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This paper is both the description oC a streamline-upwind/Petrov-GalerkiDg
(SUPG) formulation and the documentation of the development of a code Corthe
finite element solution oC transonic and supersonic flows. The aim of this work is
to present a formulation to be able to treat domains oC any configuration and to
use the appropriate physical boundary conditions, which are the major stumbling
blocks oC the finite difference schemes.

The implemented code has the CollowingCeatures : The Hughes' SUPG-type
formulation with an oscillation-Creeshock-capturing operator, adaptive refinement,
explicit integration with local time-step and hourglassing controL An automatic
scheme for dealing with slip boundary conditions and a boundary·aur;mented
lumped mass matrix for speeding up convergence.

In Section 1 we will describe briefly the theoretical background oC the SUPG
formulation. In Section 2 it is described how the foregoing formulation was used
in the finite element code and which are the. appropriate boundary conditions to
be used. Finally in Section 3 we will show some results obtain~ with this code.
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Streamline-Upwind Petrov-Galerking formulations

We begin analyzing the formulations for the one-dimensional compressible
Euler equations and the bidimensional scalar advective equation. Afterwards it is
explained what was used for dealing with the multidimensional compressible Euler
equations.

One-dimensional compressible Euler equations I

The compressible Euler equations constitute a first-order hyperbolic system
that c:a.n be written as follows

U,I +F,~ + G = 0,

where the vector F is referred to as the flux vector and G is a source term. This
vector equation stands for the conservation of mass, momentum, and energy in
the flow field. Using the Jacobian matrix A = of/aU, we can also write

In what follows, we will consider a system of equations like system 1without
the source term.

Using Taylor's theorem we can write

6t2
U"+! = U" + U" At + U" - + o(6t2)

,I ,II 2! '

and the substitution of eq 1in the above equation leads to

U"+1 = U" - AU" At + A2U" 6t
2 +o(6t2).a .•• 2! '

where it was assumed a constant advection matrix. Because only the steady state
is of our concern, we can neglect the terms of higher order of the series (see [11 for
further details).

The Jacobian matrix A can be diagonalized (see (121), therefore we can write

A = SAS-1,

and making the change of variables V = S-IU we transConn eq 2 obtaining

V"+! = V" - AV" 6t + A2V 6t
2

,~ .~~ 2! '

which is a system of uncoupled Icalar equations.
If eq 3 were to converge to a steady state we would have the problem solved.

Now it i. important to emphasize that the temporal integration is only a way to
reach the Iteady state, and that this procedure can be regarded as a relaxation
proceas.



At this stage we can make a spatial discretization of eq 3 with linear finite
elements, which yield central differences in space, and investigate the behavior of
the resulting scheme. For an assemblage of elements of uniform length we get

V,,+I V" A A (V" V") l:t.t
2

A2 (V" 2V" V" )
j = ; - ut2h j+l - j-I + 2hi ;+1- j + j-I'

The stability of this scheme can be assessed using the von Neumann analysis,
based on Fourier analysis. The Fourier decomposition of the continuous solution
i. ( summation on I is assumed )

V" = H"(kt) ei1,.,

and that of the discretized case is

Vj = Ha(kt) ei1,j.. (5)

Here, i is the imaginary unit used to represent the sinusoidal functions with wave
numbers kt, and H"(kt) is the amplitude of the particular wave component kt.

Substitution of eq 5 in eq 4 and the use of C = (~) A gives

Vj+! = [ 1_ ~(eil'. _ e-i1,.) + ~2(ei1,. _ 2+ e-i1,.) 1 H"(kt) ei1,j.,

Vj+! = G(C) Vj,
where C is a diagonal matrix in which the diagonal elements are the CFLNs or the
eigenmodes. The latter equation gives the evolution of each Fourier component (
interpreted either as a part of the solution or as a perturbation error ).

The norm condition

IIG(C)II ~ 1

is sufficent for the stability. Because G(C) is a symmetric (diagonal) matrix, if
we use the norm 11112, there follows that

p(G(C» = DG(C)112'
and the norm condition is satisfied if

Ipil~l Vi,
in which Pi represents the eigenvalues of the amplification matrix G{e) .The
analysis of the diagonal entries of G( C) gives

IJ1i I~1 => C? ~ 1 V i.

