t elsc At = st".

Typical values for the adjustable parameters Emia, €1, £2 and Emex may be given as, respec-
tively: 0.5; 0.62S; 1.6; 1.8 . The time step value for the first time step may be given as a
rouzhen.imtinn.sineeitvillbeammtimﬂyadjuudinafewmmbérofﬁmslep&

Thzstrategyde-u-ibeduptothispoint'ishlsiullysinihrtotheoneprmudin(ﬂ.
wbichismnstaﬂtedfa'umrpmblemsdrnemlythemiaﬁonofmemodaleompuiﬁm
of the response is accounted for, through the caiculation of the dominant frequency, and
there is no reference to the consideration of the nonlinear behavior. The following sections
will present new developments: the next section presents new criteria for the determination
wnjecﬂmddomhnmfmqmvdus;thmfdhvsmmfw&emm
of the nonlinear behavior in the adaptive strategy. .

]




CRITERIA FOR THE DETERMINATION OF THE DOMINANT FREQUENCY

At time instants of the dynamic response near to situations of maximum or minimum amplitude,
the norm of the incremental displacements is relatively small, and thus the application of
(14) for the calculation of the dominant frequency is prome to be affected by mumerical pro-
blems. This fact is also remarked in [6], where it is suggested that the calculation of a
pew value for the dominamt frequency, and comsequemtly of a new estimatioa for the time step
value, should be avoided when

18d 1 < c s } , 2 =01 (16)
et a

However, in the applications considered im this work, which include environmeatal loeds due

to wave and current, the variation with time of the norm of the incremental displacements
pe s high-freq y mp This variatiom is not, then “smooth” as the application
of rule (16), based on the comparison of the aorm at current step with norm of the
previ step, ld expect. The solstion proposed in i two comple-

mentary strategics a) and b) described below:

a) Instead of employing local criteria such az (16) to awoid the calculation
for the dominant frequeacy, “global” rules ase defined, based the following expression for
an "average” norm of incremental displacements:

-

IMI”‘ - IMNI /Atml amn
Corrgsponding maximum and minksum historical values are defined as respectively IMI;-and
8Addlmin; in the computatiomal implementation, situations where the loading is applied incre-

mentally are accounted for by starting the process of determination of the minimum value
only after the first maximum value is found.

Theﬁrstmlechecksiflul:-limnerthnafmdthcwm
war® < e aan’ as
nel _ax

-

The second rule checks if 3Adiae: is contaimed in an interval defined by
[ a’ . e ad” - nadn”) ] as)
min X -in

In situations where both rules are satisfied, the proposed strategy comsiders that the mag-
nitude of the gquantities involved in the caiculation of a dominant frequency walue by expre-
ssion (14) is relatively small, and thus the quality of the obtained frequemcy walwe could
be prejudiced In these situations, the time step value from the previous step is maintai-
ned. Typical values for ¢ may range from .05 to .2 .

It shouid be observed that these rules were devised having in mind the applicatioms conside-
red in this work (compliant deep structures under ecwwironmental periodic loadings).
Other applications, including for instance impuisive Joads or plasticity effects, could need
further considerations.

b) In situations where the rules (18) and (19) allow the calculation of new dominant freque-

ncy values, the following expression is employed in order to filter high- frequeacy compo-
nents:

v, " (u..l + u.) /72 (20}

mmimtimofthemﬁmestepmmbyexpressions(manduz)thuenwbysu'in—
stead of w.

CONSIDERATION OF THE NONLINEAR BEMHAVIOR

This section extends the adaptive strategy, in order to take imto accoumt the nonlinear be-
havior, which affects two aspects of the analysis: the first is the calculation of time step
values, and the second is the determination of time instants with stiffness reevaluation.

Variation of the A parameter

The effect of the monlinear behavior om the calculation of time step values will be reflec-
ted by varying the A parameter, which determines the time step cstimation as a fraction of
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the characteristic period., see exp. (12). The variation of this parameter is performed by
monitoring the number of iterations (Nit) required for convergence of the iterative MNR pro-
cess at each time step.

The following adjustable parameters must now be introduced: Net = “optimum® number of itera-
tions for convergence of the MNR process; { = scale factor affecting the value of A;
Amia = minimum allowable value for A; Amax = maximum allowable valuve for A. Typical walues
for these parameters are, respectively: 3, 1.05, 20 and 500 . The following rules then de-
fine the variation of A:

Initially A= A :
m

in
1r l"\'ﬂnrcduce A=A/C;

If A < A-l. then A = l-l-;
1f N“ - N.t mantain current value of A;
If A>2A then A = ) .
If N >N_ increaser = «¢, max max

tf € < 1 reduce time step.

