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ABSTRACT

Waen numerically analyzing uabownded wave propagation problems. spurious reflections
arise from numerical reflections produced oan the fictitious boundary of the discretization. If infinite
elements model the [ar field of this class of prodlems, the finitc-infinite element interfaces act as
numerical scaners. Due to this effect, past of the energy carried by the outgoing waves is reflected,
generating a source of error in the nemerical solution. This study amalyzes the spurious reflections
arising from finite/infiniee element discretizations. The ratios of wave amplitude and mean energy
flux berween the ouigoing wave and the corresponding reflecied and refracied waves are quantified.
The results provide criteria for mesh design in order 10 diminish numerical noise coming (rom
undesired boundary reflections.

RESUMEN

Al analizar numéricamente problemas de propagacidn de ondas, definidos en medios no aco-
tadoe, existen reflexiones auméricas que se producen sobre ¢l borde ficticio de la discretizacion. Si
¢l camporiejano de esie tipo de probicmas se models con clementos infinitos, las interfaces entre los
elementos finitos y los infinitos acnias como pantallas numéricas. Debido 2 este efecio de pantalla,
pane de la energia de la onda incidente se refiejs, generando une fuemie de erroc en Is solucida
numérica. El presemte trabajo analiza las reflexiones numéricas que se producen debido a discretiza.
ciones de elementos finitos ¢ infinitos. Se cuaatifican las razones de amplitnd de onda y flujo medio
de energia, entre ia onda incidente y las ondas reficjeda y refraciada. Los resuliados aportaa criterios
para el disefio de mallas, que permiten dismineir los errores numéricos producidos por refexiones
indeseables sobee ¢! borde.
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INTRODUCTION

Since the fist application’ of infinite clements 10 solve unbounded domain problems, tech-
niques using finite/infinite clements have appeared with increasing frequency in the literature.
Amongmemuyapphcaionswriedomwnhthislechnique.ilhsalsobeenappliedloproblems
involving wave propagation™ and dynamic isteraction.** By wsing infinite elemests, it is possible to
model the far field (f) of enbounded media without loosing the fiexibility of the classical finite ele-
ment method. heﬁecuﬁemrﬁeld(#)nodekdwhhﬁnﬁedenuunaybemhom‘m
and anisowropic. However, the eatment of transient problems presests some difficulties. Neverthe-
las.mbmmumdmhmmbeamhﬂywhlmmhnsonme
merits of the technique still remain.

Aswavumvellhotghaneth.uﬁicialteﬂecﬁouukeduelochaguhmeapptoxima-
tion of the discretization.’ In the case of transien: and wave propagation problems defined in
unbounded domains, these phenomena have received insufficient aneation in the literature. In this
wwhaslwykmwdmmwmmmwnhhufmmv
and f (far-field boundary, fb). This formulation is reswicied ® unbownded media that can be
geometrically modeled in onc dimension, ic. this formulation is restricted w cases of one-
dimensiouLcyhu&iully:ynmeuic.udmlmemm

FORMULATION OF THE PROBLEM

The fb is defined as the interface between the mesh of finite clements and the mesh of
infinite elements. mhuahvebeendevelopedloreplmulndmmilmemmcom
from the nf into e f. M.Mw&nmdmﬂm&eﬂamu:mnd
reflects part of the incident waves. hishdnetolheehm::(n)hlehan-uialdiwolﬁmity
on the f, produced by the change of displacement approximation in the discretization; (b) the »f
disphcemmmhn:ﬁonhmdueummd(c)ﬂ&e]mxhﬁukmwm
exact solutions 1o the problem considered. it leads to further errors. By studying the equilibrium and
ﬂuwemwmuwhmdﬁeﬁ.umﬁedmkm
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Equilibrium Equation.

