## APLICACION DEL METODO INVERSO A LA DETERMINACION DE LA PRESION CAPILAR Y LAS PERMEABILIDADES RELATIVAS EN EL DESPLAZAMIENTO DE PETROLEO CON AGUA EN UN MEDIO POROSO

Patricia M. Carpano \* Carlos A. Grattoni ° Mirtha S. Bidner ° Laboratorio de Ingeniería de Reservorios Departamento de Ingeniería Química Facultad de Ingeniería - Universidad Nacional de La Plata La Plata - Argentina \* CIC, ° CONICET

### RESUMEN

Se propone un método para estimar simultaneamente las curvas de permeabilidades relativas y de presión capilar, a partir de datos experimentales medidos durante un ensayo de desplazamiento de petróleo con agua en un testigo rocoso lineal. Se considera que las permeabilidades relativas y la presión capilar son funciones exponenciales de la satura ción de agua. Se usa un método de optimización para minimizar la suma toria de las diferencias al cuadrado entre el caudal de petróleo experi mental y calculado. El caudal de petróleo en función del tiempo se calcula con un simulador numérico del flujo transitorio, bifásico e incompresible a través de un medio poroso unidimensional. Las curvas de permeabilidades relativas y presión capilar buscadas son parámetros de dicho simulador.

### ABSTRACT

A method to estimate simultaneously oil-water relative permeabilities and capillary pressure curves is put forward. These curves are obtained from experimental data measured during the displacement of oil by water through a linear core. Relative permeabilities and capillary pressure are considered exponential functions of water saturation. An optimization technique is applied to minimize the sum of the square of the differences between calculated and experimental oil rates. The oil rate as a function of time is calculated with a numerical simulator of transient, two phase, incompresible flow through one dimensional porous media. Oil-water relative permeabilities and capillary pressure are the adjustable parameters of the simulator.

#### INTRODUCCION

Para realizar el diseño ingenieril de una recuperación secundaria de un yacimiento petrolífero mediante un barrido con agua, es necesario conocer las permeabilidades relativas y la presión capilar del sistema agua-petróleo como funciones de la saturación de la fase acuosa. Esos parámetros se determinan mediante ensayos de desplazamiento en el laboratorio utilizando testigos rocosos lineales. Tradicionalmente los ensa yos se llevan a cabo en estado estacionario. En el yacimiento el flujo es transitorio. Por lo tanto, debe ser transitorio también en su simula ción experimental en el laboratorio.

Varios autores [1-3] han propuesto métodos para determinar permeabilidades relativas a partir de ensayos dinámicos de desplazamiento. To dos ellos desprecian la presión capilar con el objeto de aplicar la solución analítico-gráfica de Buckley Leverett al flujo bifásico de agua y petróleo.

# MODELO MATEMATICO Y REPRESENTACION FUNCIONAL

Las ecuaciones de difusividad para el agua y petróleo para el flujo unidimensional e incompresible son resueltas numericamente por diferencias finitas utilizando el método IMPES. La discretización de las ecuaciones y el método de resolución pueden verse en el trabajo de Gabba nelli et al. [3].

Las curvas de peremeabilidad relativa y presión capilar son funciones de la saturación, de acuerdo a las siguientes expresiones:

$$k_{rw} = k_{rw}^{\star} \left( \frac{S_{w} - S_{wc}}{1 - S_{wc} - S_{or}} \right)^{n}$$
(1)

$$k_{ro} = k_{ro}^{*} \left( \frac{1 - S_{w} - S_{or}}{1 - S_{wc} - S_{or}} \right)^{n}$$
(2)

$$P_{c} = P_{c}^{*} \left( \frac{1 - S_{w} - S_{or}}{1 - S_{wc} - S_{or}} \right)^{n_{c}}$$
(3)

donde: k\*, k\*, P\* son parámetros que pueden ser determinados experimentalmente u obtenidos junto a n, n y n ajustando el caudal con el algoritmo de regresión no lineal; S, S, S, son saturaciones de agua, agua connata y residual de petroleo respectivamente.

## METODO DE OPTIMIZACION

El problema de optimización a resolver es la minimización de la función objetivo (FO) la cual es la suma de los cuadrados de los residuos (R):

$$FO = \sum_{i=1}^{M} R_{i}^{2}, \text{ con } R_{i} = \frac{Q_{OE1} - Q_{ONi}}{Q_{OE1}}$$
(4)

donde los subindices M, E, N, e i indican número de datos, experimenta:, numérico y temporal, respectivamente. El método de optimización utilizado fue el algoritmo de Levenberg-Marquardt [4] con una función penalidad. Esta es: n, n, n, 2 1.

### RESULTADOS

Para probar el método propuesto se utilizan en una primera etapa, los datos de la Tabla I. El simulador numérico se alimenta con dichos da tos y considerando: n =1.61, n =1.81, n =1.50. Las permeabilidades relativas al petróleo y al agua, ec. (1) y ec.(2) y la presión capilar, ec. (3) se grafican para los valores de los parámetros mencionados en la Fig. 1. El caudal de petróleo en función del tiempo,  $Q_0(t)$ , obtenido de la si mulación numérica se muestra en la Fig. 2. El simulador fue utilizado com  $\lambda x = 2.54 \times 10^{-3}$  m y  $\Delta t = 2.000$  seg. Estos resultados fueron utilizados como va lores experimentales con el fin de verificar la bondad del método.

De este modo, en una segunda etapa se utilizan los datos de la Tabla I en el simulador numérico pero con distintos valores iniciales de los parámetros n, n, n. Los cuatro juegos de valores iniciales se muestran en la Tabla II. Aplicando la técnica de optimización de Levenberg-Marquardt para minimizar la función objetivo, ec. (4), variando si multaneamente los tres parámetros n, n y n se obtienen los valores fi nales de la Tabla II.

