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ABSTRACT

In this paper, we develope a general procedure to stabilize the usual Newton method
in such a way that algorithms obtained always converge to the unique solution of the problem.
The algorithms have two fields of successful application: the case where the operator
Tec! nH2'°° and the case where T is polyhedric. In the first case, quadratic convergence is
proved; in the second one convergence in a finite number of steps is obtained. Numerical results
are shown for an example issued from the field of differential games.

RESUMEN

Se presenta aqui un procedimiento general para la estabilizacion de los algoritmos de
tipo Newton, la modificacion de los mismos se realiza de manera que los algoritmos obtenidos
convergen a partir de cualquier punto inicial. Los algoritmos obtenidos presentan dos deminios
de aplicacion con performance sobresaliente: ¢l caso donde el operador T € c! nu2,oo y el caso
donde T es poliédrico. En el primer caso la convergence es cuadratica y en el segundo se logra
convergencia en un numero finito de iteraciones. Se presentan los resultados nimericos
obtenidos al aplicar los algoritmos desarrollados a un problema de juegos diferenciales.
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1. INTRODUCTION

Frequently, optimal countrol problems and differential games problems originate
variational inequalities (see [7) and [13]). Also, problems issued from-otfier fields are reduced to
tbuetypeofinequaﬁtiu.hadﬂbobtﬁnnumicdduﬁou.itilnecmrytodhaetize
the original problem (the continuous solution is contained in an infinite dimensional space); in
that way, the final problem, which must be solved computationally, is reduced to find the fixed
point of a contractive operator. When the actualization rate of the original problem is small
(see [8]), the numerical resolution (found by relaxation type iterative algorithms, see {1}) may
lead to slowly convergent procedures. In [8], [9], [10}, we bave introduced acceleration
procedures to improve the speed of convergence of the usual algorithm of Picard type; it
eseentially consists in the combination of Picard’s and Newton’s methods. In this paper, we
extend the procedures presented there, in order to make them applicable to general nonlinear
contractive operators ( where they no longer are the e of the discretization of differ-
ential games or optimal control problems ).

The set of results obtained is the following. In a first place we have developed a general
procedure to stabilize the usual Newton method in such a way that algorithins obtained always
converge to the unique solution of the discrete problem (in particular, this technique enables us
to transform Howard’s methods, which are not convergent in the case of general differential
games problems, and to make them applicable to others problems outside the original fields of
application). In gemeral, although the modified Newtons algorithm is convergent, no
improvement of the order of speed of convergence can be expected; in fact we give an example
where independently of the chasen starting point, the convergence is geometric of order 1/s.

In spite of these aegative results, two fields of successful application are shown: the case where
the operator TEClnﬂz’m and the case where T is polyhedric. In the first case, quadratic
convergence in proved; in the second one convergence in a finite aumber of steps is obtained.

Finally, numerical results are shown for an example issued from the field of differential
games.

2. PROBLEM DESCRIPTION

2.1 Elements of the Problem.
Let T be an operator defined in ®%, such that

T € CCNH"T(27) ]
We assume that operator T is contractive, i.e. there exist p, 0< p < 1 such that T verifies

ITx =Tl < (1-p)Ix - k] VY x, €% '+
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The algorithms proposed in this papet, are aimed to compute in a fast way the solution of the
following problem:

Problem P:

[ Find® €R”, such that Tx =%. ] ®

2.2 Existence and Uniqueness of Solution.
Proposition 2.1: There erisis an xnigue solution for (3).

Note: No proof of any theorem, proposition, lemma etc, will be given im this paper. To find
them see [18].

2.3 Iterative Computation of the Fixed Point.
The Fixed Point Theorem gives us the following algorithm for the computation of X:

A0 algorithm:
Step 1: set x°€ P, and »=8.
Step 2: compute xy+] =Tx¥

Step 3: irx* =x*+1 then, stop; else, set ¥=»+1 and go to Step 2.