Ccnsidering an elastic medium discretized by finite and infinite elements, as shown in Fig.1,
the frequency-dependent dynamic equilibrium equation,” for each clement ¢ and frequency o, is
given® by

K (wu'(e) = p‘(w) 18]

where K* is the element dynamic stiffness matrix and, w’ and p contain the element nodal displace-
ments and loads, respectively. In absence of extemal loads, the internal degrees of freedom for the
finite element adjacent to the b, see Fig.2, can be condensed out from Eq.(1), yielding '

. . 1 ‘ . e
ku kno Un - Pa ’ (2)
ko ke | LY Poy

where k) are the element dynamic stiffness coefficients modified by the condensation of the internal
degrees of freedom. Subsequently the superscript e is dropped. In the previous equation, the sub-
script O refers to the node on the ffb, whereas n refers (o the node on the opposite side of the finite

element. In particular, for n=2, i.e., for a second order finite element (three-node element),

kn = knlkn) ko

Ry
rl
l

ky = ko = ko - knlkul ke &)

kgy koo = kaulknl ' kyo

Hence, the force acting on the fd is

Po = kowuy + kyuo w ko, + kouo @
On the other hand, the equilibrium cquation for the infinite element, see Fig.2, is

P = K'uj = Ku§ (&)

where X®(=K) is the infinite clement dynamic stiffness matrix. Finally, there must be equilibrium
on the fb, i.e.,
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Pot po = 0 ()
Compatibility Condition.
Seeking harmonic wave form solutions to Eq.(1). the displacements may be expressed by
ur.aw) = Af(wi-kr) + Bf(wi+kr) = (Ajw) + niw)) o @

where £ is the propagation wave number and, |A| and 1B | respectively are the amplitudes of the
waves traveling in the positive and negative divection of the spatial coordinate r. Note that f() is
the complex conjugaie of f(-). The displacements due 10 waves impinging over and reflecied by the
. uaveling in the adjacent finite clement, are expressed by Eq.(7) (for r,Srsre). The displace-
ments dee 10 waves refracted by the #b. traveling in the inknite element, are expressed by

wWwire) = Cflkr)e™ )

(rySr). Note that 1AL, 18! and 1C| are the amplitudes of the incident, refiected and refracied
waves, respectively. On the finite element nodes, Eq.(7) yiclds

Moy = M(r pe) = (Al(b..b + ,f(k'-n)) e = (Ai.p + af.,) ol ®
and, on the infimite clement mode, Eq.(8) yields

u = w(reet) = Cflkr)e™ mu Cfqe™ 19
Fimally, there must be compatibility on the fb, ic.,

- = u an

Thescfore, from Eqs.(6) and (11), aficr wsing Eqa.(4), (). (9) and (10), the amplitede ratios
are expressed by
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’ﬂ + By + vy
IBIAl = m
1k(fof o=f of ¥ fo!

a + kpy vy

(12)
ICIA Y

representing the fraction of the amplitude of the incident wave that is respectively reflected and
refracted by f>. In Eqs.(12),

R
]

(lxl’ + kK+E) + (t.,)’) 1fol®

B (K+ko)fof s + (K+ko)fof «
(13)

B: = (K+kofofs + (K+kofofs

Ak

4

In the previous formulae, it has been assumed that the finite elements model undamped media, i.c..

kg and &, are rcal numbers.

Energy Balance.
The mean value of the energy flux passing through the elements is given by

tqeT

P> = % | Retp(an) Retiewo) de (14

(w7 =22x). For harmonic motion,

plwt) = pe
(15)
u(wt) = ue™
Then, upos imegrating Eq.(14),
<P> = —:-io(iu-pi) a6

Hence, by replacing into the equation above, the corresponding expressions for the incident, reflected
and refracted waves, from Eys.(4), (5), (9) and (10), the foliowing mcan cnergy flux values are
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P> = Tikfof~Fof )AL
<Py = -%m.uJ.-]of.)wl’ an
<Pe> = -—:-iu(K-l.()lfQI:ICII

Inroducing Eqs.(12) into the equations above, it is easy 10 prove that the total mean energy flux on
the node located over the ffb vanishes, i.c.,

<Py> + <Pp> + <Pe> = 0 (18)
The mean energy flux ratios ase

<Py>i<P> = -1BIAL®
19)

(KK fol?

