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RESUMEN

Se presenta aqui un algoritmo ripido para la solucion numérica del problema del obeticule
unidimensional. Se demuestra su convergencia en un mumero finito de pasos y se presentaa
algunos ejemplos de aplicacion donde puede observarse la buena performance del algoritmo

desarrollado.

ABSTRACT

The purpoee of this paper is to present a fast algorithm for the numerical solution of the one-
dimensional obstacle problem. It is proven that it converges in a finite number of steps and
some application examples that show its efficiency are given.




1. DESCRIPTION OF THE CONTINUOUS PROBLEM

Let be the interval I= [0,L] and a function ¢ :[0,L] — R, ¥ € W = B3(,L).
The problem of finding the upper eavelope of function ¥ (the minimum concave function that
satisfies y(s) > ¥(s) V 3 € [0,L] ) can be reduced to finding the solution to the variational

inequality:

Yz
(1)

O,v—-y> YveW

where (u,v) denotes the scalar in Lz(O,L) of two elements u,v.

This solution is characterized by the conditiona:
Y29 2
Y" <0 enL2(01) 3)
YX)>¥x)=>3865>0/ y"(t) =0 Vt€(x-6x+§) 4)

For these results see [1].

2. DISCRETIZATION OF THE CONTINUOUS PROBLEM

For the numerical solution of problem (1), this variational inequality is discretized by using the
finite differences method.

2.1 Description of the Discretization Procedure
2.1.1 Interval | is replaced by the set lh

L={x/x=06-Db, i=1,N41; b=4}

2.1.2 Space W is replaced by space Wh
Wy ={y0) /y:1y -.,QN“}
An element of Wh will then be identified by a vector *y” of components

¥p i=1,N41
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2.1.3 Discretization of differential inequalities

% Condition y”< 0 is discretized in the following way:
y;_l-'2yi+yi+150. i=2..... N (5)

* Condition y > ¢ is trivially discretised:
yi2¢(xi). i=1,....,N+1 (6)

2.2 Prescntation of the Discretized Problem
Three equivalent presentations of the discretized problern will be given here:

P‘; : Find the minimam element of Wy that verifies (5} and (6).

o

P, : Find the only element that verifies (5), (6) and (7), where:

N

W= V"(’l) v INGIT *(‘N.‘H)

m

y; > ¥(x) =¥, =2y +¥%,,=0

P; : Find the unique fixed point of the operator:
A.h : Wh — ‘V‘I
where:

(Ahy)i = ;’-‘(xi) if i=1 o i=N+1
(8

(Apy); = max (Mx), J O 4y, )} fori=2...,N

2.3 Existence and Uniqueness of Solution o the Discrctized Problem

The above presented problem are equivalent in the sense that they have a unique solution but
each of them has a particular advantage. P‘l‘ is the natural way to obtain the discrete problem
from the continuous one; P; is very useful to prove the convergence of discrete salution to the
original solution and P: is the most convenient set-up to see the discrete problem from the

aigorithmical point of view,




Theorem 1. Problems P‘;. P:, and P: are equivalent and have a unique solution (the
discretized problem will be called P2 and its solution V).

2.4 Nterative Computation of the Solution
2.4.1 Preliminary definitions
We say that y is a supersolution (subsolution) of problem P i
Y 2 Ay (95 S (Ay7))) )
Theorem 2. Operator Ah is monolone, i.e.
Y27 = (AY) 2 A (10)
and contractive in the following sense:
| Apy = A S My -7

} (11)

| =3 (2)

| ARy - APs|<oly-v91

with <1, |Jyj=  max 1%
1= 1,N+41

Based on the presentation Pg of the discretized problem and on the properties stated above
for the operator Ah' the following recurrence for the putation onh is defined

Algorithm A0

Step 0: set y: = yj Yi=1N+l, ¥ € \\’h and set m=0

Step 1: set ym'H = Ay y (13)
Step 2: set m=m+1 and go to step 1.

