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Abstract. This paper presents an experimental and numerical characterization of ductile
damage evolution in steels subjected to large plastic deformations. To this end, a set of tensile
tests combining load-unload cycles is firstly carried out in order to evaluate the deterioration
exhibited by the Young’s modulus for increasing levels of plastic deformation. This task
allows, in turn, to derive the characteristic parameters involved in a well-established
evolution equation for the isotropic damage variable. All these material parameters are the
basic data to be considered in the simulations that are performed afterwards: the analysis of
the tensile test is mainly aimed at assessing the proposed characterization while the
modelling of the flattening process of a cylinder is considered to discuss the possibilities and
limitations of the constitutive model.
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1 INTRODUCTION

The phenomenon of ductile plastic damage usually refers to the initiation, coalescence and
growth of cavities and microcraks induced by large deformations in metals. Its extensive
study within the general framework of thermodynamics of irreversible processes led to the
development of Continuum Damage Mechanics 1-9. Different damage definitions and related
models have been proposed and used in the last decades 1-12. The most classical definition of
isotropic damage is given by a scalar variable that accounts for the surfacic density of
microcraks and cavities in any plane of a representative volume element 5-9.

In general, the damaging processes are reflected in a progressive material deterioration
which can be measured through the decrease of strength, stiffness, toughness, etc 1-9.
However, reliable measurements of damage is still nowadays a challenging task. The
experimental procedures to estimate the damage evolution in a material subjected to loads can
be classified in two main groups: direct and non direct measurements 7. This last group
encompasses, in turn, destructive and non-destructive methods. The main features of these
procedures as well as their advantages and drawbacks are detailed in [7].

An experimental and numerical characterization of ductile isotropic damage evolution in
steels subjected to large plastic deformations is proposed in this work. To this end, a set of
load-unload tensile tests were firstly carried out on cylindrical specimens of SAE 1020 and
SAE 1045 steels in order to obtain their stress-strain curves which allow, in turn, to derive
their elastic, strain hardening and damage characteristic parameters. Then, the deformation
process experienced by these materials during the test is numerically simulated via a large
strain isotropic elasto-plastic constitutive model that also accounts in a coupled form for both
hardening and damage effects. The corresponding numerical results are validated with the
experimental measurements. Finally, the damage evolution during the flattening process of a
cylinder is analysed.

2 EXPERIMENTAL PROCEDURE

Among the different possible methods to measure ductile damage evolution in a metal
subjected to deformation, a suitable destructive procedure is that related to the variation of the
effective elasticity modulus E~  due to the appearance of microcracks and cavities inside the
material 5-9. To this end, load-unload tensile tests are needed in order to track the deterioration
or degradation of E~  reflected, at high levels of deformation, in the slope change in the stress-
strain curve corresponding to the elastic response during the unloading or reloading in a
cycle. The engineering stress-strain curves obtained for the SAE 1020 and SAE 1045 steels
are shown in Figure 1. In this context, the damage variable dp can be computed for each
unload-reload cycle as:

E
Ed p
~

1−=      (1)

where E is the Young’s modulus of the undamaged material (usually adopted as that of the
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first load path in the tensile test) and E~  is, as mentioned above, the effective Young’s
modulus accounting for damage effects. In this work, E~  has been evaluated as an average
between the uniaxial moduli corresponding to the unload and reload elastic path of each cycle
i. Thus,
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where P is the load, A is the current transversal area of the sample (the undeformed one is
denoted as A0), L is the current extensometer length and superindexes u and l respectively
refer to the upper and lower points located in the elastic path of the stress-strain curve (see
Figure 1). Due to the small deformations involved in the elastic paths, note that l

i
u
i AA ≈  for

every cycle. The experimental )/ln(~
0 AAE uniaxial −  measurements are respectively plotted in