--——-—:.-—-.——-lC/Alz
&(fof a=fofa)

<P¢->I<.P‘> =
representing the fraction of energy of the incident wave that is respectively refiecied and refracied by
the gb.

FINITE ELEMENT APPROXIMATION AND WAVE FORM SOLUTION

Element Characteristic Matrices.

Using classical finite element techaiques,” the dynamic stiffness matrices may be derived. In
panicular, the dynamic stifiness matrices of first and second order finite clements may be obuined in
closed form. Avoiding the details of a formal derivation, the dynamic stiffness mawices for one-
dimensional, cylindrically symmetric, and spherically symmemic elemenis are showa in Tsble 1. On
the other hand, the corresponding infinite element dynamic stiffness matrices, shown in Table 2, are
obtained clsewhere./%'" For the cylindrically and spherically symmetric cases’’ throe wave shape
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functions have been assumed: (a) one derived from the exact solution 10 the wave propagation prob-
lem considered; (b) anothes derived from the asympiotic solution; and (c) the last one assuming an
exponential decay. These three cases have been studied 10 assess the capacity of the iafinite ecle-
ments to wansmit the incoming waves into the . even for the cases when the shape feactions are
somewhat arbitrarily selected. If only case (a) were treated, spurious reflections would not be pro-
duced by the infinite element approximation, since 2 shape form selocied from an exact solution leads

10 exact results.'®!!

Wave Propagationa Solution.

mmmunnommmmmmm.mmnym-
metric wave propagation is given'> by expoacatial functions, Hankel functions, and spherical Hankel
functions, respectively, i.e.,

e—all cill
f = | H ) F o= {H wn) 20)
P (kR) A (kR)

wmué"’MA{"’mmwmm«mmmmmmwa
first order, respectively.

Reflection and Refraction Ratios.

After inoducing the equations given in Tables | and 2, and Eqs.(20) into Eqs.(12), (13) and
(19) the amplitude and mean energy flux ratios may be explicitly obtained for first and second order
elements. In the sake of brevity, only the case of one-dimensional wave propagation is given herein.
For this case, the amplitude ratios are

e (ntep)
1B/IAI™ = ,"-’-"———-—-——
Ml1 + ('l.'ﬂz)z
2'}!3'
]u.’ + (n* - pup?

@n
tCra1®» =

and the mean energy flux ratios are
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2
{<Py>i<Py>)" ™ = -(w/u---“)

Q2
» 2
{<Peoi<Py> )™ = —Z—(ICIAI"-"')
2
where
H = ay + a,cosn
Ha = a,sian (23)
nt = 3-.,’".
with
h 3-
Qy = koA_u = 1 - —6’-"-"2
(24)
h m .
e = k-— = -1 - —p°
" 6
for the first order fimic element (n=1), and
__h 240 —- 2(55-3m)n? + (5-2m)n*
oy, = ko— 3
Ao 6(40 - (5-m)n?)
(25)

ho_ _240+ 25+3m)n? + mn*
Ay 6(40 - (5-m)n?)

for the second order finite elemem (n=2). In the preceding equations A, is the area disturbed by the
raveling wave, and
2x
— (26)
nom oAk o=
where h is the element size and A is the wavelength. The ratio A/h, number of elemenis per
wavelength, is defined as the nf discretization ratio. The parameter m is equal to 1 if the nf mass is

consistent and equal to 0 if the mass is lumped. Similarly, the parameter m® refers 10 the F mass
discretization.
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NUMERICAL RESULTS