Se observa que los valores finales de n y n coinciden muy bien con los verdaderos con un error relativo del<sup>W</sup>orden de 0.01%. Sin embargo el valor final de n difiere del verdadero en un 3.25%. Debido a esto, se estudió la influência de n sobre la FO manteniendo n y n fijos. Se comprobó que en el entorno del mínimo FO es insensible a las variaciones de n.

Las funciones  $k_{ro}$ ,  $k_{ro}$ ,  $P_c(S_w)$  y  $Q_0(t)$  obtenidas con los valores finales: n =1.61, n =1.81 y  $m^2$  =1.452 se muestran en las Fig. l y 2 como curvas continuas sobre el gráfico y son coincidentes con los puntos que representan a los valores verdaderos.

La bondad de la solución es evaluada con el residuo promedio:  $\bar{R}_{,}=\sqrt{FO/M}$  =8.664x10<sup>-+</sup> siendo M=18 el número de datos utilizados. Además de las discrepancias entre las curvas de permeabilidad relativa calculadas y verdaderas es determinada por:

$$\bar{e} = \sum_{i=1}^{p} e_i / P = 9.59 \times 10^{-6}$$

donde e = k rwEi - k y p=33 es el número de mediciones utilizadas.

En el análisis efectuado se utilizaron como mediciones experimentales,  $Q_0(t)$  calculada por el simulador para los datos de la Tabla I. Por lo tanto los errores encontrados son inherentes al modelo matemático y a la técnica de optimización. En la realidad, si se hubieran utilizado resultados de ensayos de desplazamiento se habrían sumado otras dos fuentes de error: las originadas en las mediciones y las creadas por las representaciones funcionales aproximadas de las ecs. (1), (2) y (3).

### CONCLUSIONES

Se aplicó el método inverso para hallar las funciones  $k_{ro}$ ,  $k_{ro}$  y  $P_c(S_r)$ . Estas funciones son parámetros del modelo matemático del Flujo



k

ro





22.0

| Area transversal, A                    | $1.1401 \times 10^{-3} m^2$     |
|----------------------------------------|---------------------------------|
| Porosidad, 🤉                           | 0.2150                          |
| Permeabilidad absoluta, K              | $3.4937 \times 10^{-2} \mu m^2$ |
| Presión de inyección, Pi               | 7.9054x10 <sup>5</sup> Pa       |
| Saturación connata de agua, S          | 0.3500                          |
| Saturación residual de petróleo, Sor   | 0.3190                          |
| Viscosidad del agua, µ                 | 0.9700x10 <sup>-3</sup> Pa.s    |
| Viscosidad del petróleo, $\mu_{w}$     | 1.0450x10 <sup>-2</sup> Pa.s    |
| Longitud del medio poroso, L           | $1.2705 \times 10^{-1} m$       |
| Permeabilidad relativa a S , k*        | 0.7740                          |
| Permeabilidad relativa a S , k*        | 0.1600                          |
| Presión Capilar a S <sub>wc</sub> , P* | 2.0265x10 <sup>-4</sup> Pa      |
|                                        |                                 |

Tabla I. Datos utilizados en el modelo matemático

| VALORES INICIALES |       |                | VALORES FINALES |                |                |                    |
|-------------------|-------|----------------|-----------------|----------------|----------------|--------------------|
| n<br>w            | no    | <sup>n</sup> c | n<br>w          | <sup>n</sup> o | <sup>n</sup> c | FOx10 <sup>4</sup> |
| 2.000             | 2.000 | 2.000          | 1.609           | 1.810          | 1.447          | 2.433              |
| 2.000             | 2.000 | 1.400          | 1.610           | 1.810          | 1.455          | 2.432              |
| 1.600             | 1.600 | 1.600          | 1.610           | 1.810          | 1.452          | 2.432              |
| 1.400             | 1.400 | 1.400          | 1.610           | 1.810          | 1.451          | 2.432              |

Tabla II. Valores obtenidos con distintos puntos iniciales.

de agua y petrólec a través de la roca-reservorio. Se utilizó un modelo numérico y una técnica de regresión para minimizar las diferencias entre los valores de los caudales de petróleo medidos experimentalmente y las calculadas por el modelo. La minimización se efectúa variando los parámetros mencionados. Se analizó exclusivamente el error inhe rente al modelo matemático y a la técnica de regresión, y se encontró que el mismo es muy chico para el conjunto de datos presentados. Las curvas de permeabilidad relativa y de presión capilar son datos necesa rios e imprescindibles para el diseño de la recuperación secundaria de petróleo por inundación con agua. De allí su importancia.

### REFERENCIAS

- Jones, S. C. y Roszelle, W. P., "Graphical Techniques for Determining Relative Permeability from Displacement Experiments". J. Pet. Tech., Vol. 3C, 1978, págs. 807-817.
- [2] Ekwere, J. P. v Santaru, K., "The Effect of Inestability on Relative Permeability Curves Obtained by the Dynamic Displacement Method". SPE Formation Evaluation, Vol. 2, 1978, págs. 469-479.
- [3] Gabbanelli, S. C., Mezzatesta, A. G. y Bidner, M. S., "One Dimensional Numerical Simulation of Waterflooding an Oil Reservoir". Lat. Am. Heat&Mass Transf., Vol. 6, 1982, págs. 251-273.
- [4] Gill, P. E., Murray, W. y Wright, M. H., "Practical Optimization", Academic Press, 1981, pág. 136.