For the convergence of algorithm A the following result holds (see [1]):

Theorem 2.1: AQ algorithm produces cither & finile scquence x” whose last clement is the ersct
solution X of the problem, or gemeretes an infinite sequence 1 converging to X. Alse, the
Jollowing bound for the approsimation error is velid

Ix*—xl<(1-5)Ix*-x1 )
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3. AN ABSTRACT ALGORITHM AND ITS CONVERGENCE

3.0 Preliminary Discusion.

Although algorithm AD converges from any arbitrary initial point xg , the corresponding speed
of convergence is very slow when factor p tends to zero. To accelerate this procedure, Newton’s
type methods should be used. But in general, these methods are not convergent from
everywhere and in consequence, it is necessary to design a technic to stabilize them and to
achieve globally convergence,(see for instance the appendix, where a particular case of
Newton’s methods, Howard's method; originally introduced to solve optimal control problems,
may be not convergent when it is applied to solve differential games problems).

To stabilize the method we use a merit function which measures the distance from the
current point x to the solution X. The special algorithm presented here generates s sequence of |
points x¥ such that the associated sequence V(x”) is a monotonically decreasing sequence
converging to zero. This procedure is obviously related to Lyapunov’s methodology to stabilise
dynamical systems, (see for illustrative remarks about this fact, the clever introduction of the
book of Polak [16])

3.1 Lyapunov’s Function. Equivalent Problem.
We define, in a natural way, the following Lyapunov's function

V(x)=l’l‘x-x|2 . 5)
The function V satisfies the following properties:

V(x)=0 ¢ x=Tx (6)

Vix)>ptx—-x 1 (7

where X is the solution of the problem. From (5), (6) obviously bolds, also as

Ix—Txl = |Ix-Tx + T — %] > Ix—x} - ITx-Tx| >

2 Ix—x1 - (1—p} Ix—X1 = p Ix~%I
thean
V(x)=Ix—TxI1?> p? Ix—%}?
We are now in conditions to introduce the auxiliary
Problem P:

{ Find € ®", such that V(x) = min{ V(x):x € ®7) ] ®)
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It is obvious, by (6) and (7) that problems P and P’ are equivalent in the sense that both of
them have the same solution X.

3.2 Abstract Algorithm.
We define here a general algorithm and we prove the convergence in terms of the descent of
Lyapunov’s function.
Let M be a map such that:
| VER S [t o

We shall suppose that M is a decreasing transformation of V in following sense:

V(y)S7V(x) Vy€Mx )
where 0 < vy< 1.

Algorithm Aa

Step 1: set xX°€ A", and ¥=0.

Step 2: choose x"“e Mx¥

Step3:  ifx¥ =x"t], then stop; elae set ¥=»+1 and go o Step 2.

The convergence of algorithm Aa is assured by condition (9), as it is established in the
following

Theorem 3.1: If V(y ) <yV(x) V y€Mx with <1, then the absiract algorithm Aa gives the

solution X in & finile number of steps or gencraies & seguence converging 1o X.

3.3 Necessity of Condition V(M(x)) < ¥y V(x).
In algorithm Aa, condition
V(y)})<vV(x) Yy € Mx) (10)
cannot be replaced by
V(y)<V(x)
without Josing the property of convergence.
In effect, let us consider the following function T : ® — R

—(%ﬂ)g«yx if x>1
T(x)= 0 if1<x<1
(1;435);-“ if x<-1

Then, | T" | <1 and problem P has the unique solution X =0.
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I we define the map
M(x) =10 i x e L
M(x) = x - (1-T"@)) ™ (T(x) — x) ifx ¢ 1,1
we obtaia
el x”>1then

M(=") =2" + (1= T (T2) =)= — (gt ) < -1

-‘l‘,x’< ~1 thea
=¥ 4 (1= T (NP -2 ) =155 > 1

In all cases, the following property can be proven without difficulty

V(M(x*))<V(x");
however, if {xof > 1, algorithen As gemerates & sequence {x”},%, sach that, although sequence
§x” 1.is docreasing, it is not comvergent te zero (in fact, Ix* f=14(Ix*f—1) 2¥). That
sequence has two cluster points, 1 and —1, while sequemce V(x”") converges monotonically to 1.

3.4 Practical Algorithms.
We bave presented above the g | algorithm Aa that converges from everywhere. Now we
shall define two practical implementation of it, algorithms Al and A2, trying that these

algorithme apply, wb possible or jent, Newton’s method to solve the non linear
equation Tx~x=6.
This situation is detected testing the & it of Lyapunov's function V. When Newton's

method does pot produce a decrement of V, Newton's direction and direction Tx — x (given by
algorithm AD) are amociated, until the new computed point x”F! satisfies condition
V(") < V(=)

In Al algorithm, this condition is defined in Step 3, and it iavolves the computation of
T(T(x))- Algorithm A2 avoids the computation of T(T(x)), using an adaplative estimation of
factor 7.