As a result, we can conclude that

Ci > 1
Ci=l
Ci< 1

the iterates blow. up,
exact Dada! valua are obtained.
apurioua osciUatiou develops, u will abortly become clear.



A foregone conclusion is that the only stable way of treating the system of eq 4 is
to integrate it with a time-step based on the greatest eigenvalue, but obviously in
that case spurious oscillations will appear in those eigenmodcs integrated with a.
C F LN < 1. It is thus because the steady stnte is reached when the sequence

Vj+1 = Vi - ~ [(V7+, - Vi-a> - C(V7+, - 2Vj + Vi-d) (6)

converges, but for reaching convergencethe term within the square braquets must
vanish, i.e.

Vj+l - V'j_l = C (V7+1- 2V'j + V'j-I),

now, considering the case in which the CFLN tends to zero, we can see the source
of the oscillations because (-1)i is a solution for the uniform mesh.

To avoid this drawback, wecan think of a scheme in which the Ci is substituted
for ,gn('xi) in every componential within the square braquets of eq 6. Introducing
this modification in the original equation, we obtain the new differenceequation

Vj+l = Vj - ~: A(VJ+l - Vi_I) + ~: I A I (Vi+l - 2Vi + Vi_I)'

Replacing Vj by S-IUj and premultiplying by 5, weobtain the final formulation

Uj+! = Uj - ~: A(Ui+l - Ui-l) + ~ IA I (Ui+l - 2Uj + Ui-,), (7)

The finite element discretization both in space and time of the previous for-
mulation is the following:

The boundary r of the domain 0 is assumed to be decomposed as follows

r=r.jur/" 8=r.,nr/" (i=1,2,3.),

here, r., refers to that part of the boundary on which a Dirichlet-type b.c.. is
specified for the i·th component of the primitive variables (i.e., p, u,p), and r//>
to that part on which no b.c. is specified for the i-th component. There exists
another b.c. which is imposed on the slip part of r, but it does not make sense in
the one-dimensional eMe.

Let Vi and Si denote the finite-dimensional subsets of HI(O) satisfying the
following conditions



where Ni is the typical finite eleme~t weighting function, Ui the j-th component o(
the trial solutions in conservation variables, and the function Ui(Z}, the Dirichlet
h.c. (or the i-th component o( the primitive variables.

We assume that both subsets consist or the typical CO finite element inter-
pole.tionfunctions, and that the ao-calledgroup approzimation of the flux vect.or
F is employed so that its components are also piecewise bilinear functions (for
bilinear form functions) determined by their values at element nodes. This finite
approximation leads to

••_1ft",
U= 'E NiUi,

i=1

•• mn,

F = 'E NiFj,
i-I

where numnp denotes the total nwnber o( nodes in the discretization, Nj =
diag(N{, N1.Ni) are the global piecewisebilinear basis Cunctions,and uj, Fj are
the values oC U, F at node j.

Wehave now all the elements to givethe space-time finite element Cormulation
equivalent to the differenceequation 7 when forward Euler differencing is used for
representing the time derivative term. The formulation is the following

(In NjU"dn) I••• , + L (Ni + Ni." (~) ,gnA) A U,,,dn = 0

VN! e Vi.
I

It is important to recognize in this Cormulationa weighted residual method,
that is. consistency is insured. Also this formulation is consenative, it is thus
because in every point of n

No~EI.

'E Ni = 1,
j••l

NodEI ••

'E N!" = 0,
j=1

No~EI.. N ~E1t; L. (Ni + Ni." (~)"gnA) AU." dn = }; - In. Ni AU .• dn~

and integrating by parla the right-hand-side, we get

therefore, the formulation is conservative (this proof, with some modifications,
holds for the multidimensional case).



