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RESUMEN

) ‘Son analizadas las lupotesu basicas y los metodos de las teorias
de Meca@nica de Fractura y de Mecanica del Dano Contxnuo, desde el pun
to de vista de sus aplicaciones estructurales usando tecnicas computa
cionales.

ABSTRACT

The basic hypotheses and methods of Fracture Mechanics and Continuum
Damage Mechanics are reviewed, from the point of view of structural
applications using computacional techniques.
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INTRODUCTION

Although rupture and fracture phenomena are of basic importance in
applied solid mechanics and engineering, they are still not well
understood and rational theories on the subject are in development.

Historically, the initial work was on brittle materials, pressed up by
accidents with the Liberty ships at the end of World War II, the
disasters with Comet planes and problems with space rockets,

Nowadays, linear elastic fractures mechanics (LEFM) is a well
established technique used in special applications in mechanical, nu-
clear, aeronautical and civil engineering.

The new ground for research corresponds to the nonlinear (plastic,
viscoplastic) range with work in progress along the lines of nonlinear
fracture mechanics (NLFM) and continuum damage mechanics (CDM).

FRACTURE MECHANICS

The observation that the theoretical strength of engineering
materials (determined on the the base of atomic physics) is one order
of magnitude higher than real strength, lead to the hypothesis that
real materials contain flaws (dislocations, cracks, etc) that explain
such difference. As it is well known, plastic behavior is related to
the movement of dislocations. Fracture mechanics, that may be defined
as the "mechanics of crack growth" studies a continuum with as initial
crack (that may be either real, i.e. observed, or assumed) and uses
the tools of classical mechanics (particularly elasticity) without
advancing hipotheses on the physics of the fracture process.

Linear Elastic Fracture Mechanics

For the case of static loads, the growth of cracks needs of two
conditions to be fulfilled. First, we need 8 stress high emough at
the crack tip to surpass material cohesion. Second, enough energy must
flow to the crack tip from the rest of the structure, in order to
provide the work needed for the creatiom of new surfaces, plastic
deformation, heat dissipation, etc.

Initially |1 | it was thought that the first condition was enough.
That lead to the paradox that a cracked body would have stresses
approaching infinite values and thus could support no load. This
paradox was resolved by Griffith |2 | who used a method based on energy
balance to analize glass fiber fracture, explaining the effect of
thickness on strength.

The method was extended by Orowan and Irwin to included the energy
associated with plastic deformation near the newly formed surfaces and
more recently by Rice |3 | to situations with massive plastification.

Meanwhile, Irwin had introduced the concept of “stress intemsity" [5]
and had shown that is was equivalent to the Griffith's energy approach
(It could be shown that these methods correspond to the energy and
static formulations of a stability problem).




The stresses in the neighbourghood of a crack tip opening in mode
I (symmetric tension) may be written
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where r, 0 are polar coordinates in the x-y plane, with origin at the
crack tip. The singular stress distribution in the near field, weighted
by the parameter ‘1 (stress intensity factor) is the same for each
distribution of loads or deformations in the outer region of the
structure (far field). Different far fields are simply characterized
by different values if K. The fact that stresses are infinite for

r + 0 should not worry us, because in fact r cannot be zero in a real
material and the continpum analysis is not valid at the crack tip.

The corresponding displacements may be written
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Reckoning the energy change dU corresponding to a change da in
crack length, we obtain from (1) and ()
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where u is the shear modulus and =3 - 4y for plame strain,
k=(3-u) /(1 + V) for plane stress and Vv is Poisson modulus. This most
important equation relates Irwin's and Griffith's apjroaches.

Again, the basic philosophy of the stress intensity method is that
the region around the crack tip has a stress distribution vhich is
independent of the loading conditions and geometric shape. Geometry and
load conditions influence the singular stress state through parsmeter
K, the stress intensity factor. The critical state of instable crack

growth corresponds to K = ‘c' a material constant to be experimentally
determined.

The J-integral
A very important result due to Rice |3 |, shows that the rate of

change of potencial energy with length for a crack oriented along the
x direction, can be written as the line integral
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vhere I' is any path from the lower crack face anticlockwise around the
crack tip to the upper face,s isthe path length along this contour, W
is the strain energy density in the form dW=0.., €.. and T, = 0.. n.
and u, are forces and displacements along the tdacol? path.lnice‘ghcﬂed
that this integral is path independent for linear or nonlinear elastic
materials. For linear materisls, J = G and is an alternative way to
determine K through (3 ), particularly with finite element methods.

: . . s . N
Moreover, for a nonlinear elastic relation in the form elej -A(c/ov)
stress intensity factors are determined in the form ’

1
g ey (N *D £(8) where C -(JE/OZIA), In consequence, for s given
nonlinear law N, elastic modulus E; C depends on material constants and
the value of J, so that J controls nonlinear fracture problems in the
same way as G (or K) controls linear fracture.

As under certain circunstances (radial loading, no unloading)
plastic and nonlinear elastic behaviours coincide, J is also valid
as a fracture parameter in some situations. The limits of validity,
that have to be determined using elastoplastic analysis, are an important
research subject in computational (e.g. finite elements) mechanics [1].

