SPATIAL BUCKLING ANALYSIS: A COMPARISON OF FORMULATIONS

```
Juan A. Ronda Väsquez
Raul Rosas e Silva
Pontificia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. M.S. Vicente, 225 - Rio de Janeiro - R.J. 22453
```

ABSTRACT

A geometrical stiffness matrix for a spatial beam element is derived in detail using linear Lagrangian interpolation of translations and rotations along the element. It is applied in linearized buckling analyses. For comparison with other geometric matrices derived with cubic Hermitian interpolations for transverse displacements, the same elastic stiffness matrix is used in the examples. It is concluded that both formalations lead to erroneous results, and require similar corrections.

NTKuibCTION

Isua: flemen:s fot spatia frame anajysis are formulated with. Hezmitiar. Ani Lasainiman interfolations. In the case of Hermitian interpolation che sual scheme for slender beams is to use cubic functions for flexure. The flexural ro:ationsare obtained by derivation of transverse displacements, that is, interpolated with quadratic functions. The axial displacement is interpolated with linear functions as well as the torsiona! rotation. For the Lagrangian interpolation polynomials of the same degree ar: used independently for rocations and translations. Here we deal with geometrica stiffness matrices, aiso called initial stress marrices. fo spatial frame elements. Explicit expressions for such matrices are iounc i: Uterature ond sr. ase 0 : elements with Hermitian interpolatior. for inat reason here we detai: the method of obtaining the geometrical datrix for an element witn linear Lagrangian interpolation, that will serve as a means of general presentation of the way of obtaining the geometrical matrix allowing computational analysis of problems in which nonlinearities occur associated with changes in the geometry of the structure. These matrices are particularly useful for the evaluation of critical loads. This paper considers only the problem of linearized stability of elastic beams and frames in space, subject to conservative loads elastic and small dis placements. This ieads to a generalized linear eigenvalue problem with simmetrical matrices.

GEOMETRICAL SIIffNESS MATRIX DERIVATION

Bache's [1] notation is used in conjunction with a total Lagrangian formulation (T.i.). Considering the equilibrium of a deformable body at time $t+\Delta t$, the principle of virtual work assumes the following form

$$
\begin{equation*}
\int_{0 v}^{t+\Delta t} S_{i j} i \quad{ }_{0}^{t+\Delta t} \varepsilon_{i j} 0 d v=t+\Delta t_{R} \tag{1}
\end{equation*}
$$

where R is the increment of the total external work and

$$
\begin{align*}
& t+\Delta t_{0} S_{i j}={ }_{0}^{t_{i j}}+S_{i j} \tag{2}\\
& 0^{t+\cdots}=r_{i j}^{t}=r_{i j}
\end{align*}
$$

where the ensors c^{t}, j and c^{t}, are the stress and strain increments, and ${ }^{t}$ ify are te stress and strains at time t. feferred to the state $t=0$.

Herause of $\int_{0}^{t}=0$, we have $\delta^{t+\Delta t} \varepsilon_{i j}=\delta_{0} \varepsilon_{i j}$ in equation (3).
The strain increaent component can be separated into linear and noninear pats as a function of displacement increments $0_{0}^{u}{ }_{k}$:

$$
\begin{equation*}
0_{0}^{E}=0_{i j}^{e}+0_{i j} r_{i j} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
o^{\pi},=\frac{1}{2}\left(o^{u} k, 1 \quad o^{u} k, j\right) \tag{5}
\end{equation*}
$$

is the nonlinear part of the component of the strain increment.
For the virtual internal work we have the following expression

$$
\begin{equation*}
\delta w=\int_{b_{v}}\left({ }_{0}^{t} S_{i j}+S_{i j}\right) \delta_{0} \varepsilon_{i j}{ }^{o} d v \tag{6}
\end{equation*}
$$

that can be approximated as follows, disregarding products of stress and strain increments.

$$
\begin{equation*}
\delta w=\int_{0_{v}} o^{t} s_{i j} \delta_{0} \varepsilon_{i j}{ }^{0} d v=\int_{0_{v}}{ }_{0}^{t} s_{i j}\left(\delta_{0} e_{i j}+\delta_{0} n_{i j}\right)^{0} d v \tag{7}
\end{equation*}
$$