Two-dimensional scalar linear advective equation:

The governing differential equation can be written as follows

where u is the unknown scalar field and aj is the i-th component of the flow
velocity. Eq 8 together with the appropriate boundary conditions define a well
posed physical problem (see (2)and (9)for a comprehensive description).

The residual formulation, however,has to take into account the nature of the
physical process. In the advective process, the value of the scalar field downstream
is that one resulting from the verification of the advective equation upstream. The
foregoing statement is not unlike the following : the value of the scalar field in
a nodal point of the discretized problem has to be that one which minimizes the
residue R = ajU,; upstream from that nodal point in a given weighted form.

Let V and S denote the finite-dimensional subsets of HI(O) satisfying the
followingconditions

where Ni are the typicallinite element weighting functions, and U the trial solu-
tions.

We assume that both subsets consist of the typical CO finite element interpo-
lation functions.

The weighted residual formulation is the following

In Ni(z, y) R(z - ~z, y - ~!I) dO = 0

h aj
~:ri = ajT =;; jal'

where h represents the length of the element side, and T is a characteristic time
that is a function of the element size and of the flow velocity.

Using a truncated Taylor expansion, we obtain the followingapproximati'on
toeq9

kNi(Z,y) (R(z,y) - R,~,~Z;} dO=O,

integrating by parts, we obtain

In(NjR+N!z,R~Zj}dO - l NiR~z;nicIr =0,
r••'11••

I (. . h a') .in NJ + N!., ;; tal (aj ".i)dO = 0 VNJ E V.



The value of Q can be chOlienso Ul<'\tin the unidimensional case the solution
will have nodal exactness.

L (Ni+N!( (~) "9n(G») (Gu .• )dO •••O, (11)

where e refers to the natural coordinate system [-I,ll. Due to the form of the
resulting weighting functions when Q takes the value 2 (see Figure 1), nodally
exact solutions are obtained no matter how much different in length the elements
may be. Therefore the optimal value of Q to be used in eq 10 is 2.

With the insight gained in the one-dimensional case. we can see that for the
two-dimensionalcase, the followingformulation

r (. . h')in NJ + N~ fbi (ai U,i) dO = 0

in which {i refers to the i-th natural coordinate, will give nodally exact solu·
tions for those flowsparallel to the mesh directions, no matter how much different
the sides of the elements may be. In any other situation. the aproximation will be
much better than the one of eq 10.

When adaptive refinement is used, neither eq 10 nor eq 12 is optimal for
the irregular nodes if in the assemblage process the contribution of an irregular
node is one-half for each one of its neighbors (as is advocated in (8)). When there
are irregular nodes in the one-dimensional case, nodal exactness is obtained if
the followingweighting functions are used for all those elementJ that .hare an
irregular node

In Figures 2-1., 2-b, and 2-e wehave the sketchesof the form functions for the
nodes i-I, i, and i+1 respectively, where the node j is irresular. In Figures 2-d
and 2-e are represented the compound weighting functions of the nodes i-I and
i+I after the normal assemblage process, that is, one-half of the j·th weighti~g
function for each one of ita neighbors.

With regard to these modified form functions, we can see that using their
counterpart in the two-dimensionalcase (only for the irregular node and it. two
neighbors) a good improvement is obtained.

Multidimensional compressible Euler equations :

A Petrov-Ga1erkin formulation wiDbe presented and will be shown how it
reduces exactly to the weady knownformulatiom of both the scalar cue and the
cue of systems, in the bidimeasional and one-dimmaiooal cases respectively.



a~·
U.i= ~U~,

fJ{'
Bj = Ai ()~.

%i

Let Vi and S' denote the finite-dimensional subsets or RI(O)
following conditions

U,( UI, U2, us, fl.) e s' •.•.u,(x) •• Ui(X) Vx e r., ,
where N, is the typical finite element weighting function, U, the (-th com-

ponent of the trial solutions in conservation variables, and the function u,(x), the
Dirichlet b.c. ror the i-th component of the primitive variables.

We assume that both subsets consist of the typical Co finite element interpo-
lation functions.

The proposed Petrov-Galerkin formulation is the following (without the con-
tour terms, see [10])

(
B' )1

B.. :

B~."
Verifications:

(1) One-dimensional "11mmetric advective systems.