3.4.1 Preliminaries for the application of Newloa's method.

Definition of the set of *differentials” ©(x).

As operator T is Lipschits continuous, it is only almost everywhere differentiable. In order to
define in a correct way algorithms Al aad A2 (introduced in the following section), it is
Decessary at every point of R® o define generalised Linear operators (in fact, wé use here a
restricted version of Clarke’s subdifferential or peridifferential of T at x, for details and a
discusion aboat this maters see [3], [12]) such that they coincide with T°(x) at points where T
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is continuously differentiable. With this aim, we introduce the following concepts:
Definition 1
8(x)={T"(x)} T is differentiable in x
6(x)=0 i T is ot differentiable in x

Definition 2

o(x)=) U{é(y)/u—xnsd (1)

>0

By (1) and (2) we have that T is differentiable almost everywhere and that in any point where
T is differentiable it is satisfied that

T < 1-p,
in consequence it is easy to prove (sec {12]) the following properties:
©(x) =T'(x) ¥ T is continuously differentiable at x
B(x)#¢8 ¥ x
VYreO(x),1r1€l—~p (12

3.4.2 Algerithm Al. Definition and properties.
Algorithm Al

StepO:Giveaseqneneelp,np/)‘=1,1h=0,Ap-0,qp—~lup—ooo

set v =0 ,x":x0

Step 1: If T(x") = x¥; then, stop "
1 B = V(T(x"))
else, set p=1, 8, = ~a
choose an arbitrary T'€ 6(x")
and set  v¥= (I-T)' (T(x*) - x*),
w’= T(x*) — x¥

Step 2: set vOP= Ap v + gp w¥; PP =x" 4P

Step 3: If V(y"‘p) < l_ikﬁz v(x™) then x"'“:y"p, v=r+lgotostepl

else p=p+1 and go to step 2
Remark: We denote M(x) the set of points given by algorithro Al. As ©(x) is not single
valued, in general, also the set of points generated by algorithm Al is not a singleton.

Theorem 3.2: The loop 2-3-2 ahoays finishes in ¢ finite number of sicps, defining for cach point
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x¥ & new point M(x”) = . The opersior M verifies property (9) axd then x¥ converges
to X.

3.4.3. Algorithm A2. Definition end properties.
Algorithm A2

Step 0: Give a sequence Ap, np /Ay = 1,19, =0, Ap — 0, 5p — 1 whenp — o0

set ¥y =0 ,x”=xo.u=aoE[0.l), p=1

Step 1: If T(x¥) = x¥; then, stop
dlse, choose an arbitrary T" € &(x"), p=1, o, 4= 0y
and set
VW= (1-T) (T(x") - x¥)
= T(x) - =¥

Step 2: set v"'P= dpv¥ + ap w¥; yP = 7 4P

Step 3: set

°v+l

ay fp<p

c;+l =0, fp>p

Step 4: If V( yy‘p)< a;'H V(x¥); then, ZH= yy‘p, pY=p, v=v+1gotostep 1
else, p=p+1,

if p>p; then,

l+a
a—5 = v+1
p._p+1‘ °v+l_'_f—"

and go to step 2
else, go to step 2

Theorem 3.3: The loop 2-3-4-2 alwaeys finishes in & finite number of steps, defining for each

point x¥ & mew point M(x¥) = H

1——1—2-_5—:'-:—) and then x¥ converges 10 X.

. The operetor M verifies property (9), (with y=




Algorithms Al and A2 are based in the common use of directions b, and b,.

by=Tx—x

by=(1-T")(Tx-x)
This combination ensures the giobal convergence of algorithms through the descent of
Lyapunov’s function V. Although in the case where T is differentiable, Newton's direction by is
always a descent direction and the search could be restricted to that line, we shall show that
in the case where T is not differentiable we cannot use only Newton’s direction b,, because it
may be not a descent direction.
Newton'’s methods proposed in this paper are based in choosing a matrix T°€ 6(x); if T is not
differentiable, ©(x) has more than a unique element. If we choose T°€ O(x) it may occur that
the new direction is not a descent direction for function V, as it s shown im the
counterexample given below. In order to avoid this phenomenon and to get a stable and
globally covergent algorithm. Algorithms A, and A, take a suitable bination of Newton’s
direction and direction b;, that always brings a descent direction.