With respect to this algorithm, the following result holds:

Theorem 3. The sequence Y™ converges to the unique solution ¥ of PP from any initial value ¥

€ W, ; iy is a supersolution (subsolution). seq y™ is decreasing (increasing). The following
error bound is siso valid:
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|Y—y"'|$ﬂ[?]|7-—y°| (14)

Remark 2.1: Although iteration (13) is an admissible computation algorithm, its convergence
can be extremely slow if N is very large.

Remark 2.2: The proofs of Theorems 1, 2 and 3 are outside the main stream of this paper and
are left as an excrcise to the reader (the general lines of the proof can be seen in [3]).
3. FAST COMPUTATIONAL ALGORITHM

We will propose a fast algorithm that is inspired on the property of the function which is
solution to the original problem of being linear in the zone where  y(x) > ¥(x) .

3.1 Preliminary Definitions

*Vy€W, wedeline 1y)

1MW) ={i/y;=¥x)} (15)
LetSC{1,2....,N41}
ei(S) =max{j/i<i,j€ S} (16)
oi¥(S)=mun{j/j>i,j€ S} (17)
cFSH) = (6F =Dy +6 -y ) /6= D) (18)
o M: W, xS — {0,1}N]
=0 iy; > F(yS))
(M) (19)

=1 ifyi < F(v,S.)

Remark 3.1: Instead of using the expression (5) to compute the discrete version of the second
derivative of y, we use (due to the fact that Yy s linear between itand i) the equivalent
relation:




- 60~

im place of (5).

3.2 Deacription of the Fast Algorithm
Algorithm Al

Step 0: eet y? = Wx)  ¥i= 1N+
3

Stepl:setr =0 ,i=2, 8% ={1,2,..

Step 2: i M(y”, §”), = 1, then :

ifM(y”, S*), =0,

.2 N41}

i'+l= i
41
"= 967y s i
yH=ux) viesH
J
y.l“l-l: F&Y, S"+l, i) =
3 R .
= F(yv-l-l’ S”'H,)) vj ¢ Sv+l
and go to step 3

ifit(s¥) = N+1
then T = » and stop (¥ = ¥))-

it iT(§¥) < N+1,
then i = it(S”) and go 1o step 2.

Step3:Setv = w41, i(S¥) =1and it(S¥) < N, seti =it (s¥)

if 1(8*) 2 2,

scti = i(SY)

if i1(S¥) = 1and it(5*) = N+1,

Step 4 : set I(v) = i—1 and go to step 2

3.3 Convergence of Algorithm Al

-et»':vand-up(yV:yh)

(20)

(21)
(22)

(23)

To prove the convergence, we will show that algorithm Al generates an increasing sequence of
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functions which in a finite number of steps converges to the solution which satisfies (5), (6) and

-

Lemma 1: yf'zﬁ(xj) Vi=1,N+1 Vr=40l,....
J

(29

Proof : Obvious for » = 0. For each » > 1, vector y” is defined when the test of step 2 is

positively verified, consequently:
Y = ¥x;) Vies”
J

Also, if j g S¥, two options can arise:

a)j = i¥, which implies (My* 1, s"‘l)i, =1 = y:'—l < Fy*~ 1,51 %)
]

but ¥x.,) = y*~!, then
1 il’

w(xiv) = y:;—l < }-(’v-—l‘ sv—l' i') - P(’v—l' S’, i") = F(y”, S", i") = yuy
i i

b)j # i¥, which implies j ¢ sv-1 , consequently :

yj' = Fy¥, 8%, j) = FO”, S, 5)

(29)

(26)

it is clear that y”, being between j-(S*) and j+(S") the linear interpolation of the values:
]

v v
Yy Y
ity 76"
is also the linear interpolation of the values:
. M

Y vy
its™h ™Y

(s 2 i(s*)
its*h <itsm
then
' yj’ = F(y*, 5", j)

but since S¥"!=S¥ U {i¥}), there are two options for j¥(s*1):

b,)i¥(S*)) € $¥ in which case y” = ¥(x = y*!
1 . -
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doarly _ o s . »1 =
By) JH(S) =i in which case ey asmy) © yj'*(S‘”‘>

by virtue of (28).
Then, as y¥ is the interpolation of the values Y '
j it re™h
Y =Fp”, "L i) > Fo* L s* i) = y;*‘ @
J

by induction, y*! > ¥(x;), with which (24) is proved.
3

2]
Corollary: Y2yl vi,ve=1,....
J )
Proof: Evident by virtue of (25)-(27).
a
Lemma 2: Ve21,ifl(v)2>22 then Yq/ 2<q<(v)
Y:Z F(y¥,5%, q) (28)