Tbeappliuthndtheuruhshmmldthemmmmmmfﬂ-
lowing considerations:

- At time instants when the iterative MNR process is requiring more iterations for conver—
gence (Nut > Net), the value of the A parameter is increased, thus leading to a more rapid
redmﬁmdtheﬁmemﬂu,whichdmldwtmiwmnﬁﬂdnﬂymﬂm
to disturb the ability of the MNR 10 treat the local linearization assumed in (3). It is
observed that this rule overcomes the rules previously presented for the comtrol of time
stepmhtim.sincetheﬁ-euepisndmedmif(l(ﬁ(l;

= Conversely, at time instants when nonlinear effects are less severe (Nit < Net), the value
of the A parameter is reduced, thus leading to larger time step values;

- The value of the A par be reduced beyond Amia in order to allow the adequate
intemﬁmdthenodswithfmwiswamﬂlerthmﬂndomimnfreqmy;

-Thvdudthelmmbehcreuedbeymdlmhwdermavoid;hw
tical limit situation when the time step value is indefinitely reduced. In these cases it
\vouldbebetta-toallowthemberofiteraﬁonsﬂntogm\vunﬁlitreachesamaximum
value of Nmex, thus stopping the analysis when the instability of the time integration is
characterized (itshwldbeobservedﬂnt,intheappﬂationsnwie&bytheamhors.the
rules defining the adaptive strategy were always able to maintain the sumber of iterations
Nit not far from the optimum value Net).

Control of Stiffness Reevaluations

For the determination of time instants with stiffness reevaluation, it is coosidered that
thevrhtimof&edomimfreqmyrdlmmodyxhgmhﬁonofmewmpo-
sition of the response, but aiso the variation of the stiffness of the structursl system;
moreover, the control of the A par . & Pr d in the preceding section, stresses
thisinﬂxmofthemnlimrhehaﬁorinthcalmﬂlﬁonofﬂwﬁmeswpvdms.
The first criterion for the determination of a stiffpess reevaluation is, thus, an alterati-
wdmmmvﬂwuﬁmbythemlumviomlymwd_Asmentimdearli-
er, an alteration of the time step value requires the reevaluation and decomposition of the
effective matrix even in linear analyses; in nonlinear analyses this criterion will also
trigger the reevaluation of the stiffness matrix.
The second criterion is more directly related 1o the monitoration of the iterative MNR pro-
cess: stiffness reevaluations are determined whenever the number of iterations Nit exceeds
the "optimum® value Not.

ADAFPTIVE ANALYSIS OF A COMPLIANT GUYED TOWER
Deepwater compliant structures are characterized by their ability to undergo large displace-
ments under the action of environmental loads. As a first consequence of this flexibility,
they present a markedly nonlinear behavior due to large—displacement geometric effects. As
another comsequence, the first natural period is congiderably greater than the characteris~
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tic period of the ocean waves; inertia forces then help to support the environmental loadi-
ngs and contribute in the stability of the structure.

The guyed tower is a particular concept of compliant structure, whose behavior has been ex-
tensively studied, leading to the design, fabrication and installation of the Lena Guyed
Tower at the Gulf of Mexico [16,17). The guyed tower concept is characterized by the soluti-
on employed to provide the righting forces which, along with the inertia forces, support the
environmental loadings: guylines connected to the tower at a position near to the level of
the resultant of these loads. An important characteristic of these guylines consists in
their highly variable stiffness values, provided by a “clump weight” mechanism near the sca-
bed touchdown point. The stiffness increases as these weights are being suspended; however,
in storm condition some weights are totally uplifted, thus increasing the catenary length,
reducing the guyline stiffness and limiting the maximum stress on the cable [17,18]

Parametric studies on the global behavior of a 330m-~high guyed tower, under environmental
loadings typical of the southeastern Brazilian coast, were presented ia reference [18]. The
guyed tower investigated in that work consists
of an external tower with a 27-meter square
section, which is supported by an internal
tower with a 7-meter square section comprising
the four main axial piles. Each axial pile,
extending up to the top of the tower, has a
diameter value of 1.20m and a thickness value
of 0.10m. The connection between the external
tower and the piles is made by intermittently
placed guides.

The corresponding finite element model employs
468 three~dimensional nonlinear beam elements
[19,20] in the discretization of the tower.
The behavior of the guylines is simulated by
non-linear springs with associated force func-
tions determined by previous static analyses
{18]. This discretization, referred to as the
“"complete mode!®, is shown at Figure | and was
employed in [18] for static linear, static
nonlinear, and free-vibration analyses, where-
as 3 simplified or "stick” model was employed
for nonlinear dynamic analyses addressed to
the study of the global behavior of the  struc- Guyed Tower Finite Element Model
ture.

The objective of this section is then to present results of nonlinear dynamic analyses of
that complete model, employing the computational system incorporating the adaptive strategy.
The excellent performance characteristics of this strategy are demonstrated, in terms of
computational economy, quality of results, and savings in “engineering time" reflected in
the number of analyses needed to obtain the desired dynamic response.

These analyses correspond to envirommental storm conditions, consisting of a deterministic
Airy wave with a period value of J4s and a height value of 18m; current velocity at sea sur—
face is 1.45m/s, at sea bottom is 0.25m/s; the reference wind velocity is S5m/s. The first
set of analyses is referred as the “conventional analyses”, employing a fixed time step and
reevaluating the structural stiffness at the beginning of every time step.

