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A geometrical stiffne.s matrix for a apatial be•• element is derived
in detail using linear Lagrangian interpolation of tranalations and
rotations along the element. It is applied in linearized buckling
analyse.. For comparison with other geometric metrices derived with cubic
Hermitian interpolationa for transverse displacements, the s••• elastic
stiffness matrix is used in the examplea. It is concluded that both
formulations lead to erroneous result•• and require similar corrections.



Dsua: 'demel'll,sior spau'l' frame anaJysis are formulatec witt.Hermit~iH.
,~1l<i Lat;,iirl,:.l<ln interpolationb. 11" the case of Hermitian interpolation the
lsual schem~ for slender beams is to use cubic functions for flexure. The
flexural rO:oJt~ons are obtained by derivation of transverse displacements,
that 1s. interpolatec with quadratic functions. The axial displacement
is interpolated with linear functions as well as the torsional rotation.
For the Lagrangian interpolation polynomials of the same degree ar~ used
independently for rotations and translations. Here we deal wHh gen-
rnetr;ca, stiffnes~ matrices. a csoc" called in1'tial stress matrlceb. fo,
spa.tial frame elements. Expli<;;itexpressions fat such matrices an ioune
.•.-.U.tel'ature onl· ir.. lIse o~ elements with Hermitian interpolatlor.. for
~nal reason here we detai: the method of obtaining the geometrical ~atrix
for an element witn linear Lagrangian interpolation, that will serve as a
meanJ of general presentation of the way of obtaining the geometrical
matr.ix allowing computational analysis of problems inwhichnonlinearities
occur associated with changes in the geometry of the structure. These
matrlces are particularly useful for the evalua~ion of critical loads. This
paper considers only the problem of linearized stability of elastic beams
~nd frames in space, subject to conservative loads elastic and small dis
placements. This leads to a generalized linear eigenvalue problem with
simmetrical matrices.

Bathe's [lJ notation is used in conjunction with a total Lagrangian
formulation (T.L.). Considering the equilibrium of a deformable body at
time t+~t. the principle of virtual work assuaes the following form

t+las • ts .•. S
o ij 0 ij 0 ij

where th•• ~ensors .}';,.1 and o"ij are the stress and strain increaents.and
t.,',"'~)iIlre".e stress and strains at time t. reff!Tt'edto the state ·t-a.

f\ec''luseof ~~ "ij • O. we have 6 t+a;e:ij - 6
0
tij in equation (3).

The strain incr •••nt component can be separated into linear and non-
l:lnea, ps,·ts as a function of displacement incre_nts au k:

t. • • .•.T, (4)
o IJ 0 1.1 a 1.1



that can be approximated as follows. disregarding products of stress and
strain increments.

In order to obtain the geometrical stiffness we consider
associated with the nonlinear part of the strain ·increments.

It 0
OWn· 0v oSij 00nij dv

Substituting equation (5) into equation (8) and omitting for
the _udexes on the left of the variables we obtain
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with six degrees-of-freedoll per node. The principal lIO_nt of inertia axe.
of the b•••• le••nt define the local co-ordinate. sy.tell r.s.t.

The interpolation functions'are
bl • ~ (1 - r). hZ • ~(l + r)

The generalized di.placement vector of a cro.. section of the Lagran-
gian linear elaMn!: of Fipre 1. ia



d(r) • 1 - r d(-1) + l.:..! d(1)
- Q 2 - 2-

• Notice we introduced a new combined matrix-index notation for convenience.
This last equation is valid, too, for increments au and 6g.