In order to obtain the geometrical stiffness we consider only the work associated with the nonlinear part of the strain increments.
$\delta w_{N L}=\int o_{v} \int_{0}^{t_{i j}} \delta_{0}^{\eta_{i j}}{ }^{0} d v$
Substituting equation (5) into equation (8) and omitting for simplicity the indexes on the left of the variables we obtain
$\delta w_{N L}=\int_{v} s_{i j} \frac{1}{2}\left(\delta u_{k, i} u_{k, j}+u_{k, i} \delta u_{k, j}\right) d v$

Figure 1 shows a linear Lagrangian element, which has two end nodes

Figure 1. Linear Lagrangian Element
with six degrees-of-freedom per node. The principal moment of inertia axes of the beam element define the local coordinates system r, s, t.

The interpolation functions are
$h_{1}=\frac{1}{2}(1-r), \quad h_{2}=\frac{1}{2}(1+r)$
where x is the non-dimensional coordinate in the axial direction.

The generalized displacement vector of a cross section of the Lagrangian linear element of Figure 1 . is
$d(r)=\frac{1-r}{2} d(-1)+\frac{1+r}{2} d(1)$
Hence we define an interpolation matrix \mathbf{N} such that
$d(r)=N(r) g$
where g is the nodal displacement vector.
The displacement of a point in a cross section in the X_{k} direction is
$u_{k}=K_{k} g \quad(k=1,2,3)$
where
$N_{k}=N_{k}^{*}(s, t) N(r)$
and then

$$
\begin{equation*}
u_{k}=N_{k}^{*}(s, t) \quad N(r) g \tag{15}
\end{equation*}
$$

- Notice we introduced a new combined matrix-index notation for convenience. This last equation is valid, too, for increments $\delta \underline{u}$ and $\delta \mathrm{g}$.

Finally, substituting equation (i2) into (5), we obtain
$u_{k}=N_{-k}^{*}(s, t) d(r)$
The derivative of equation (15) is
$u_{k, i}=N_{k, 1}^{*}(s, t) N(r) g+N_{k}^{*}(s, t) N_{k, 1}(r) g$
After grouping the terms and simplifying the notation, we obtain

Using equation (17) into equation (9), we obtain
$\delta W_{N L}=\int_{v} S_{i j} \frac{1}{2}\left[\delta g^{T}\left(\underline{N}_{-N_{k, i}}^{N_{i}}+N_{, i}^{T} N_{k}^{T}\right)\left(N_{k, j}^{*} N_{i}+N_{k}^{*} N_{, j}\right)_{g}\right.$
$\left.+g^{T}\left(N^{T} N_{k, 1}^{*_{k}}+N_{, 1}^{T} N_{k}^{T}\right)\left(N_{k, j}^{*} N+N_{k}^{*} N, j\right) \delta g\right] d v$
We evaluate next the interpolation entrices.
The first component of d in equation (12) is
$d_{1}=\left[\begin{array}{llllllllllll}\frac{1-r}{2} & 0 & 0 & 0 & 0 & 0 & \frac{1+r}{2} & 0 & 0 & 0 & 0 & 0\end{array}\right] g$
The non-dimensionsl coordinates are
$r=\frac{2 X}{L},-\frac{2 X}{2}, c-\frac{2 x}{b}$

Sebstitucime che first equation (20) into (19), we obtain

$$
\begin{equation*}
d_{1}=\left[\left(1 / 2-\frac{x_{1}}{1}\right) 000000\left(1 / 2+\frac{x_{1}}{L}\right) 0000000\right] g \tag{21}
\end{equation*}
$$

Ceneralizing for the ocher five conponeats, we obtain …
In order to express the section displacements in the global
nate systen, we use the interpolation metrix 思. As we can see in 2, the displacements of a point in a cross section depend on the
co-ordi Figure trans-

Figura 2. Displacesents of a point in a crose section
lational degrees of freedor d_{1}, d_{2}, d_{3} and the rocational degrees of fredon, d_{4}, d_{5}, d_{s} and they will be given by equation (16), which can be written as

$$
\begin{align*}
& u_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & x_{3} & -x_{2}
\end{array}\right] d \\
& u_{2}=\left[\begin{array}{llllll}
0 & 1 & 0 & -x_{3} & 0 & 0
\end{array}\right] d \tag{22}\\
& u_{3}=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & x_{2} & 0
\end{array}\right] d
\end{align*}
$$