Figures 3.a and 4.a for the two steels studied in this work. Two straight lines bounding the
experimental uncertainty range have been drawn with the sake of dealing with the scattered
nature of the data. A third line obtained as their average is also depicted. In what follows, the
experimental procedure will take into account these lines in order to characterize the damage
response. It is seen that uniaxialE~  increases at high levels of deformation. As already pointed
out in [5-7], this is due to the triaxial stress state that occurs in the samples after the necking
formation that causes, in turn, the decrease of the load. A procedure avoiding this
inconvenient is based on strain-gauge measurements performed at low-deformation tension-
compression cycles. This methodology, however, is too much complicate since the strain-
gauges need to be reinstalled at every load cycle and, besides, the derivation of E~  is not
straightforward due to the coupling of the normal components existing in the stress-strain law.
In order to obtain the real damaged Young’s modulus E~  from the uniaxial measurements

uniaxialE~ , an alternative procedure is proposed in this work. It is based on the following
expression:

uniaxial
E EfE ~~ =      (3)

where fE is a correction factor that eliminates the triaxial effect inherent to uniaxialE~ . The
methodology followed to derive such a correction factor can be found in [13] and it basically
consists in applying equation (2) to the results corresponding to a simulation without damage
effects, denoted as wduniaxialE −~ , in such a way that the correction factor can be computed by the
following relationship wduniaxial

E EEf −= ~/ . The fE-ln(A0/A) relationships for both steels are
shown in Figure 2. The real Young’s modulus versus logarithmic strain curves obtained by
applying equation (3) to the two outer lines of Figure 3.a and 4.a are respectively plotted in
Figures 3.b and 4.b. As expected, the real Young’s modulus exhibits a decreasing trend for
large strain values. Finally, the damage curves in terms of the logarithmic deformation
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computed via equation (1) with the data provided by Figures 3.b and 4.b are respectively
shown in Figures 3.c and 3.b. These last curves allow to derive three parameters that,
according to [5-9], are assumed to characterize the material damage response in a
monotonically loaded uniaxial tensile by means of:

d
p

dr

rp ee
ee

dd −
−

=
)(      (4)

where dr is the critical damage value found at the failure strain re , de  is the so-called damage
threshold, pe  is the effective plastic strain whose evolution will be detailed in Section 3 and

 are the Macauley brackets (i.e., xx =〉〈  if x>0 and 0=〉〈x  otherwise). The
experimentally measured average values for de , re  and dc are listed in Table 1. This is the
basic data considered in the simulations shown in Section 4.

3 GOVERNING EQUATIONS AND CONSTITUTIVE MODEL

The evolution of an assumed quasi-static process (i.e., that with negligible inertia effects
and identically fulfilled energy balance) can be described by local governing equations
expressed by the mass conservation, linear momentum balance and the dissipation inequality
(all of them valid in Ωxϒ, where Ω is the spatial configuration of a body and ϒ denotes the
time interval of interest with t∈ϒ) respectively written in a Lagrangian description as 14:

0ρρ =J (5)

0b =+⋅ fρσ∇ (6)

0int ≥D (7)

together with appropriate boundary conditions and an adequate constitutive relation for the
Cauchy stress tensor σ (which is symmetric for the non polar case adopted in this work). In
these equations, ρ is the density, J is the determinant of the deformation gradient tensor F
( u1F ∇−=1- , where 1 is the unity tensor, ∇ is the spatial gradient operator and u is the
displacement vector), the subscript 0 applied to a variable denotes its value at the initial
configuration Ω0, bf is the specific body force vector and Dint is the internal dissipation which
imposes restrictions over the constitutive model definition. In this framework, a specific
Helmholtz free energy function ψ, assumed to describe the material behavior during the
deformation process, can be defined in terms of some thermodynamic state variables chosen
in this work as the Almansi strain tensor e ( )(21 1--T-/ FF1e ⋅= , where T is the transpose
symbol) and a set of nint phenomenological internal variables αk (usually governed by rate
equations with zero initial conditions and int,...,1 nk = ) accounting for the non-reversible
effects 1-15. This free energy definition, is only valid for small elastic strains and isotropic
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material response, both assumptions being normally accepted for metals and other materials.
Invoking the Coleman’s method 15, the following relationships are obtained: e∂

∂= ψρσ  and

Dt
DD k

k
α*int q=  where 

k
k α∂

∂−= ψρ 0q  are the conjugate variables of αk and, according

to the nature of each internal variable, the symbols ∗ and D(⋅)/Dt appearing in the previous
expressions respectively indicate an appropriate multiplication and a time derivative
satisfying the principle of material frame-indifference 15.
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Comparación entre los ciclos de carga y descarga
para los Aceros SAE 1020 y SAE 1045
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Figure 1: Engineering stress-strain curves for SAE 1020 and SAE 1045 steels.
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Figure 2: Correction factors for SAE 1020 and SAE 1045 steels.
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Figure 3: Damage characterization curves in terms of logarithmic strain for SAE 1020 steel. a) Measured
uniaxial Young´s modulus, b) real Young’s modulus and c) damage curve.
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Figure 4: Damage characterization curves in terms of logarithmic strain for SAE 1045 steel. a) Measured
uniaxial Young´s modulus, b) real Young’s modulus and c) damage curve.
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It should be noted that the definitions of ψ=ψ(e,αk) and Dαk/Dt are crucial features of the
model since they allow to derive all the constitutive equations presented above.