The waves coming from the af should not be reflected by the gb. Therefore, the energy
and the amplitude of the reflected wave should vanish, ie., {<Pp>/<P,>}"" and 1B/A1™~" should
be zero. This is equivalent t0 say that the energy and amplitude of the incidemt wave is conserved
by the refracted wave, ie., [<Pc>/<P,>}"*" =1 and IC/A1™=" = . This occurs oaly for large
values of the discretization ratio, when the mass of the f is discretized consistently (m*=1), as it
may be observed in Fig.3a-d, where the amplitude and mean energy flux ratios are piotted as func-
tons of the discretization ratio. The numerical reflection for low values of the discretization ratio is
caused by the different displacement approximations on each side of the fb. This numerical source
of error is diminished by improving the nf displacement approximation.

Reflection-Refraction Levels.
The reflection-refraction level associated to the amplitude is defined as

»

€A = mu(ll-lC/Al""

.w/u---’) @n

On the other hand, the reflection-refraction level associated 1o the mean energy flux ratio is defined
as

g = max( !1+1<rc>/<r‘>|-”|.](<r,>/<r,‘>)--"'| ) 28)
Furthermore, the reflection-refraction level may be considered acceptable, if it is below 10%: small,
if it is below 5%; and negligible, if it is below 1%. On thé¢ other hand, for ff consistent mass
discretization, the effect of assuming consistemt or lumped mass in the nf may be considered very
small when the difference between the comresponding reflection-refraction levels is below 2% -
(e 1 <2%).

One-Dimensional Case.

Figures 3a and 3b show the amplitude ratios, for the cases using first and second order ele-
ments, respectively. In Figs.3a and 3b the following is observed:

1. 1B/A1™*" approaches 11-m*1/1S-m*1 and IC/AI™*" approaches 4/15-m®! when the
discretization ratio increases.




2
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8/A1°"" approaches | when the discretization ratio approaches zeso, and | C/A 1™-™" vanishes
for discretization ratios equal w0 2/j (j=1.2,...).

In general, for discretization aLos Alh>2,
lwm"--'-l 1-m* 1/15-m*| ’ > llamu“"—l I-m*1/15-m" | >0 and

'lCIAI"-"—NIS-m‘lI > 'lCIAI‘-"-‘IIS-n‘lI > 0. For second order elements, the first
relationship is not valid is the neighborhood of A/h=2.34, when the ff is modeled with lumped
mass. The second relationship is not valid in the neighborhood of A/h=2.07 for any mode! of
r

Figures 3c and 3d show the mesn emergy Sux ratios, for the cases using first and second

order elements, respectively. In Figs.3c and 3d the following is observed:

1

N

(<Pg>/<P,>1"""  approaches —(1-m*P/(5-m*) and {<Pc>/<P,>|"""  approaches
—$(3-m*)/(S-m*)® when the discretization ratio increases.

{<Pp>/<Ps>]""" approsches -1 when the discretization stio approaches zero, and
1<Pc>/<P,>]1""*" vanishes for discretization ratios equal 1o 2/ (j=1.2,...).

In geoenal, for discretization ratios Alh>2,
I‘<’:>/<PA>l°"'+(l-m'):l(s-u')2l > |!<h>/<h>l‘a-‘+(l-m’)z/(5-m‘)=i >0 and
|i<pesicp.s o= sais-mbyis-mty| > |(<Peicpast = 8-t is-m*¥] >0 For

second order elemenis, these relationships are not valid in the neighborhood of A/h=2.34, when
the f is modeled with lumped mass.

Note that when the ff mass is lumped the reflected wave does not vanish as the discretiza-

tion ratio becomes large. In efiect,

e A = 00) = 20%
29)
& AIh = o) = 4%

Hence, lompiag the ff mass gencrales waves being reflecied by the b which leads 10 spurious
results. The amplitude of this reflecied wave is af least 20% of the amplitede of the incident wave,
Mwmcwlnwwwmmmmyhnm«id&emw
flux carried by the incident wave.
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Polar and Spherical Symmetry.
In progress.