Counterexample where w is not a descent direction
Let T:R? — X? be such that

Mx+p ifx, >0

Tx=
Mx+p ifx,<0
where
0.9 [ 0.9 0
M= M=
-0.9 0 0.9 0

0.1

P=1 09

By definition of T, we bave that in the set {x€R?/x,=0) (common boundary of the
individual domains where T is defined as an affine function ) operator T is well defined and it
is continuous.

It is clear that at x=0, ©(x)={M,M}. When we apply algorithms Al or A2, if the element
chosen by them is M, we can see that direction by = (I — M )™ (Tx — x) generates a half-line
contained in the set where T is an affine function with kernel M, in effect:




10 0
. . 0.1 1
by=(I=M)2TM) = (I-M)" p= [0.9] = { o ]
-9 1

90, for the derivative of V in the direction b,, we have
g,¥,=(vv,b,)=—p'(u—x)(fa—x)"p=—b,'(ﬁ—n'(u—nb, (1)}

In this case
-0.8 0.9
M-Iy(M-I)=
-0.9 1

in consequence
gb1,=(vv,b,)=—{»'(u-nm—t)"p=—b,'m—l)’(n—nb,=o-s>o

and Newton’s direction b, is not & descent direction.

4. SPECIAL CASES
4.1 Quadratic Convergence.
When operator T is smoother than in the general case; i.e, strictly
T eclnu®™® (15)
we have that algorithms Al and A2 converge globally from any starting point with quadratic

rate of convergence, i.e.
b+ g l<klx? —x 12
Theorem 4.1: If (15) holds; then, there exist K > 0, i(xq) such that
' -2l < kIx—x12 vop #(xg)

4.2 Couvergence in a Finite Number of Steps.

In many problems, for example those originated in discretization of differential games or of
equations or non linear inequalities, operator T results locally affine, i.e. continnous and affine
is its restriction to some determined sets. In this case we call T a polyhedrical operator;
strictly, we define T as polvhedrical if there exist a finite set (with cardinality x) of indices
"q” and for each q there is a vector aq € R, & nxn matrix Mg and a set Sq C ®” such that




- 81~

the following properties hold:

X
Use=#" o)

q=1
qu_+gq=Mq,x+:q.Vx /xesqnsq, (21)

So, it follows that T is a well defined and continuous operator such that:
Tx = Mgx +aq VY x€ Sq

Properties:
6(x) C {Mq/q€ Q(x)}
Q@) = {a/Tx=Mqx+ag)

Theorem 4.2: If T is polyhedrical, slgorithms Al end A2 comverge in ¢ finile number of steps.

Remark: In the case T polyhedric conditivg X9) «anbixjeplaced by the simple condition
The property of convergence remains valid.

§. NEGATIVE COUNTEREXAMPLE
5.1 Example with at most a Geometric Rate of Convergence of Order 1/3.
o Definition of operator T:
Let be § < § <7 <1, such that -
fo-n < 858 e =
We define function T in the interval

.
=1z !

in the following way:

= - 1-v . 5 . 1-v
For 8, = -, ﬂ:—m' p-ﬁlﬂ!“Tmi'ehk:

Ltdr,, 1! H8,<x<1
T(x) =
58, € p<x<s,

For a general point x>0, we define «x):[ﬁ] and
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1 .‘31X+2ﬁ—lﬂq i[ﬂ,ﬂQstﬁq

T(x) =
A if 89 <x< 8,89

Y x<0 we define T{x)= —T(—x). Function T has then the shape shown in Figure 1.

o Effect of algorithm Al on functioa T:
We shall show that for the special above defined function T, algorithm Al never get a
superlinear rate of convergence but merely a geometric coavergence of rate 1/3.