Finite elements applications

Two important consideration in the development of finite element
programs for FM are the proper modelling of the crack tip singularity
and the interpretation of results in terms of 2 stress intensity
factor K or a crack driving force G.

The usé of conventionsl elements requires a very thin discretiza~
tion near the crack tip, and is computationaly expensive., Thus,
singular elements of different types have been proposed | 6.

The simplest way to obtain singular solutions, is to use quarter
point elements, which are for example quadratic (8-nodes)
isoparametric elements with the midside nodes nearest to the crack tip
displaced to the quarter point. Then, we obtain a square root
singularity for strains and stresses, as the one in (1).

After modelling the ¢rack tip singularity, the stress intemsity
factor is obtained from (1) or ( 2), usually by extrapolation. Using
the stiffness method, vhich gives a better presition in displacements,
extrapolation is based on displacements. Alternstive methods are the
determination of change in strain emergy with crack extension which
gives G and the use of the J-integral.

CONTINUUM DAMAGE MECHANICS

Continuum damage mechanics (CDM) has beem introduced to describe
the progressive degradation experienced by the mechanical properties
of ‘materials before cracking. It covers the transition between
pPlasticity and fracture mechanics.

The most natural representation of constitutive equations with
damage is based on state variables. State variables are used to
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represent viscoelasticity | 7| and plasticity | 8] and appear to be
particularly convenient to represent large deformstions behaviour and
the incremental anisotropy due to damage | 9} , {10},

Ve assume that the changing internal state of a deforming material
element can be represented by the pair (S, 0), vhere o(t) is the
current (Cauchy) stress carried by the element and S(t) stands for
the n parameters that measure the futurelly relevant aspects of
inelastic changes in internal structure that have taken place at time
t. Among those state variables we have some used to represent viscous
or plastic response and others used to represent damage (providing,
in an appropriate statistical sense, the distribution of microcracks).
Ve may assume that failure due to the accumulation of damage will
occur vhen the trajectory of the state point intersects certainm parts
of the boundary of the state space.

We formulate the constitutive relations in the form (restricting
ourselves to the case of small strains)
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The first (5 ) shows the decomposition of strain € into an
elastic part, with state dependent elastic modulus E (S) and an
inelastic part, that depends on the state and the stress level. The
second (5 ) is the law of evolution of the state variables.

Effective stress concept

Many workers, following Kachanov use the concept of effective
stress O= MO vwhere M is a forth order tensor operator. For isotropic
damage and the case of resisting areas independent of the sign of
stress we have.

o= 5 (6)

where D is the scalar damage variable. In this case, D takes account
of the effective area reduction due to microcracking corrected for
micro-stress concentrations and interaction effects. D=0 corresponds
to the virgin element and D=1 to the ruptured element.

The so-called principle of strain equivalence } 11| states that
any constitutive equation for a damaged material is derived from the
same potencials as for the virgin material, except that all stress
variables are replaced by the effective stress. For example, in
elasticity
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_ Now, considering the linear constitutive equation for damage
D-GIED, where ED is a new material parameter, from (7) we obtain.
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i.e. a nonlinear stress-strain relation with a maximum stress ED/4
and strain-softening behavior. A model of this type may still be
coupled with viscous behaviour | 7}.

Thermodynamics

There is a convenient thermodynamically admissible method of
building constitutive relations, that chooses a Helmholtz free energy
function ¥ (S,0) and a potential dissipation function & (Z,0)

(vhere £ contains the thermodynamic forces conjugated to the state
varisbles S) |11].

One could, as a simple example, define a dissipation function in
the form Q( Y,0) where Y is the thermodynamic force corresponding
to the damage D, obtaining
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Examples of this technique, taken from plasticity may be found in refs.
11 and 13 . The final formulation is also similar to that in
plasticity, enabling the use of available algorithms. The theory
reduces to plasticity when microcracking is obsent or negligible.

Notice however that this convenient formalism is not unique. In
fact, Onat }o | has shown admissible constitutive relations that
cannot be put into the potencial form above.

Computational plasticity with damage
For a elastoplastic material with yield function f (S,0) and

plastic potencial function g(S,0) we may write the relation between
rates of stress and strain in the well known form |{14]
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vhere A is related to hardening properties. Damage can alter the
elastic behaviour, changing E or the plastic behaviour, through
changes in f, g and eventually A. Very interesting applications of
this formulation to problems in concrete and geomaterials may be
found in Refs. 13 and 15 . The introduction of plastic damage
through strain-softening leads to some difficulties (lack of

objectivity with relation to finite elements mesh size), that should
be overcome.
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FINAL COMMENTS

A new very good book that covers many fields in FM is ref. 1. For
CDMno such general presentation exists but refs. 11 and 12 may be
useful. Those texts bring many further references. In our opiniom, to
study the ideas of Rice, ref. 4 is yet unsurpassed. Many new articles
appear in the Internationsl Journsl of Fracture and Engineering
Fracture Mechanics, as well as in Jourpals on finite element techniques.
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