ANALYSIS OF THE RESULTS

General Remarks.

The errors caused by the artificial scantering effect due 10 a finite/infinite element discretiza-
tion of a semi-infinite region are studied. Two obvious results are numerically verified: (a) the larger
the number of elements per wavelength, the smaller the reflections; and (b) the higher the order of
the numerical displacement approximation, the smaller the reflections. The artificial reflections on
the i depend on the af discretization. If the jF displacement approximation is not exact, the errors
due to the artificial reflections on the ffb would increase. No anempt is made 10 try different f dis-
placement approximations, since, for the case of one-dimensional wave propagation, the J solution
can be obtained analyticaily and then applied 1o any switable awmerical procedure. If the discretiza-

tion ratio varies in the nf, another source of error is inroduced.®’

The discrepancies in the results between elements of first and second order are significant for
low values of the discretization ratio. It is also observed that using lumped mass in the »f, as
opposed to consistent mass, leads to significant errors for low values of the discretization ratio.
However, when lumping the mass in the f, the errors become large and do not vanish, even when
the discretization ratio increases.

Recommendations.

From the sumerical results shown, it is possible to obtain criteria for rational mesh design.
in order to diminish numerical reflections produced by artificial boundaries, whes weating transient
and wave propagation problems defined ia unbounded media. By uwsing aa exact § displacement
approximation, the source of error is reswicted to the nf. Then, the nf must be discretized in ele-
ments such that the ratio between the shoriest wavelength and the longest clement is larger than or
equal t0 a critical discretization ratio, i.e.,
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A-‘n 2= (30)
————— ————— 1
== . T 2 (A, ,

where @y, is the cut-off frequency corresponding to the shortest wavelength, A, and h,,, is the
size of the longest clement presem in the nf discretization. As critical discrelization ratio it is under-
s100d by the discretization ratio giving the maximum allowable reflection-refraction Jevel.

Then, the critical discretization ratios for acceptable, small and negligible reflection-
refraction levels may be obtained directly from Tabie 3, where it can alsc be obtained the critical
discretization ratio above wh‘ich the effect of the nf mass discretization is very small. In Table 3, it
can be seen that the second order element provides a good solution from the standpoint of the model
accuracy and of the critical discretization ratio needed 10 yield that accuracy. It is clearly disadvan-
tageous 10 lump the nf mass for critical discretization ratios, if a small level of reflection-refraction
is requed. To reach below the same refiection-refraction levels as reached when using consistent
mass in the nf, it is necessary 1o use larger discretization satios for lumpad mass, teading 10 a larger

number of degrees of freedom per wavelength.

CONCLUSIONS

To discreuze an unbounded medium for analyzing transient and wave propagation problems
it is necessary 10 lend amention to the size of the near-ficld discretization with respect to the
wavelength (of the waves necessary o include in the solution). The finite element {or finite
difference) numerical model should be able to numerically propagate the comesponding waves
without introducing spurious reflections coming from artificial boundaries. Considering one-
dimensional wave propagation, it is numerically determined that the critical discretization ratio
(A/h),, is equal to 3.7 for first order elemenis and 2.1 for second order elements. With these critical
discretization ratios it is secured that the reflections coming from the numerical model are acceptable
(smalles than 10%). In the case of the second order element the reBlection level is around S%.
Lumping the mass in the near field leads to large reflections, whereas lumping the mass in the far
field Jeads to unacceptable results.
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Table 1.- Finite clement dysamic stiffeess mawices, X°.