Uk,i • (~t,i~+ ~t~.i); ~k.j • (~t.j~ + ~t~.j)
c"

Using equation (17) into equaUOD (91. we obtain
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We .v.luat. next th. int.rpolation •• tric •••
Th. first co_pon,nt of 4 in equation (12) i.
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s.hUhc1IIa die fine ••••• (20) iDco (19). _ obU1D

%1 ~
d1 - ((1/2 - T) 0 0 0 0 0 (1/2 + T) 0 0 0 0 0) 9 (21)

III order to ezpre.. die •• ccioD d1aplac-.aca iD the global
DaCesyst_. _ _ die iDcerpolacioD _tra ••• As _ caD see 1D
2. the dlaplac-.aca of a poiDc iD a cross Hction depend on the

co-ordl
naun
trana-

latloaal clegr••• of freecla. d1 • cia • dJ •••• the rotat1ODal degrees of
frecla.. d.. • cis • d I •••• they 1I1ll be &1- by eqaatioD (16). vb:1chcaDbe
vritteD as

a1
.(1 e 0 0 IJ - Iz ) f
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uJ • (0 0 1 1 Iz o ) f
IIence the coap1ete _tru !* is

[:
0 0 0 IJ -n!* . 1 0 -IJ 0

0 1 Xz 0

In oreler to evaluate equation (18). _ ••••• tba upre •• 1••• of tile ~
rivativ •• of tile _trice. ! aad !*



-1 0 0 0 0 0 0 1 0 0 0 0 0

0 -1 0 0 0 0 0 0 1 0 0 0 0

0 0 -1 0 0 0 0 0 0 1 0 0 0

~,1
• ..L

0 0 0 -1 0 0 0 0 0 0 1 0 0
2

0 0 0 0 -1 0 0 0 0 0 0 1 0

0 0 0 0 0 -1 0 0 0 0 0 0 1

~,2 • 0

~,3 • 0

In a similar way, the derivatives of !* are



where ~G is the geo.etrical stiffness aatrix. Notice that tensor 5 is
symmetrical with co.ponents 5u • 5u • 5u • 0 for the beam elemen~~ Hence
the expanded form of equation (32) is

~G· J.
v

(HT 5 H
-.1 11 -.1

5 H + HT 5 H +
21 -.I -.1 12 -.2

+ HT 5 H + HT 5 H ) dv (33)
-. J JI -. 1 -. 1 U -.3

Substituting equations (24) and (25) into this last expression. we obtain
( 1 1 1 aT _1_K •
Jv

(5 A+ 5 B + 5 L + s C +-G 11 L2 21 L 12 31 L

5 _1_ ~T) dv
u L

We can define
a i + iT <: • ~ + ~T

(5 _1_ A + 5
11 L2 21

_1_ a + 5 _1_ C) dv
L 31 L -

The expressions of 4. !. I. Q. Q. for the linear Lagrangian functions are
found in reference [2] here obviated for reasons of space.

To integrace equation (36). we have to take into account that

5 • 2!.. +
11 A

where N is the normal force. 12 and I, are the principal momenta of inertia.
Hz an. H3 are the bending moments in direction of co-ordinates 2 and 3.
defined as

Q • J S
3 A 13



For reasons of convenience in the computer implementation we use the
Argyris'[3] notation that express the resulting forces in a cross section in
terms of natural forces described as follows

N P , Q2 -
__ 2_ p Q a-

_-L p T - Pnl L n. L n & n,
2X 2X (41)
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The final expression of the geometrical stiffness •• trix KL• valid f~r
doubly-simaetrical cross sections. is expressed in terms o~natural forces
as shown in table 1.

I a f -e -a -h a
a -f a b

a e -a -a
b f -e -b

c -f -c
d e -d

a h -a
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-

Ge~trical stiffness matrix
1 1• b • --l p • c _ --l p
AI. n 1 AI. n1

where a • _1_ p
L n1

e __ 1_ (P + P ).
L n2 n.

f • -!-(P + P ).
L n.. n&

a • -!-(P - P ). and
L ~ II.

h __ l_

L
(Pn - P ).
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The aeneral ••tbod could be applied to non-.,...trical .ections. with
IIOre cumbersOM iDtesratiOD.



We adopted as an analysis tool an available and tested program [21, in
which were implemented several geometricaatrices, formulated with Hermitian
interpolation. The matrices are here in designated as [KG] ,[KGI ,S L c.c s.c
[KGls.c' and [KG]' where the subscript c.c mean. consideration of the shear
forces, s.c. no shear forces, the superscript~means matrix with semi-
tangencial correction. The last one is developed in this work with linear La-
grangian interpolation.

We used the same element elastic stiffness matrix with Hermitian inter
polation, in all calculations.