The fixed time step value for the first conventional analysis is 0.025s, which is the same
employed in [i18] for the stick model. This step value was selected according to the guideli-
nes presented in [I) and mentioned at the Introduction of this work; it is a relatively
small value, since the parametric studies performed in {18] indicated that the first natural
period could vary from 27s to 10s according to the variation of the guyline stiffness.

This first analysis presented convergence problems, observed after the integration of 1Ss;
the divergence of the solution was characterized at the time instant of 31.4s, when the ma-
ximum specified number of 15 ijterations for equilibrium in the Newton-Raphson scheme was
exceeded. It is thus seen that even the reevaluation of the stiffness at every time step was
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not able to allow the conclusion of the dynamic response.

A second conventional analysis is then performed, reducing the fixed time step value to
0.01 s, but nevertheless a similar divergent behavior was observed. The conclusion of a dy-
namic response for the desired integration time (40 s, corresponding to about three wave
periods) was reached only in the third conventional analysis, with the fixed time step value
specified as 0.005 s

The time histories of the horizontal displacement at the top of the tower, corresponding to
the first and third conventiona! analyses of the complete model, are presented in Figure 2.
The divergent behavior of the first analysis is there well clear, and can also be seen at
the graph presented in Figure 3, showing the number of iterations required for the conver-
gence of the Newton-Raphson iterative process at each time instant.
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obtained by a conventional analysis of the stick model presented in [18]. There is a reaso-
nable agreement between the results of the stick and complete models, coafirming that the
stick model devised for the study of the global behavior of the tower is well calibrated.

An adaptive analysis is mow performed, employing the typical values for the adjustable para-
meters mentioned in the corresponding sections. The integration of 40 s is completed with a
total number of 1158 time instants, about seven times less than the number required by the
third conventional analysis (the only ooe able to complete the analysis). The tangent stiff-
ness is reevaluated in only 81 instants, which represents an average number of 14.3 instants
between reevaluations, and is about a bundred times less than the mumber of reevaluations
observed in the third conventional analysis.

Figures 2 and 4 compares the dypamic response thus obtained with the corresponding responses
obtained by the conventional analyses. The time histories of the horizontal displacement at
the top of the tower are compared in Figure 2. Figure 4 compares axial forces in an element
at the base of one of the main axial piles, obtained by the third conventional analysis and
by the adaptive analysis.

The effectiveness of the adaptive strategy in the treatment of the nonlinear behavior can be
observed in Figure S, showing the number of iterations required for the convergence of the
Newton-Raphson iterative process at each time instant. 1t can be observed that this number
was always kept around the specified optimum value of 3 iterations. This adaptation of the
algorithm to the nonlinear behavior is also reflected by Figure 6, presenting the variation
of the A parameter along the adaptive analysis. Smaller values for this parameter were re-
qQuired near to instants of maximum displacements.

Figure 7 presents the variation of the time step value along the adaptive analysis. This
variation reflects both the modal composition of the response, through the calculation of
the dominant frequency value, and the nonlinear behavior, through the control of the value
of the parameter A. The two dashed straight lines represent the fixed time step values of
0.025 and 0.005 employed, respectively, in the first and third conventiona! analyses.
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These results demonstrate that the adaptive strategy was able to detect the instants when
smaller values of time step are required, and, conversely, the instants when larger time
step values can be employed; and also that, even reevaluating the tangent stiffness in a
much smaller number of instants, this strategy allowed the conciusion of the analysis with-
out convergence problems.

The computational cost required by the only adaptive analysis necessary to obtain the dyna-
mic response is then a fraction of the costs of each one of the conventional analyses. Table
1 summarizes the computing costs of the presented analyses, showing the total number of ins-

tants needed to obtain the desired resp the b of stiffness reevaluations, the to-
tal number of iterations and the total CPU time spent in a VAX 8810 computer.
Table 1
Computing Costs
. Number of :
Analysis intervals [reevaluations]iterations CPuls)
Conv, .025% (not completed) XXX.X
Conv, .010 {not completed) XXX . X
Conv, .00% 8000 | 8000 [ 16538 |48274.8
Adaptive 1158 | 81 ] 3418 4130.1
CONCLUSIONS

The application of the presented adaptive time integration strategy on the analysis of a
compliant guyed tower has shown that the savings in computer time are remarkable; moreover,
the comparison between the number of adaptive and conventional analyses necessary to obtain

the desired dynamic response reflects other important positive characteristics of the resul-
tant computational system.
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One of these improved characteristics is the robustness, represented by the ability to con-
clude a nonlinear analysis without convergence problems. Also, probably still more valuable
than the savings in computer time are the savings in “"engineering time", or the economy in
the time spent by the engineer in data preparation and submission of computer jobs; this is
a characteristic of a more easier-to-use or “user-{riendly” computational system.

These advantages stem from the adaptive strategy which relieves the user from the task of
selecting time step values, and defining stiffness reevaluation policies. Finally, since the
computational system does not depend on the user’s experience and judgment in the definition
of such important parameters, another positive characteristic consists in the higher relia-
bility on the quality of the obtained dymamic response.
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