The Euler equations of Gas Dynamics do not constitute a symmetric system
when they are written in terms of con.servation IIaridle,. For many physical
systems or equations, however, a change of variables exists so that they can be
written in symmetric (orm, see [3,4,5).

In thia code, the cafroPIi v.n.Lles (as the variables resulting from the sym-
metrizing change or variables are referred to) were uaed only at the element sub-
routine level, whereas prUpitivo variables were uaed at global level.



B}(BiBl}-lfl = A' (A A')-I/' =
= A(tA't'}-1/2 = A(t IA I-I t') = IJgnA.

. Ia .
N~= 2N~.,

we obtain the already known formulation, i.e.

(2) Bidimensional scalar case.
Using

Note:

Considering a two-dimensional system that could be simultaneously diagonal-
ized, we can see that each equation ol the decoupled system is a two-dimensional
scalar advective equation. Therefore, we can apply the latter verification to each
componential, and thus, we have verified once more the comprehensiveness of this
lormulation.



The SUPG formulation for the bidimensional scalar advective equation was
written as follows

fn (Ni + N!(/ b, Ib r1)(G;U,i)dn = 0 VNi e V.

The on.dimensional ease hu the bidimensional characteristic V~U II b, but
in the bidimensional case we have b = bl + bJ.' and only b~ V( u = O. There
follows that the foregoing formulation can be written in the following way

the third term is not the optimal value because the one-dimensional analogy calls
for the value

1 Ibl
1bll

bg•

A way of adding only the necessary artificial diffusivity is to introduce the so
called shock capturing term

bl bi (I~II- I~I)'
after the introduction of the above term, the final formulation is the following

fn{ [Ni +(V(Ni)lbl~I)(bl V(u)

+ (V( NJ)'bl (I~.I - 1~1)(b'V( u) } dO •• 0

A comprehensive description or the mock capturing concept for the linear
Iwar advection-diffusion equation and the multidimensional advective-diffusive
Iystems can be found in (9) and (11) respectively.

A. wu made lor the scalar ease, the Jacobian matrices are split in the follow-
in&W~



AilOi = 0 V 0 / 0' 'VU = 0,

there follows that AI is an operator of rank 1 that acts only in the direction of
the p-adient.

We can define the operator AI as follows

U',
Ail = (AjU,j)I'V{;12,

and following the development in natural coordinates, we define

lJ{i
Bil = 0%' Ajl '

)

from which, the shock capturing part of the formulation is the following

(

B1I )
BI = ,:

Bn'dl

Because By B. has rank 1, the negative square root of it is defined in its
non-degenerate subspa.ce, namely

(Bi BI)-I/' = I~rl".,
where ,\ and ; are the result of the following eigenproblem

(A.'VUIUI'(A.'VU)' - ,\'1) ;=0,
the solution to this eigenproblem is



(Bi B1)-ln = (A..VU), 0 1 (A.VU)',. I IIA.vul

{N~J BJ1 (~) A.VU dO.ln IUI
Again, as was made for the two-dimensional scalar ease, we must substract

from the above expression a quantity equal to the contribution of the plain SUPG
in the direction of VU.

From eq 13, the contribution of the plain SUPG is

BI (B B')-1/2 A.VU = U(A.VU)' (B B')-1/2 (A.VU) =
= U(A.VU)' Q (A.VU) = BI Q (A.VU),

(A.VU)' (B B')-1/2 (A.VU)
Q = IA.VUI2 '

therefore, the final expression for the shock capturing operator is the following

r N B~ (IA.VUI _ (A.VUl' {B B')-1/2 (A.VU») A VU dO
ln ,(j JI ,UI IA. VUI2 "



In this section we make a description of some important aspects concerning
the implementation and use of the method we are dealing with.

Two-dimensional weighted residual formulation for the compr~ss.
ible Euler equations:

The Euler equations can be written in conservation form as follows

1Ii1lie=t+2,
here, e is the total energy and c is the internal energy per unit mass.