This classical buckling example serves to show the convergence to the
theoretical critical load value, when the beam is divided into several el!
ments. It is noted that the obtained results through the matrices with Her
mitian interpolation, converge more quickly than with Lagrangian interpo=
lation. The results are summarized in Table II.

1..240mm

It. 30 mm

f • 0.1 mm

v. 0.31

E • 71240 N/mm2
I

~

Per. • !. !.!Y. 1.6470 N
4 it



NQ of Pcr(n)
Elements [KG)c.c

S .
[KG)s.c [K~]S.C (Kt][KG)c.c G

1.6601 1.6601 1.6601 1.6601 2.0019

3 1. 6479 1.6479 1.6479 1.6479 1.6845

5 1. 6479 1. 647~ 1.6479 1.6479 1.6601

6 1. 6479 1. 6479 1.6479 1.6479 1.6570

10 1. 6479 1.6479 1.6479 1.6479 1.6501

15 1.6479 1. 6479 1.6479 1.6479 1.6479

Table II. Values of convergence test
Exall:ple2. Cantilever bea:::.loaded with quasitangential and semi-

tangential bending moments.
It s"ould be mentioned tha: both quasi- and seai-tangential bending

moments can be generated by the mechanisms represented in Figure 4. (a),
(b) and \C,. consisting in rigie levers and constant directional forces as

b-
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\
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t,

~~
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(bl
t· ~6 mm

E • n240 N/mm2

v • 0.)1

Mcrl(e)-rrA:Y;lx-311,07
(b)

Mer I(e) - ~ .tIyG1x- 6-22.21 N-mm

In case (a), where a 900 angle exists between the bar and beam axis the,
results provided by the matrices (Ke] and (KLe]converged to a value thatc.c vSis the half of the theoretical value, while the matrix ["'G]s.cgave a result
twice greater than the th@oretical. In case (b), in which the angle bet-
ween the bar and the beam axis is null, the mat rice. (Kelc.c and Kb]results
converged to the theoretical value, [Kel"t conversed to the same erroneous
value of case and those (a).

In case (c), with seaitangential bending ~nt application, only the
matrices [It~ lc.c and [K~ls.c converged to the theoretical value. All the
results ~or other matrices converged to the qua.itangential value.



The last line of Table III. corresponds to the obtained results after
modifying the data for the program througn a matrix of nodal correction for

N2 of Hcr (N-mm)
case

[~l~.c [~lc.c [KG1s•c [K81s.c [Ke1Elem.
(a) 15 127.418 311.097 311.097 623.078 127.418
(b) 15 311.097 311.097 311.097 623.078 311.097
(c) 15 311.097 623.078 311.097 623.078 311.097
(c)* 15 623.078 623.078 623.078

Table Ill. Results for Example 2

the cases of matrices with quasitangential formulation. and linear Lagran-
gian interpolation. This correction was made to consider the application of
the moment in a semitangential manner. We see that aiter such correction.
all results agree with the theoretical value.

Example 1 shows the limitations of the element with linear Lagrangian
interpolation in the convergence tast. Although in linearized stability
problema higher order formulations provide more accurate solutions. diffi-
culties may arise in nonlinear analysis. Therefore. it is recommended to
use lower order polynomials and more elements. rather than sophisticated e
lements. -

SExample 2 has shown that only the [KG1c.c matrix. that includes the
so-called semitangential correction. leads to results consistent with the
form of the load application when flexural-torsional buckling occurs.

We observe that the results obtained through matrix [K~] converge to
the same obtaiued results with matrix [KG1 • This indicates that to obtain. c.c Lcoherent results it is necessary to make a correction in [KG] ~lmilar to the
one found in [KG1c•c' This occurs in spite of the fact that [KG] and[KG1c.c
are deduced using different kinematic variables to represent the rotations
due to flexure.

°It should be noted that the results obtained through matrix [KS1G s.Cshow that not only the nodal correction is relevant but also that for fle-
xural-torsional buckling the consideration of the shear forces is veryimpo!
tant in a geometrical stiffness matrix consistent formulation. even in the
case of frames composed of slender beams.
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