In fact, in a first place we shall proof that algorithm A1l leaves loop 2-3-4-2 always with
p=1
« 1fx¥ € 8,09, 8], thea:

vtz 5(—15__—1) ( T(x¥) - xy)

y""=x"+vy"=x"+3(14_7)(l—+43—7xy+7+1ﬁq—x”)=—%ﬂq
By definition
§x < Tx < yx
Q- x <x-Tx<(I—-9)x ¥Yx>0
Then
(1-1%x <Ix—TxP < (1-4)2x? (23)
In the same way it can be proven that {23) is valid for x< 0

v = -y B < -2 P = Ja-ay e

V(x¥) > 1= 1P > (1) 83 8™
Then y"’1 satisfies the test

Vo' < Jve) < R vty
because
—+)? Y v
V(y”'l) < %(l—ﬁ)zﬁ" < (-7 (‘-7(-:*(:)—7‘))7 Pl < V(f )

by virtue of (22). Moreover,

9 %
Pyl = %— 2 "3 L (24)
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s x¥ e (A7), 5,69, thea T =0,
= ™) ~ =¥
and
=T
and then obviously it is verified .
L ve™h < B v
Moreover,

B2 4121 2 411 (25)

In consecuence, it is always verified that Ll y""

The operator M of the abstract algorithm Aa (that comprises algorithms Al and A2)
verifies, by virtue of (24) and (25):

jua |2 m (26)

and in consecwence the convergence rale is never superlinear independently of the chosen
starting point xg.

6. A COMPUTATIONAL EXAMPLE

We deal here with a discrete don of a differential ¢ problem, where to find the value
function u it is necessary to solve the fixed point problem:
u=Tu
where
T = mjn max (v A% + %) 20
with
0<y<l1

a€ A, card{ L) = m,
o €7, card(¥) = m,

A™? axn matrix verifying:
a,0 as _
ATz 51; A" =1
™ en®
It can be casily proven that: T=9 Aa'i

where a, & are the parameters which realize the min-max in (27)
In the examples solved data Aa". ™7 have been generated ramdomly. In the following
tables are shown the numerical results and the computational times.




Example 1: l=20,m,=5,m,=5,1=0.m“

iterations A\

1 0.1314 167
2 0.7248 10*
3 0.1987

4 0.2255 107?
5 0.7632 107'*

Computational time: 117 ( PC IBM/AT)

Example 2 an= 10, m, = 5, m, = §, y = 0.999999999
iterations v
1 0.6727 10'¢
2 0.5173 10%
3 0.1512
4 0,2631 1072
5 0.1363 10°*
6 0.1110 107'*
Computational time: 37 { PC IBM/AT)

CONCLUSIONS
The principal results obtained in this paper are the following:

e For a general nonlinear fixed point problem the obtained algorithms are of Newton’s type
and they converge {rom every starting point.

o In the case where the operator T ec! n HZ,oo quadratic convergence is proved.
o In the case where T is polyhedric convergence in a finite number of steps is obtained.

e Examples are given, showing that it is pot posible to define a convergent algorithm of pure
Newton’s type, and that it is not posible in general to obtaia an algorithm with

superlinear convergence.
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APPENDIX
Themthodshmpropaedmﬂzuhmdﬁ,thhﬂlndhd(ciﬁn&ﬂym&dh
solve optimal mwm),hmumnwuwmm
because for these problems it is in gemeral net convergent.
To show this limitation of Howard's method, we consider an example where the value function
of the game is given by the solution of the following fixed poiat problem.

x=Tx

where 'I‘x=l:ﬁe-A n:téxn (ﬁ.bx+c.b)

beingx € R,A={0,1}, B={6, 1}
Bap = 3/5.c == 6/5 ifab =11
By = 0.:.'.:-6/5 ifab =00
By = 3/5 ., ¢y, =6/5 ifab = 01
By = 3/5.c‘b =0 fab=10
It is obvious that | Tx — Tk { < 3/5] x — & |, and 5o T is a contractive operator.
Then, the problem is to find a solution of
*=nEA en (4t®)
with
dgo(x) =0
‘m(x) = 3(x+2)/5
#1000 = dyy(0) = 3-2)/5
If we try to apply a naive version of Howard’s method , we would obtain:
forxg > 2, x, =xp+ (1 ——T’(xo))('l‘xn—xo)= ~3
forxg < —2, x; =xg+ (1 - Txyg))(Txy - x9)=3
Then, this procedure would generate a non-coavergent sequence.
Algorithms A1 and A2 avoid this phenomenon; in fact the point given by Newton’s method
(Howard’s methods in this case) for x| >2 is not chosen because the test:
vy < ¥ v(x*)
is not verified, and algorithms Al and A2 choose others suitable points and finish in a finite
number of steps because T is polyhedrical ( see theorem 5.2).
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