2-aude clomant

sl 130

J-aede slomant
S-m 2m  -m 7 -8 1
2
?-—"ﬁ 2m 20-4m 2m +%-l!6—l“
-m m  S-m 1 -8 7J'J
CYLINDRICAL SYMMETRY:
2.e0ds slamant
2 [23-mip-1  2mp 1 -11
. b
U] 2w 20-mipe ’[-u ']
3-sede cloment
L[2semposeim 2mipoy 20 -2 —4pe2 § |}
bl | 2mi2p-l)  MS-m)P 2m(2peD) o%-qu 165 —wp-2 !
~2mp 2m(2541) AS-m)F+S-2m B 8-2 Tpe2
SPHERICAL SYMMETRY:
2-nede cloment

2 [20(3-m 1P =20 45-m (20P4 ) 4P2e3 4Pl
a2
=i +

Q0P+ 1)m 20(3-m )P 200 ¢S m 4Pl 4Pi0d
J.node slemant
. 2(S—m)PI-28(S-2m)P+3(T-m)  (S6P-36P +6)m ~(28P% ym
--%"o— (36P*-56P +6)m N2S-m)P e4(-3m) (56P 24565 +6 3 .
~(28P43)m (56P2+36P +6)m  2S—m)Ple28S-2m)P+}(1-m)
140P2-00P+33  -16(10P2-5P+1) 20£%43
+ ";3 ~1K10P1-5P+1)  1620P%47) -~ 16(10PYeSP +1)
20P%+3 ~16(10F°+3P+1)  140P ¢80P +23
PARAMETER DEFINITIONS:
N = kA = ahic,dd tonless wave b
t = Jmid, wave number.
A = wavelength
k = clemem size.
€ = wave propagaiion velocity.
Ay = ares desturbed by the da ional wave propag:
b = thicknews duturbed by the polar wave propegatien.
~ = masep (=1, : mass; al, lumped mans).
P = Pk, P = R
Fox (rgbr )2, R = (Rgek )2

Jiey, R a JPey

-
]
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i

Table 2.- Infinite element dynamic stffness matrices, K*.

SHAPE FUNCTION ONE-DIMENSIONAL POLAR SYMMETRY SPHERICAL SYMMETRY
. HP & @
EXACT LY 2ab kgt anky|2 - K, 20 Ko
2 HY (ko) A (Ko
|
| ASYMPTOTIC zb( 2+ uzuu.») 4:3.(3 + .x.u--uw.»)
2 . 2 2 4 . 2
— 10k - - -
EXPONENTIAL po = 10k + idke(2-ky) kD 2BKe + 4Ks + i8Ku3-2Ky)

L &

Others, a indicated in Table ).

A1 + ikg? (1 + iK,)®
! . PARAMETER DEFINITIONS:
m* = mesap (=1, i maas: =0, lumped mass).
ko =  kry, polas di ionless wave b
K“ - m.. r: Ry PPy ”" o
ro, Ry .= infinits element nodal coordinases.
H® =  Hakel function of the second kind and order a.
AP = spherical Hankel function of the second Lind and order n.
b ® il _
i Hr)y = I dt = e'¥.Ei2r).
s 1+
E1 - sy e 14
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Table 3.- Minimum discretization ratios (a/#) for different error levels in the

p of the | scatiering on the far-field boundary of a semi-infinite rod.
= < 10% =t < 5% [k 21 )
ELEMENT
e - g
ORDER LD woad -l mad -l u—
FIRST:
- an s.98 a6 o 800 2 1.7
- 2 384 290 an n 593 -
SECOND:
- 206 266 236 29, 317 3 w3
-ep 202 FE L 20 244 206 i 266 235
]
]
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(a)

(b)
] /' R,u
™ L}
N f
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R N R
\. ] //
N S v
(c)
Figure 1.. Wave propagation problems discretized' #0@8e-dimension. (2) One-dimensional case. (L))

Cylindrical symmetry. (c) Sphencal symmerry.
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Figure 3.- Computation of numerical scaicring produced on the far-field bowadary by means of
and incident waves, (a) Amplitede ratio for models using first order finite elements. (b) Amplitude
ratio for models using second order finite elements. (c) Mean flux ratio for models wsing first order
finite elements. (d) Mean flux ratio for models using second order finite clements.