In order to complete the system we must specify an equation of state p =
N,t) . Any equation of this kind may be used, but the equation of a perfect gas
is currently used for transouic and supersonic calculationa, i.e.

where.., is the ratio of specific heats.
The flux vector Fj(U) is a homogeneousfunction of degree one in the con-

servative variables U , it followsthat (see [12])

FjJ = AjUJ.

Let n = (nit n,) be the outward unit normal vector on the boundaries and
let Fj be split in the followingway

( 0) (VjP)F'=F(.I)+~')= 61jp + 1IjPUI •
J J J 62j P 11jPU'

1IjP Vjpe

Later we will make reference to

F(2) _ ~') R'_ (U:;:I)
• - j J - U.PU, .

1I.pe

Consider a disereUzation of {} inta element subdomains OC, t = I, .., "eI,
where Rei is the DUmberof elements. We assume



Also let ~ be the whole boundary of element e, r the boundary of n, and
r ii" the following set

(

, ••I )
ri.•,= U ~ -r .

•-1

• = (r_,u r Ii) n r"i" (i = 1,2,3,4.),

where r aj refers to that part of the boundary on which a Dirichlet-type b.c. is
specified for the i-th component of the primitive variables (i.e., p, Ulo U2'p), rII to
that part on which no b.c. is specified for the i-th component, and r"i, to that
part on which the natural b.c. F~2) = 0 is specified.

The only natural b.c. is F!!) = 0 on r ,'i" because on the inflow/outfiow part
of the boundary only Diric:h1etb.c. are specified for a nwnber of primitive variables
(i.e., P,UhU2'P) according to the nature of the boundary (inflow/outflow) and to
the Mach nwnber. This point will be explained later in this section.

Let Vi and Si denote the finite-dimensional subsets of HI(n) satisfying the
following conditions

Ui(Ul, U2, U3, u.) e Si => Ui(X) == 11i(X) Vx e r _/,
where Ni is the typical finite element weightinl function, Ui the i-th component of
the trial solutions in c~servation variables, and the function Uj(:r), the Dirichlet
b.c. for the i-th component of the primitive variables.

We assume that both subsets consist of the typical Co finite element inter-
polation functions, and that the so-called group approzimation of the flux vector
Fj is employed 10 that ita componenta are also piecewise bilinear functions (for

bilinear form functions) determined by their values at element nodes. This finite
approximation leads to

"."'",
U= E NiUi,

i_I

••am••,

Fi - L NiF1.
i_I

where '!um?p 4enotes the total nwnber or nodea in the diaactiiation, Ni;o:
diee(N{,NI,NI,Nj) are the 1~a1 piecewise bilinear basi, functions, and Ui, FI
are the values of U, Fiat node J.



In SeetioD 1 it was demonstrated how the SUPG formulation is cast in a
weighted residual form, in which the weighting functions are modified by the addi-
tion of C-1 perturbations, and now, we make use of that by writing the variational
equation for the compressible Euler equations in the Euler-Lagrange form

0= L L. (Ni +pi) (U,f + Fi,i) dn
•

VN! E Vi,

in which Ni = diag(N!,N1,N1,N1), and the Euler-Lagrange equations are the
followin~

U.f + F i,i = 0 on n governing equation,

F<.21 = 0 on r.Ii, null flux condition,

IF.) = 0 on ri.f continuity condition.

In tb.e latest equation, the square brackets represents the jump of F. across
the interelement boundary. In fact, this equation is automatically verified because
F. has CO continuity. Integrating by parts, we obtain the weak form of the
weighted residual equation

ar + f Ni F. rlf' ,lr....

0= E f (Ni + pi) U" dn +L r (pi F;'i - N~ Fi) tin• k. • k.
+ L Ni F~I}df' + 1 Ni F. df'r"'p r,.,_, •••



Making use of the forward EulP.r scheme in the time discretization, we can
write the complete formulation in matrix form as follows

where M is the consistent mass matrix, R the residue, and 6b the vector of
nodal variations of the conservation variables. The use of the consistent mass
matrix is not the one consistent with the developments. of Section 1, and on the
other hand, it is more CPU-time consuming, therefore, a lumped mass matrix was
used instead.