Hence the complete matrix ${ }^{*}$. is

$$
N^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & x_{3} & -x_{2} \tag{23}\\
0 & 1 & 0 & -x_{3} & 0 & 0 \\
0 & 0 & 1 & x_{2} & 0 & 0
\end{array}\right]
$$

In order to evaluate equation (18), ve need che expresaiona of the de rivatives of the matrices and

$$
N, 1=\frac{1}{2}\left[\begin{array}{rrrrrrrrrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \tag{24}\\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\mathbf{N}_{, 2}=0$
$\mathbf{N}_{, 3}=0$
In a similar way, the derivatives of N* are
$\mathrm{N}_{1,1}^{*}=\mathrm{N}_{2,1}=\mathrm{N}_{2,2}=\mathrm{N}_{3,1}=\mathrm{N}_{3,3}=0$
$\mathrm{N}_{1,2}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & -1\end{array}\right], N_{1,3}^{*}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

We define matrix H as
ㅂ N N N
then, the derivative of this matrix is

Using this last expression in equation (18), we obtain

Because of the symmetry of the tensor $S_{i j}$, we can write

$$
\begin{equation*}
\delta w_{N L}=\frac{1}{2} \int_{v} S_{1 j}\left[\delta g^{T}\left(\underline{E}_{, 1}^{T} \underset{, j}{H}+\underline{E}_{, 1}^{T} H_{, j}\right) g\right] d v \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta w_{N L}=\delta g^{T}\left(\int_{v} \underline{H}_{i, i}^{T} s_{i j} \underset{, j}{ } d v\right) g \tag{30}
\end{equation*}
$$

that can be written in a differeat fore

$$
\begin{equation*}
\delta w_{N L}=\delta q^{T} I_{G} q \tag{31}
\end{equation*}
$$

For any arbitrary g, we have

$$
\underline{K}_{G}=\int_{v} \stackrel{H}{r}^{T} S_{i j} \underline{H}_{, j} d v \quad \begin{align*}
& i=1,2,3 \tag{32}\\
& j=1,2,3
\end{align*}
$$

where K_{G} is the geometrical stiffness matrix. Notice that tensor $S_{i f}$ is symmetrical with components $S_{22}=S_{23}=S_{33}=0$ for the beam elementlunce the expanded form of equation (32) is

Substituting equations (24) and (25) into chis last expression, we obtain

$$
\begin{align*}
& \underline{K}_{G}=\left\{_ { v } \left(S_{11} \frac{1}{L^{2}} \underline{A}+S_{21} \frac{1}{L} \stackrel{\bar{B}}{L}+S_{12} \frac{1}{L} \underline{B}^{T}+S_{31} \frac{1}{L} \bar{C}+\right.\right. \\
& \left.S_{13} \frac{1}{L} \bar{C}^{T}\right) d v \tag{34}
\end{align*}
$$

We can define

$$
\begin{equation*}
\underline{B}=\underline{\bar{B}}+\bar{B}^{T} \quad, \quad \underline{C}=\bar{C}+\bar{C}^{T} \tag{25}
\end{equation*}
$$

With the above relations, equation (34) is rewritten as follows

$$
\begin{equation*}
\underline{X}_{G}^{L}=\int_{v}\left(S_{11} \frac{1}{L^{2}} A+S_{21} \frac{1}{L} \underset{B}{B}+S_{31} \frac{1}{L} G\right) d v \tag{36}
\end{equation*}
$$

The expressions of $A, B, \bar{B}, C, \bar{C}$, for the linear Lagrangian functions are found in reference [2] here obviated for reasons of space.

To integrate equation (36), we have to take into account that

$$
\begin{equation*}
S_{11}=\frac{N}{A}+\frac{M_{2} X_{3}}{I_{2}}-\frac{M_{3} X_{2}}{I_{3}} \tag{37}
\end{equation*}
$$

where N is the normal force, I_{2} and I_{3} are the principal moments of inertia, M_{2} and M_{3} are the bending moments in direction of co-ordinates 2 and 3 , defined as

$$
\begin{equation*}
N=\int_{A} S_{11} d A, \quad M_{2}=\int_{A} S_{11} X_{3} d A, \quad M_{3}=-\int_{A} S_{11} X_{2} d A \tag{38}
\end{equation*}
$$

