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ABSTRACT

A geometrical stiffness matrix for a spatial beam element is derived

in detail
rotations
analysas.
Hermitian
stiffness

using linear Lagrangian interpolation of translations and
along the element. It is applied in linearized buekling

For comparison with other geometric matrices derived with cubic
interpolations for transverse displacements, the same elastic
matrix is used in the examples. It is concluded that both

formulations lead to erroneous results, and require similar corrections.
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NTRULLCTION

Usua. =lements for spatia. irame anaiysis are formulatec with Hermit.an
and lagoanzian interpolations. In the case of Hermitian interpolation the
:sual scheme for slender beams is to use cubic functions for flexure. The
flexural rotations are obtained by derivation of transverse displacements,
that is, interpolated with quadratic functions. The axial displacement
is interpolated with linear functions as well as the torsional rotation.
For the Lagrangian interpolation polynomials of the same degree ars used

independently for rotations and translations. Here we deal with geo=
metrica. stiffness matrices, aiso called initial stress matrices, fo.
spatial frame elements. Explicit expressions for such matrices are ipunc
47 iitevature onl ir .ase ¢ elements with Hermitian interpolatior. For

:nhav reason here we detail the method of obtaining the geometrical macrix
for an element witnh linear Lagrangian interpolation, that will serve as a
mean: of general presentation of the way of obtaining the geometrical
matrix allowing computational analysis of problems in which nonlinearities
cceur associated with changes irn the geometry of the structure. These
matrices are particularly useful for the evaluation of critical loads.This
paper considers only the problem of linearized stability of elastic beams
and frames in space, subject to conservative loads elastic and small dis

tlacements. This ieads to a generalized linear eigenvalue problem with
simmetrical matrices.

GEOMETRICAL STIFFNESS MATRIX DERIVATION
Bathe's [1) notation is used in conjunction with 'a total Lagrangian

" formulation (T.L.). Considering the equilibrium of a deformable body at
time t+it. the principle of virtual work assumes the following form

[ tHot t+4t | t#bt
s g, %dv = R 1
Jo, 0f13® oty o
where R is the increment of the total external worﬂ and
t+At, t ' ’ :
o°13 " oSyt SSiy (2)
t: - - +t .
© 13 Te ™ G ¥
where tbe -ensors & . and Otij are the stress and strain increments,and
t T

. aﬁi are -ie stress and strains at time r. referred to the state t=C.

Recause of 52 f'ij = 0, we have 6t+A:€ij -Gosij in equation (3).

The strain increment component can be separated into linear and non-
iinear parts as a function of displacement increments J’k:

oE‘J } oeij ‘orij )
where

L .
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is the nonlinear part of the component of the strain increment.

For the virtual internal work we have the following expression

- t [+]
v L (osij + °Sij) %Eij dv (6)

v

that can be approximated as follows, disregarding products of stress

and
strain increments.

- t ] t o
6w -JOV osij 6oEij dv = Lv osij(doeij +6°nij) dv n

In order to obtain the geometrical stiffness we consider only the work
associated with the nonlinear part of the strain increments.

t L]
Gwm_- Jov osij 60"13 dv (8)

Substituting equation (5) into equation (8) and omitting for simplicity
the _ndexes on the left of the variables we obtain

1
‘5‘;“1‘ = Jv sij -2_(5 Yt ULy +uk'i Guk,j)dv (9)

Figure 1 shows a linear Lagrangian element, which has two end nodes

Figure 1. Linear Lagrangian Element

with six degrees-of-freedom per node. The principal moment of inertia axes
of the beam element define the local co-ordinates system r,s8,t.

The interpolation functions ‘are
1 -1
L -5 -0, hz (1 + r) Qo)
where r is the non-dimensional co-ordinate in the axial direction.

The generalized displacement vector of a cross section of the Lagran~
gian linear element of Figure 1. 1is
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a0 = 158 g «+ 13 gy (11)

Hence we define an interpolation matrix N such that
d(r) = N(r) ¢ (12)
where g is the nodal displacement vector.

The displacement of a point in a cross section in the Xk direction is

\.\k Ld L\k 9 (k - 11213) (13)
where

N = BF (s,t) N(D) (14)
and then

L §{ (s,t) N(r) q {15)

Notice we introduced a new combined matrix~index notation for convenience.
This last equation is valid, too, for increments Su and  4g.

Finally, substituting equation (i2) into (5), we obtain
u, - §:(S.t) d(r) (16)
The derivative of equation (15) is

Uk,1 = Bk,1(8:t) N(r) g + NE(s,t) N1 g an
After grouping the terms and simplifying the notation, we obtain
Yot T WK YRR s ey gom N+ N LY an
= .
Using equation (17) into equation (9), we obtain
. 1 T T poT T o7 ‘ .
oy = | sy el R PR TRt R TR
T,.T ,,T T T
PO N N MM N+ RN 6] dv (18)

We evaluate next the interpolation matrices.
The first component of ¢ in equation (12) is

4, =15 00000 X 0900 0y (19)

The non-dimensional coordinates are

2X 2X X
r=—d [ ge—di | te-d (20)
L a b




Sebstituting the first equatiom (20) inco (19), we obtain

X, X
d‘-[(lIZ—T)D0000(1/2+T)00000]g (21)

Generalizing for the other five compoments, we obtain N.