Any variation in the conservation variables (6b) is related to the variation of
the primitive variables (6i) by a very known triangular matrix, i.e.

Now considering the nodal vector of primitive variables (a), it is updated after
each iteration as follows

where Ojl is the triangular matrix obtained from Ojl by filling with zeros the
i-th row if the i-th component of the primitive variables was specified as a Dirichlet
b.c. for the j-th node.

The SUPG formulation for the scalar case and for a rectangular mesh with
element sides of unifonn length h gives the following result for the j.th generic
node

, . 6t { f (' . h a') }
U~+l =u~ -0j;2 in NJ +N?i 2" ril (a/u,/)dn ,

where a is equal to 1 for the interior nodes and to 2 for the boundary nodes.
Using Vi = ai/I a I and C = 6t lal/h, we can. rewrite the above equation.as

follows "

, , { f (1. . 1 ) }
U~+l =u, -OC in h,NJ +N?a. iVi (V/U,/)dn •

Replacing in the above equation the following field

where i is the imaginary unit and ka, k, are the wave numbers in the x, y directions
respectively, we can obtain two equations, one for the interior nodes and the other
for the boundary DOdes, of the following gcncAl form



in which the function G is the amplificati.)n f:\etor.
The amplifica.tion factor G will be :s 1 if C :s .00 for the internal nodes and

C < .50 for the boundarv nDde5. When only plane waves are introduced, which are
co~pa.tible with ooe-di~C'PSional problems. the limit of stability for the internal
nodes is reached with C = 1.0 • but the corresponding to boundary nodes remains
the same.

The unidimensional Euler equations can be analyzed as a system of decoupled
scalar equations integrated with the same ~t, therefore, the previous stability
analysis leads to the following stability conditions:

~t :s 2(c ~ laD for boundary nodes (C F LN = 0.5),

where c is the local sound speed, lal the absolute value of the velocity, and c + Ia./
the greatest eigenvalue of the system.

It is interesting to note that in subsonic conditions, the eigenvalues have differ-
ent signs, therefore, although an instability were genera.ted only at the boundary,
it propagates inwards rapidly.

The two-dimensional Euler equations can not be analyzed as a system of
decoupled scalar equations, this is thus because there is not a. similarity transfor-
mation that diagonalizes both Jacobians simultaneously. Nevertheless, we had not
any instability running the program with CFLN :s .90.

Several points should be considered with regard to this formulation:

1. Since the objective is simply to obtain a steady state as soon as possible,
the order of accuracy used to evaluate the transient state is not important at all.
This allows the use of schemes selected mainly for their properties of stability
and damping. In this regard we used the forward Euler integration scheme, which
stems from a Taylor's expansion of the vector of conservation variables as was seen
in Section 1. For using another scheme, an analysis of stability is necessary.

2. It appears from the formulation that the natural b.c. of null flux on slip
boundaries would have to be verified, in the weighted form, in the same way that
the flow of heat is where null flow is specified as a natural b.c. of a heat transfer
analysis. However, this proved to be a most unstable b.c., not being verified at all
and spoiling the solution. A large number of schemes for the analysis of inviscid
compressible flows appear to have the same shortcoming (see [13}, page 335).

The code avoids this shortcomi~ evaluating l\utomatically, for each node
of the declared slip boundaries, a unit vector iV , that take into account the
orientations and lenghts of the elemeuts' sides ~hl\t converge to the j.th node and
that are part of the slip boundary, i.e.



Vi = Vi.,_ - (ii1•V~".,) iii,.... .....
where V~"., is the velocity in the j-th uode obtained from a~+1 and Vi is the

oew valu~'~i this velocity to be 'assigned to a~+I'

3. If we consider that the rate of convergence is given by the CFLN and that
the meshes have in general highly variable element sizes, it is understood why the
con~gence is speeded up when the optimum time step is used for each node. This
code automatically uses a nodal time step that is in accordance with a specified
CFLN, we usually specify CFLN =.9 . This CFLN is reduced for those nodes that
are on the boundary because of stability, the reduction is indirectly accomplished
by using an augmented lumped mass matrix.