The internal variables and their corresponding evolution equations are defined in this
work within a non-associate rate-independent plasticity theory context 15 including damage
effects in a coupled form 1-12. A possible choice is given by the plastic Almansi strain tensor
ep, the effective plastic deformation pe  related to the isotropic strain hardening effect 1-15 and
the damage variable dp 1-12. The evolution equations for such internal variables can be written
as 1-13:

τ∂
∂= FL p

v λ&)(e                     p
p

C
Fe
∂

∂−=
•

λ&                  p
p

Y
Gd
∂

∂= λ&& (8)

where τ is the Kirchhoff stress tensor (τ=Jσ), Lv is the well-known Lie (frame-indifferent)

derivative, 
•

λ  is the rate (or increment in this context) of the plastic consistency parameter
computed according to classical concepts of the plasticity theory 15, Cp is the plastic
hardening function, Yp is the conjugate variable of dp (Yp can be considered as the elastic
strain energy release rate associated with a unit damage growth 5-9) while F(σ, pe ,dp) and
G(Yp,dp) are the flow potentials respectively related to purely plastic and damage effects
accordingly related to plastic deformation and damage evolutions. In this context, F is also
assumed as the yield function such that no plastic evolutions occur when F<0. Moreover, as
stated by equation (8.c), note that a plasticity-driven damage phenomenon is adopted here
which leads that no damage evolution is neither expected when F<0. A classical choice for
metal plasticity is the Von Mises yield function:

)1(3 2
pp dCJF −−=      (9)

where J2 is the second invariant of the deviatoric part of τ and the plastic hardening function
Cp is adopted in this work as 14:

pnp
c

pppp eeeAC )( 0 〉−〈+=    (10)

where pe0  is an assumed initial value of pe  such that 
pnppth eAC 0=  with Cth being the yield

strength defining the initial material elastic bound. Moreover, 〉〈  are the Macauley brackets
and p

ce  is a critical effective plastic strain accounting for the effect of Lüders´ band formation
considered here as a perfectly plastic process, i.e., p

ce  is the maximum plastic deformation
after the elastic response at which thp CC =  (if this phenomenon is not present, 0=p

ce  and

the classical hardening expression 
pnpppp eeAC )( 0 +=  is recovered). The hardening material

parameters Ap, np and p
ce  appearing in the isotropic strain hardening law (10) are assumed to

characterize the material behavior in the plastic range (strain rates effects are neglected 14).
These parameters can be directly obtained through an experimental-based correlation 14.
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Table 3 summarizes the average values of Ap, np and p
ce  for the two steels studied in this

work. On the other hand, the expression adopted for G is 5-9:
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The following definition for the specific free energy function ψ=ψ(e- ep, pe ,dp) is
considered:
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where C is the isotropic elastic constitutive tensor. This last equation is a partially coupled
form of defining ψ which can be considered nowadays well established since different
versions of it have successfully been used in many engineering applications (see [14] and
references therein). Moreover, the additive decomposition of the Almansi strain tensor is
recovered in this context through the multiplicative decomposition of the deformation
gradient into elastic and plastic contributions. In addition, note that, according to the
definitions given above, the internal variables of this model together with their corresponding
conjugates variables are α1= ep, α2= pe , α3= dp and q1=τ, q2=-(Cp-Cth), q3= Yp.

With these considerations, the stress-strain law (secant or hyperelastic form for the Cauchy
stress tensor) and the expression of the internal dissipation are respectively given by:

[ ]0+−−= τσ )(:)1(1 ppd
J

eeC    (13)

0)()(int ≥−−−= pppthpp
v dYeCCLD &&e:τ    (14)

where this last inequality is effectively fulfilled owing to the definitions adopted above.

4 SIMULATION AND EXPERIMENTAL VALIDATION

4.1 Tensile test

The performance of both the damage characterization and constitutive model respectively
presented in Sections 2 and 3 are preliminary assessed in the simulation of the tensile test
applied to the SAE 1020 and SAE 1045 steels.