In addition, we define the shear forces as

$$
\begin{equation*}
Q_{2}=\int_{A} S_{12} d A_{3} Q_{3}=\int_{A} S_{13} d A \tag{39}
\end{equation*}
$$

and the corque as

$$
\begin{equation*}
T=\int_{A}\left(-S_{12} x_{3}+S_{13} X_{2}\right) d A \tag{40}
\end{equation*}
$$

For reasons of convenience in the computer implementation we use the Argyris' [3] notation that express the resulting forces in a cross section in terms of natural forces described as follows

$$
\begin{align*}
& N=P_{n_{2}}, Q_{2}=-\frac{2}{L} P_{n_{3}}, \quad Q_{3}=-\frac{2}{L} P_{n_{5}}, T=P_{n_{6}} \\
& M_{2}=P_{n_{4}}-\frac{2 X_{1}}{L} P_{n_{3}}, \quad M_{3}=-P_{n_{2}}+\frac{2 X_{1}}{L} P_{n_{3}} \tag{41}
\end{align*}
$$

The final expression of the geometrical stiffness matrix $\mathrm{X}_{\mathrm{G}}^{\mathrm{L}}$, valid for doubly-simmetrical cross sections, is expressed in terms ol natural forces as shown in table I.

Table I. Geometrical stiffaess matrix
where $a=\frac{1}{L} P_{n_{1}}, b=\frac{I}{A L} P_{n_{1}}, c=\frac{I}{A L} \quad P_{n_{1}}, d=\frac{I}{A L} P_{n_{1}}$ and
$e=\frac{1}{L}\left(P_{n_{2}}+P_{n_{3}}\right), f=\frac{1}{L}\left(P_{n_{4}}+P_{n_{3}}\right), \quad g=\frac{1}{L}\left(P_{n_{2}}-P_{n_{3}}\right)$, and
$h=\frac{1}{L}\left(P_{n_{4}}-P_{n_{5}}\right)$.

The general method could be applied to non-symetrical sections, with more cumbersome integration.

NUMERICAL RESULTS

We adopted as an analysis tool an available and tested program [2], in which were implemented several geometric gatrices, formulated with Hermitian interpolation. The matrices are here in designated as $\left[K_{G}\right]_{c . c},\left(K_{G}\right)_{s . c}{ }^{\prime}$ $\left[K_{G}^{S}\right]_{s . c}$, and $\left[K_{G}^{L}\right]$, where the subscript $c . c$ means consideration of the shear forces, s.c. no shear forces, the superscripts means matrix with semitangencial correction. The last one is developed in this work with linear Lagrangian interpolation.

We used the same element elastic stiffness matrix with Hermitian inter polation, in all calculations.

Example 1. Axially Loaded Cancilever beam.
This classical buckling example serves to show the convergence to the cheoretical critical load value, when the beam is divided into several ele ments. It is noted that the obtained results through the matrices with Her mitian interpolation, converge more quickly than with lagrangian interpolation. The resuits are summarized in Table II.

Figure 3. Axially Loaded Cantilever Beam.

№ of Elements	$\mathrm{P}_{\mathrm{cr}}(\mathrm{n})$				
	$\left\{K_{G}\right\}_{c . c}$	$\left[K_{6}^{5}\right] c \cdot c$	$\left[\mathrm{K}_{\mathrm{G}}\right]_{\text {s. }}$	$\left[\mathrm{K}_{6}^{5}\right]^{5 . c}$	$\left[\mathrm{K}_{\mathrm{G}}^{\mathrm{L}}\right.$]
1	1.6601	1.660 i	1.6601	1.6601	2.0019
3	1.6479	1.6479	1.6479	1.6479	1.6845
5	1.6479	1.6475	1.6479	1.6479	1.6601
6	1.6479	1.6479	1.6479	1.6479	1.6570
10	1.6479	1.6479	1.6479	1.6479	1.6501
15	1.6479	1.6475	1.6479	1.6479	1.6479

Table II. Values of convergence test
Exampie 2. Cantilever beaz loaded with quasitangential and semitangential bending moments.

