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·Son analizadas 1•• hipOtesis bisicas y los metodos de 1•• teorias
de Mecinica de Fractura y de Mecanica del Dano Continuo. desde e1 pun
to de vista de sus .plicaciones estructurales usando tecnic •• computa
cionales. -

The basic hypothes •• and aethods of Fracture Mechanics and Contin_
D_age Mechanics are reviewed. from the point of view of structural
applications using computacional techniques.



Although rupture and fracture phenomena are of basic importance in
applied solid mechanics and engineering, they are still not well
understood and rational theories on the subject are in development.

Historically, the initial work was on bri ttle materials, pressed up by
accidents with the Liberty ships at the end of World War II, the
disasters with Comet planes and problems with space rockets.

Nowadays, linear elastic fractures mechanics (LEFM) is a well
established technique used in special applications in mechanical, nu-
clear, aeronautical and civil engineering.

The new ground for research corresponds to the aonlinear (plastic,
viscoplastic) range with work in progress along the lines of nonlinear
fracture mechanics (NLFH) and continuum damage mechanics (CDH).

The observation that the theoretical strength of engineering
materials (determined on the the base of atomic physics) is one order
of magnitude higher than real strength, lead to the hypothesis that
real materials contain flaws (dislocations, cracks, etc) that explain
such difference. As it is well known, plastic behavior is related to
the movement of dislocations. Fracture mechanics, that may be defined
as the "mechanics of crack growth" studies a continuum with as initial
crack (that may be either real, i.e. observed, or assumed) and uses
the tools of classical mechanics (particularly elasticity) without
advancing hipotheses on the physics of the fracture process.

For the case of static loads, the growth of cracks needs of two
conditions to be fulfilled. First, we need a stress high enough at
the crack tip to surpass material cohesion. Second, enough energy must
flow to the crack tip from the rest of the structure, in order to
provide the work needed for the creation of new surfaces, plastic
deformation, heat dissipation. etc.

InitiallY I I I it was thought that the first condition was enough.
Tbat lead to the paradox that a cracked body would have stresses
approaching infinite values and thus could support no load. Tbis
paradox was resolved by Griffith 12 1 who used a method based on energy
balance to analize glass fiber fracture, explaining the effect of
thickness on strength.

The method was extended by Orowan and Irwin to included the energy
associated with plastic deformation near the newly formed surfaces and
more recently by Rice 13 I to situations with massive plastification.

Meanwhile, Irwin had introduced the concept of "stress intensity" 151
and bad shown that is was equivalent to the Griffith's energy approach
(It could be shown that these _thods correspond to the energy and
static formulations of a stability problea).



The str ••• es in the neighbourghoodof a crack tip opening in 80de
I (symmetric tension) •• y be written
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where r. 8 are polar coordinates in the x-y plaue. with ori"in at the
crack tip. The singular stress distribution in the near field. weighted
by the par_eter ~ (stress intensity factor) is tbe s_ for each
distribution of loads or defoT.-tions in tbe outer region of tbe
structure (far field). Different far fields are su-ply characterized
by different values if K. The fact tbat stresses are infinite for
r + 0 sbould not worry us. because in fact r cannot be zero in a real
_terial and the conti1lDUlllenalysis is not valid at the crack tip.
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The correspoadiq displac_nta •• y be written
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Reckoningthe enersy change dOcorrespondiq to a change da ill
crack length. weobtain froa (1 ) and (2)
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where II is tbe sbear I80dulusand 1CW3 - 4p for plane strain.
K-(3-11)/(l + v) for plaue stress and v is Poisson modulus. This .oat
importaut equation relates Irwin's and Griffith's ap~roacbes.

Again. the basic philos.y of the stress intellsity _thod is that
tbe region around the crack tip has a stress distribution which is
independent of the loading conditions and geoaetric shape. Geoaetry and
load conditioas influ_ the singular stress state through par_etar
K. the stress intensity factor. The critical state of instable crack
growth corresponds to It • It • a _terial constant to be uperi_tally
determined. c

The J-integra1

Avery u-portaut result due to lice 13 I. sbowsthat the rate .0£
change of potellcial enerlY with length for a crack oriellted alolll the
x direction. cau be written as the line integral
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where r is any path from the lower craek face anticloekwise around the
crack tip to the .upper face.s isthe path length along this contour. W
is the strain energy density in the form dW- 0i' £i; and Ti 7 0i' n.
and u. are forces and displaceaents along the cdntour path. Rice ah~ed
that this integral is path independent for linear or nonlinear elastic
materials. Por linear materials. J = G and is an alternative way to
determine It through (3 )• particularly with finite element methods.

·Horeover. for a,nonlinear elastic relation in the fora e/ej -A(O/ov>N
stress intensity factors are determined in the form '

_(1 + 1) 2
a -e r N f(8) where C -(Jlla lA)•.In co_equence. for a given
nonlinear law N. elastic .odulus E! C depends on material constants and
the value of J. so that J controls nonlinear fracture prOble.s in the
s••• way as G (or It) controls linear fracture.

As under certain cir~tances (radial loading. DO unloading)
plastic and nonlinear elastic behaviours coincide. J is also valid
as a fracture par_eter in some situations. The limits of validity.
that have to be determined using elastoplastic analysis. are an important
research subject in computational (e.g. finite elements) mechanics Ill.
Pinite element. applications

Two important consideration in the developaent of finite element
programs for FH are the proper modelling of the craek tip singularity
and the interpretation of results in terms of a stress intensity
factor It or a crack driving force G.