The material parameters considered in the simulations are listed in Table 1.
Figure 5 shows the damage evolution at the point located at the center of the section that

undergoes extreme necking at high levels of deformation. In accordance with the damage
evolution (8.c) together with the damage potential definition given by equation (11), it is seen
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that the damage variable starts at de  and reaches it critical value dc at re . After this last
deformation, the damage is assumed to grow in sudden way up to the condition dc=1 that
represents the macroscopic crack development. The final failure of the specimen takes place
when all the points of this transversal area reach such limiting condition.

Some characteristic contour distributions developed at the neck for the fracture stage are
presented in Figure 6. As expected, the effective plastic deformation evolves from the center
to the edge of the sample. However, as a consequence of the high damage effects present in
this zone, a significant reduction of the hardening function including damage )1( pp dC −
involved in the yield funtion (9) can be particularly appreciated at the center of the sample.
Accordingly, the Von Mises stress also decreases in this region. Note that this trend exhibits a
sharp contrast with that obtained in a simulation without accounting for damage evolution 14.

Table 1. Material parameters considered in the simulations.
Property SAE 1020 steel SAE 1045 steel

Young’s modulus, E [MPa] 170000 160000
Poisson’s ratio, ν 0.3 0.3
Yield strength, Cth [MPa] 333 450
Hardening coefficient, Ap [MPa] 731 1148
Hardening exponent, np 0.187 0.121
Critical effective pl. strain, p

ce 0.024 0.010

Strain at damage threshold, de 0.225 0.175
Strain at failure, re 0.800 0.600
Critical damage, dr 0.10 0.05

a)             b)

Figure 5: Simulation of the tensile test. Damage evolution for a) SAE 1020 and b) SAE 1045 steels at the
center of the section undergoing extreme necking.
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a)      b) c)       d)

                                                a)                 b)                 c)                 d)

Figure 6: Simulation of the tensile test. Characteristic contour distributions at the neck for the fracture stage:
a) damage, b) effective plastic deformation, c) Von Mises stress and d) plastic hardening function including

damage )1( pp dC − .

4.2 Flattening of a cylinder

As an application of the constitutive model briefly presented above including the damage
parameters through the experimental characterization already described, the flattening process
of a SAE 1020 steel cylinder is simulated. The aim of this analysis is to qualitatively compare
the predicted material response with that observed in the experiments that were carried out by
applying a compression force under displacement-controlled conditions.

a)

b)

Figure 7: Flattening of a cylinder. Final deformed configuration of the sample: a) general view and b) detail
of the cracked zone.
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The final geometric configurations of the samples tested are shown in Figure 7. A main
macrocrack can be appreciated at the outer surface of the cylinder in the lateral zone where it
experiences tensile stress and, consequently, larger stretchings. To what extent the model is
able to simulate this effect is discussed below.

Once more, the material parameters used in the simulation are listed in Table 1.
Figure 8 shows contour distributions of pe  and dp at the end of the process. A detail of the

contour distributions of the damage variable and the pressure to Von Mises ratio I1/J2

(I1=1/3tr(σ), where tr is the trace symbol) is plotted in Figure 9. It is seen that the
corresponding larger values of these variables are located at the inner part of the cylinder.
Consequently, this is the region where the model predicts the macrocrack location. This part,
however, is mainly subjected to compression and, therefore, a visible crack does not occur
there during the experimental tests. In contrast this, the outer region undergoes tensile stress
with damage values near to dc which is, in fact, the onset of macrocrack formation 5-9. Note
that this is a limiting aspect of the model due to the isotropic damage evolution assumed in it.

a)    b)

Figure 8: Simulation of the flattening of a cylinder. Contour distributions at the end of the process: a)
effective plastic deformation and b) damage.

a) b)    

Figure 9: Simulation of the flattening of a cylinder. Detail of contour distributions at the end of the process:
a) damage and b) pressure to Von Mises stress ratio I1/J2.
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5 CONCLUSIONS

An experimental and numerical characterization of the ductile damage evolution that takes
place in loaded steels has been presented. Some relevant details about this procedure have
been discussed. The material parameters derived from it have been used in the numerical
analysis of two deformation processes: the tensile test and the flattening of a cylinder. It was
observed that the isotropic damage model adopted for these analyses can cope with
monotonic tensile loading but, in contrast, is not able to realistically deal with compression
stress states. Some modifications related with this aspect will be explored in future works.
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