4. Because the steady state is our target, we can use a sequence of meshes.
The coarser a mesh, the cheaper is to obtain an approximated solution. Therefore,
webegin with a coarse mesh and when the rate of convergence decays an automatic
switch is made to a finer mesh.

With regard to the automatic refinements you can choose between an overall
refinement or a localized (adaptive) refinement. As a matter o££act, the first ones
are ever overall refinements, while the adaptive ones are used in the final stages of
refinement.

5. Any type of upwind introduces artificial dilfusivity. The diffusivity acts in
the zones of high gradients, no matter which is the origin of such gradients, as a
result, there may be zones in which spurious generation of entropy occurs (e.g.,
the stagnation zone generated by a blunt body). The straightforward procedure
for avoiding such errors is to use adaptive refinement in those zones.

The number of primitive w.rlables to be specified on the inflow/outflow part
of the boundary depends upon the local Mach Dumber.

The b.c. for the inflow/outflow part is introduced in our formulation through
the integral term

1 NF.dI',
r,.., ••c,•••

F••= FiRi = (AjRi) U= A ••U

here, A ••= DF./au is the Jacobian matrix (see (12».
The matrix A••has a complete set of real eiseovalues for any flow condition.

Therefore, A ••can be written as f<.ll.ows



l. = ~2 = lJ = UjRj •

l. = ~I +a,
ls·=~.-a.

here. II stands for the local sound speed.
Considering

F. = A~U + A;;U•
here. the Jacobian A~ (A;) has oo1y positive (negative) eigenvalues which repre-
sent the speeds of those signals propagating outside (inside) the control volume.

With regard to the appropriate Dirichlet b.c., we can see that those variables
which represent the far-field conditions propagating inside the control volume must
be specified whereas the remaining are left free.

Running the tests, we specified the essential boundary conditions as is shown
in the following table

Moo Number InflolV Outflow

<1 U\,U2.P P
>1 U\,U2,p,p -



To begin with we present l\ problem of which we know the analytical solution,
it consists in the evaluation of an oblique shock waveoriginated when a flow incides
over to wedge (see FiSUre 3). This problem h••• already been used to test several
schemes [6].

As to result of the obliqueness of the shock with the mesh, this test enables us
to check the capability of this scheme to evaluate this kind of shocks.

The mesh consists of 20x20 elements homogeneously distributed over the
domain (a unit square).

At the inflow [A-B-C) all variables were specified ( M> 1 ). The wall [D-A]
was specified ••• slip boundary so that the code could rectify the velocities of all
those nodes lying on that boundary. For this domain we could have imposed the
null flux on [D-A] by restraining the corresponding d.o.! (U2 = 0), but for general
curved surfaces this solution is not practical, and you necessarily have to rely on
the declaration of slip boundary.

No Vt.riable was fixed neither on the outflow (C-D) nor on the slip boundary
[D-A). The boundary condition to be imposed in the node A is not unique, but
a.nyway,the values of the state Vt.riablesafter the shock and the angle of the shock
itself will not be affected.

inflow (M = 2) {~1U2
P

= 1.
= 0.98481
= -0.17365= 0.178596

{

p = 1.458
Ul = 0.887

outflow (M = 1.64) Us = 0.000

p = 0.304

Fi&Ure4 shows this result in the form of density elevation (in Figure 3 is indi-
cated the observation point). We can see that a sharp shock without oscillations
was obtained. With regard to the numerical values, we can say that there was
complete agreement between the numerical and the analytical values.

Two test cases were chosen, both are lifting flows. The first of them is the
ubiquitous case Moo = 0.80 with an angle of Gltack = 1.25 deg, and the second
test has Moo = 1.20 and an angle of attack = 7.00 deg.

These are two or the cases considered in the AGARD Fluid Dynamics Panel
Working Group 07 (see (7]).
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Figure 5 shows the final mesh for the first test and Figure !> that one of
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