It should be mentioned the: both quasi- and semi-tangential bending moments can be generated by the mechanisms represented in Figure 4. (a), (b) and (c, , consisting in rigic ievers and constant directional forces as

Figure 4. Cantilever with different load cases
pointed out by Ziegler [4] and Argyris [3].
In case (a), where a 900 angle exists between the bar and beam axis the, results provided by the matrices $\left[K_{G}\right]_{c . c}$ and $\left[K_{G}^{L}\right]$ converged to a value that is the half of the theoretical value, while the matrix [K $\mathbb{K}_{\mathrm{B}} \mathrm{g}_{\mathrm{c}}$ gave a result twice greater than the theoretical. In case (b), in which the angle between the bar and the beam axis is null, the matrices $\left[\mathrm{K}_{\mathrm{G}}\right]_{c . c}$ and $\left.\mathrm{K}_{\mathrm{G}}\right]$ reeults converged to the theoretical value, $\left[K \mathcal{G}_{6}\right]_{s, c}$ converged to the same erroneous value of case and those (a).

In case (c), with semitangential bending moment application, only the
 results for other matrices converged to the quesitangential value.

The last line of Table III, corresponds to the obtained results after modifying the data for the program through a matrix of nodal correction for

case	№ of Elem.	$\mathrm{Mcr}_{\text {cr }}(\mathrm{N}-\mathrm{mm})$				
		$\left[\mathrm{K}_{6}^{5}\right]_{\mathrm{c} . \mathrm{c}}$	$\left[K_{G}^{S}\right]_{C . C}$	$\left[\mathrm{K}_{\mathrm{G}}\right]_{\text {s. }} \mathrm{c}$	$\left[\mathrm{KS}_{\mathrm{G}}\right]_{\text {s. }}$	[K_{6}^{1}]
(a)	15	127.418	311.097	311.097	623.078	127.418
(b)	15	311.097	311.097	311.097	623.078	311.097
(c)	15	311.097	623.078	311.097	623.078	311.097
(c)*	15	623.078	-	623.078		623.078

Table III. Results for Example 2
the cases of marrices with quasitangential formulation, and linear Lagrangian interpolation. This correction was made to consider the application of the moment in a semitangential manner. We see that aiter such correction, all results agree with the theoretical value.

final considerations

Example 1 shows the limitations of the element with linear Lagrangian interpolation in the convergence test. Although in linearized stability problems higher order formulations provide more accurate solutions, difficulties may arise in nonlinear analysis. Therefore, it is recommended to use lower order polynomials and more elements, rather than sophisticated e lements.

Example 2 has shown that only the $\left[\mathrm{K}_{\mathrm{G}}^{\mathrm{S}}\right]_{\mathrm{c} . \mathrm{c}}$ matrix, that includes the so-called semitangential correction, leads to results consistent with the form of the load application when flexural-torsional buckiling occurs.

We observe that the results obtained through matrix $\left[\mathrm{K}_{\mathrm{G}}^{\mathrm{L}}\right.$] converge to the same obtained results with matrix $\left[\mathrm{K}_{\mathrm{G}}\right]$ c.c. This indicates that to obtain coherent results it is necessary to make a correction in [K_{G}^{L}] similar to the one found in $\left[K_{G}\right]_{c . c}$. This occurs in spite of the fact that $\left[K_{G}^{[}\right]$and $\left[K_{G}\right] c . c$ are deduced using different kinematic variables to represent the rotations due to flexure.

- It should be noted that the results obtained through matrix $\left[K_{G}^{S}\right]$. c show that not only the nodal correction is relevant but also that for fie-xural-torsional bucking the consideration of the shear forces is very impor tant in a geometrical stiffness matrix consistent formulation, even in the case of frames composed of slender beams.

REFERENCES

[1] Bathe, K.J., "Finite Element Procedure in Engineering Analysis". "Pren tice-Hall, Inc., Englewood Cliffs, N.J., 1982.
[2] Ronda Vásquez, J.A., "Estudo Comparativo de Matrizes Geométricas para Anālise da Estabilidade de Pörticos Espaciais". MSc. Thesis, Pontiffcia Universidade Catolica do Rio de Janeiro, R.J., December, 1987.

13] Argyris, J.H. Hilbert, O., Malejannakis, G.A., Scharpf', D.k., "On the Geometrical Stiffness of a Eeam in Space - a Consistent V.K. Approach", Computer Methods in Applied Mechanics and Engineering, vol. 20, 1979, pp. 105-131.
[4] Ziegler, H., "Principle of Structural Stability, 2nd ed.. Birkhauser" Verlage, Basel und Stuttgart, 1977.