'lbause of co_entional el_ents requires a very thin discretilla-
tion near the crack tip. and is computationaly espensive. Thus.
singular elements of different type. have been propo••d 1 61·

The simplest way to obtain singular solutions. is to use quarter
point elements. which are for example quadratic (8~odes)
isopar_tric el~ts with the mid_ide nodes nearest to the crack tip
displaced to the quarter point. Then. we obtain a square root
singularity for strains and stresses. as the one in ( 1 )•

After modelling the crack tip singularity, the stre•• intensity
factor is obtained from (1) or (2), usually lIy extrapolation. Using
the stiffness method, whiehgives a better presition in dilplacements.
extrapolation is based on displacements. Alternative methods are the
detemution of change in strain energy with crack utensioa wbich
gives G and the use of the J-integral.

Continuum damage mechanics (CUM) has been introduced to describe
the progressive degradation uperianced by the mechanical properties
of materials before cracking. It covers the transitionbetveen
plasticity and fracture mechanics.

The 80st natural representation of constitutive equations with
d_ge is based on state variables. State variables are used to



represent vi.coelasticity I 71 and plasticity 1 81 and appear to be
particularly convenient to represent large deformations behaviour and
the incremental anisotropy clue to dlUlUlge I 9 I , 110I·

We assume that the changing internal state of a deforming material
element can be represented by the pair (5, 0), where o(t) is the
current (Cauchy) stress carried by the element and S(t) stand. for
the n parametera that measure the futurelly relevant aspects of
inelastic changes in internal .tructure that have talten place at time
t. Among those state variable. we have some used to repre.ent viscoua
or plastic response and others used to repre.ent damage (providing,
in an appropriate .tati.tical sen.e, the distribution of microcr&eka).
We may assume that failure due to the accumulation of damage will
occur when the trajectory of the .tate point intersect. certain part.
of the boundary of the state •pace •

We formulate the constitutive relations in the form (restricting
ourselves to the case of small strains)

t • f1 (8,0 ) + £-1(8) 0' (5 )

~ • f2(8,O)

The first (5 ) shows the decomposition of strain E into an
elastic part, with state dependent elastic modulus E (8) and an
inelastic part, that depends on the state and the stress level. The
second (5 ) is the law of evolution of the state variables.

Hany workers, following Kacbanov uae the concept of effective
stress a- Ma where" is a forth order ten.or operator. For i.otropic
damage and the case of re.isting areas independent of the .ign of
stress we bave.

where D is the scalar damage variable. In this case, D taltes accolIDt
of the effective area reduction due to microcracking corrected for
micro-stress concentrations and interaction effect •• »-0 correspond.
to the virgin el.ent and D-l to the ruptured element.

The so-called principle of strain equivalence I l~ .tates that
any constitutive equation for a damaged material is derived from the
same potencials as for the virgin material, except that all stres.
variables are replaced by tbe effective .tress. For example, in
elasticity

_ Nov, considering the linear constitutive equation for damage
D-c7/E

D
, where ED it a new material parameter, frOll ( 7) we obtain.
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i.e. a nonlinear stress-strain relation with a maximum stress ~/4
and strain-softening behavior. A model of this type may still be
coupled with viscous behaviour I7 I.
Thermodynamics

There is a convenient thermodynamically admissible method of
building constitutive relations, that chooses a Helmholtz free energy
function. (8,0) and a potential dissipation function 0 (t,o)
(where t contains the therlllOdylUllllicforces conjugated to the state
variables 8) Inl.

One could, as a simple example, define a dissipation function in
the form O( Y,o) where Y is the therlllOdynamic foree corresponding
to the damage D, obtaining

.•p ao
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Examples of this technique, taken from plasticity may be found in refs.
n and 13 • The final fOrDIJlation is also similar to that in

plasticity, enabling the use of available algorithms. The theory
reduces to plasticity when microcracking is obsent or negligible.

Notice however that this convenient formalism is DOt unique. In
fact, Onat lO 1 has shown admissible constitutive relations that
cannot be put into the potencial form above.

For a elastoplastic material with yield function f (8,0) and
plastic potencial function g(8,O) we may write the relation between
rates of stress and strain in the well known form 1141

.+-
where A is related to hardening properties. Damage can alter the
elastic behaviour, changing I or the plastic behaviour, through
changes in f, g and eventually A. Very interesting applications of
this formulation to problems in concrete and geomaterials may be
foUDd in aefs. 13 and 15 • The introduction of plastic damage
through strain-softening leads to some difficulties (lack of
objectivity with relation to finite elements mesh size), that should
be overcome.



A newvery good hook that covers .any fields in PH is ref. 1. For
CDMllOsuch general presentation exists but refs. 11 and 12 maybe
useful. Those texts bring •• ny further references. In our opinion. to
study the ideas of tice. ref. 4 is yet unsurpassed. Manynew articles
appear in the International Journal of Fracture and Engineering
Fracture Mechanics. as well •• in Journals on finite element techniques.

The lIIOtivation for this review is the work in progress of WI1
students ~. Saraiva aDdP. Jorge. I am.lso grateful for support of
CAPES.CNPqaDdAMCA.
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