In order to express the sectiom displacements in the global
nate system, we use the interpolation matrix L
2, the displacements of

co-ordi
As ve can see in Figure
a point in a cross section depend on the trans-

2

2

“io)e O2xy- 0yxp

Figura 2. Displacements of a point in a cross section

lational degrees of freedom 4 , 4 , d; and the rotational degrees of

fredom, d, , dy , d¢ and they will be given by equation (16), which can be
vritten as

-3

u=[10600x -x]

wu=0010-x,0 0]

(-9

22
u,=[0011 X, 0]

1

Hence the complete matrix N+ is

1 0 0 0o x, -x
Nt = o0 1 o X, 0 0 23)
0 0o 1 X, 0 0

2

In order to evaluate equation (18), we need the expressions of the de
rivatives of the matrices N and B4
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-1 0 0 0 0 0 0 1 0 0 0 O
0 -1 0 06 0 0 0 0 1 0 0 ©
0 0 -1 0 0 0 06 0 1 0 O

N 1-—12- 0o 0 0-1 0 0 0 0 0 0 1 ©
0O 0 0 0-1 0 0 0 0 0 0 1
0 0 0 0 0-1 0 0 0 0 0 ©

B,Z =0

§,=0

In a similar way, the derivatives of N* are

SRR REE REL FEL PLL

*
1,1
1,
~3,

We define matrix H as
o= oy
then, the derivative of this matrix is

H, =N« N + NN

°:j "j ~ lj

Using this last expression in equation (18), we obtain

- 1 T ,T T,T
SVWp Ivsijz (6g" B B, ,g+g B, B, 0g &
Because of the symmetry of the tensor 515’ we can write

1 T,..T T
Suy =5 L S;gBg (B B +H B gl

and

T T
§¥y =8q (Jv By S8, g

that can be written in & different form
T
SV =89 Ko 9

For any arbitrary g, we have

2" [0o 0 0 O 0 -1], N# 3" [o o 0 0 1 0}

3310 0 0 -1 0 0), ¥ ,=(0 00 1 0 0

» O O O O ©

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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T i=1,2,3
X Jv BgSgy8 v j=1,2,3

where K. is the geometrical stiffness matrix.
symmetrical with components $

the expanded form of equation (32) is

’SG'I

v

@ s 5 +uw s B +aY g
“si 13 =1 2 21 51

+ ® s +nu s

H ) dv
»3 N s, 1 =, 1 T3 =,3
Substituting equations (24) and (25) into this last expression,
f
EG-J: (SLQ‘*S _1.§+5 —I].:—§T+s #
v u o2 a 12 LI
L §T) dv
noo
We can define
B = 548 . caged

A 4 B+S L C) dv
v L2 a Sl

The expressions of A, B, E, Cs §, for the linear Lagrangian functions

found in reference [2] here obviated for reasons of space.

Notice that tensor S 3
= S, =8; =0 for the beam elcment. Hence

(32)

is

(33)

we 6btain

ol

+

(34)

(25)

(36)

are

To integrate equacion (36), we have to take into account that

M X
_— e 22l

A I I
2 3

s 5%
1

(37

where N is the normal force, I, and 1, are the principal moments of inertia,

M, and M, are the bending moments in direction of

co~ordinates 2 and 3,
defined as
N= J S.. dA, M, = J S, X,dA, M, = - I S,, X, dA (38)
A 1n 2 A u %3 3 A u ‘2
In addition, we define the shear forces as
Q = j S dA, Q = I S dA (39)
2 A 1 3 AN

and the torque as
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T-J (=S, X,+ 5, X,) dA (40)
A

For reasons of convenience in the computer implementation we use the

Argyris'[3]) notation that express the resulting forces in a cross section in
terms of natural forces described as follows

2 2
N Pnl ' Q, . ?n3 s Q,=- L Pn . » T Pn‘
2X 2X (41)
M,= P - —Lp , M =-P + —1p
R, L s 3 n, 1 Ry

The final expression of the geometrical stiffness matrix X

_L. valid for
doubly-simmetrical cross sections, is expressed in terms o? natural forces
as shown in table I.

a fl-e|-a “-hi g
a -f a h
al e ~a |-g
b fl=e|=-b
c -f -c
dj e -d
[Kg) = a h|-g
a -h
symmetric ai.g
c
d

Table 1. Geometrical stiffness matrix

1 1 1
where a = == P ybm—L P, c=—2 p »d=—21p and
Lo, LY A W A M

.-L(pll +2 ), f--l-(vn +P ), g=—=(P_ -P ),and

L 2 3 L » s L & B,
1

he-~=— (P =-P ).
L %« Dy

The general method could be applisd to non-symmetrical sections, with
more cumbersome integrationm.
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NUMERICAL RESULTS

We adopted as an analysis tool an available and tested program [2], in
which were implemented several geometric matrices, formulated with Hermitian
interpolation. The matrices are here in designated as [Kc] [KG]s ¢’

[Ks]s e’ and [Kt], where the subscript c.c means considcration of the shear

forces, s.c. no shear forces, the superscript:S means matrix with semi~
tangencial correction. The last one is developed in this work with linear La-
grangian interpolation.

We used the same element elastic stiffness matrix with Hermitian inter
polation, in all calculations.

Exanﬁle 1. Axially Loaded Cantilever beam.

This classical buckling example serves to show the convergence to the
theoretical critical load value, when the beam is divided into several ele
ments. It is noted that the obtained results through the matrices with Her
mitian interpolation, converge more quickly than with Lagrangian interpo-
lation. The resuits are summarized in Table II.

by
~tf

{3 240 mm
030 mm
t* 06 mm ‘—-Eiil:
Vs o3

£ * 71240 N/mm?
Pgs-1N

P X
cr. = . = 1.6470 N

[y ]
g

Figure 3. Axially Loaded Cantilever Beam.
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N of Pep(m
Elements (K _] (K2Jc.c (%) [K2)s.c (kL3
G’c.c G G's.c G TG
1 1.6601 1.660: 1.6601 1.6601 2.0019
3 1.6479 1.6479 1.6479 1.6479 1.6845
s 1.6479 1.6475 1.6479 1.6479 1.6601
6 1.6479 1.647% 1.6479 1.6479 1.6570
10 1.6479 1.6475 1.6479 1.6479 1.6501
15 1.6479 1.647% 1.6479 1.6479 1.6479

Table II. Values of convergence test

Exarple 2. Cantilever beaz loaded with quasitangential and semi-
tangential bending moments.

It should be mentioned thaz both quasi- and semi-tangential bending
moments can be generated by the mechanisms represented in Figure 4. (a),
(b) and (c,, consisting in rigic levers and constant directional forces as

{ * 240 mm

- — — 5+ 30 mm .
h t: 06 mm /’

£+ n240 N/mm2 W
f/z x V:on ‘
—— —— = L. . = -

‘ MCI (a) E'EQGIX 311,07 N-mm
2 i (b)

- '
Mcr“c)t—ivEIyGIx 622.21 N-mm

Figure 4. Cantilever with different load cases

pointed out by Ziegler [4] and Argyris [3].

In case (a), where a 90° angle exists between the bar and beam axis the,
results provided by the matrices [KG]c c and [KkL)] converged to a value that

is the half of the theoretical value, while the matrix [Kéls.c gave a result

twice greater than the theoretical. In case (b), in which the angle bet-
ween the bar and the beam axis is null, the matrices (Kclc.c and Kb] Tesults

converged tc the theoretical value, [KEIS.C converged to the same erroneous
value of case and those (a).

In case (c¢), with se-itunsenthl bending moment application, only the
matrices [Ké }o. and [Ké]s.c converged to the theoretical value. All the

results for other matrices converged to the qﬁantnngcntinl valus.




- 153 -

The last line of Table 111, corresponds to the obtained results after
modifying the data for the program through a matrix of nodal correction for

case ¢ of . - X (N—M)

Elem. [K8lc.e  [Kflee  [Kglg. (K81, ¢ (kk]
(a) 15 127.418 311.097 311.097 623.078 127.418
(b) 15 311.097 311.097 311.097 623.078 311.097
(c) 15 311.097 623.078 311.097 623.078 311.097
(c)* 15 623.078 - 623.078 623.078

Table III. Results for Example 2

the cases of matrices with quasitangential formulation, and linear Lagran~-
gian interpolation. This correction was made to consider the application of
the moment in a semitangential manner. We see that after such correction,
all results agree with the theoretical value.

FINAL CONSIDERATIONS

Example 1 shows the limitations of the element with linear Lagrangian
interpolation in the convergence test. Although in linearized stability
problems higher order formulations provide more accurate solutions, diffi-
culties may arise in nonlinear analysis. Therefore, it is recommended to

use lower order polynomials and more elements, rather than sophisticated e
lements.

Example 2 has shown that only the [K ] e matrix, that includes the

so-called semitangential correction, leads to results consistent with the
form of the load application when flexural-torsional buckling occurs.

We observe that the results obtained through matrix [Ké] converge to
the same obtained results with matrix [K ] . This indicates that to obtain
coherent results it is necessary to mlke a correction in [K2] similar to the
one found in [KG]c e This occurs in spite of the fact that [K ] and[K ]

are deduced using different kinematic variables to represent the to:ations
due to flexure.

"It should be noted that the results obtained through matrix [Kg]

show that not only the nodal correction is relevant but also that for ;li-
xural-torsional buckling the consideration of the shear forces is very impor
tant in a geometrical stiffness matrix consistent formulation, even in the

case of frames composed of slender beams.
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