Proof: We will do it by induction :
a)for ¥ = 1, vector y” verifies:
yj" = y;’ =¥(x) Vi#i¥
since i¥ is the index where the test in step 2 is satisfied; it also satisfies:
M(Ss°, y")j =0 v2<j<i¥-1

in particular ¥ 2 < j < (ily(sh)-1 = i¥-2

Since yl =0 vi<jcil-1
i T

and also
it =j+1 = 7% vi<i-2
Y =j-1=j(% vj<i-2
we have
Fe%5%0) = Fohshy) vegisgi-e
but

ME% sy =0 = y7 2 FOO S50
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from where

,jl = y; > F(°%8%j) = Fol,shi)  ves<is<alysh-1=1

and then (28) is valid.

b) by induction, we will assume that (28) is valid for ».
Let be »+1 with 1(r+1) > 2.
The index iy‘H is defined when the test in step 2 is positively verified; we divide the analysis

in considering the possible cases for i”+1:

AP s

o
b it <
From the special structure of the algorithm, where in loop 2-3-4 the analysed index i is
increasing and only takes a lower value than i¥ when the loop is started, it must be:

iu+l - (iy).(sv)
By the definition of y"‘”, we have that

y.v+l - F(y”+1, SWH.j) vig sv+l
J

8o in order to verify the validity of (28) it should be enough the analysis of the cases where j €
sV+l

Let 2 <jeS”H suchthat
3 < @Y -1 = 1)

By the definition of y”’”, we have that

w=yt vicp<@yEth (29)
and also
pEE" = p2Eh)  v2<p <@yt
therefore

Fy*+L, s¥H5) = ROt s% )
and in consequence, by virtue of (29) and the induction bypothesis, it holds :

yj"“ =y’ > FO¥,8%5) = Fp¥ s )

L]
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that is what we wanted to prove.

by "t >

Similarly to the previous reasoning, it is necessary to analyse only the case:
2<j. jes™, s @1

For these values of j we have:

e =it (30)
at the same time, it always holds that
=yt vicp <@ttt (31)

We divide the analysis in two cases

e if j < W) = @y (s")-1

yj" > F(y”, $¥,j) is satisfied by induction, so that

y;"” =y 2FO".5%5) = Fy"*1, $"*1 5) by virtue of (30) and (31).
if o) < (")

yj’ > F(y¥, S¥,j) because the test in step 2 was not satisfied, 50 that by virtue
of (30) and (31),

= v 2 RO, 8% 0) = Fo** 545

)

is satisfied, and then the proof by induction is completed.

Theorem 4. Algorithm Al converges in a finite number of steps to the soluti Yhof, bl

b,

Proof; Since cach time a new index v is generated, the set S” is reduced by an element, it is
obvious that the algorithm must end in a finite number of steps.
Let 7 be the value of the index corresponding to the last time a point of set S¥ is removed.
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By lemma 1,
v ¥(x) VYi=1LNH
b}

is satisfied; moreover, by the construction of element "F' we have:

> He) (ie JES) = o7 =FGT.50)
It remains only to prove that yv satisfies
v 2R0T S vies”
By lemma 2, we know that
2R 0 vies vasi<(@r-)
By entering the algorithm again in step 2, the points p € S¥ such that P> (iF)'—l

are analysed; so, as 7 is the last index, this implies that for those points it is always verified
that :

(Me". s%)) =0
that is

2 F07.5%0)

as a consequence y.F verifies (5) and then it coincides with the unique solution of PP, In this
way we have proved that the algorithm finishes in a finite number of steps.
o
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4. PRACTICAL IMPLEMENTATION OF THE ALGORITHM

The description of algorithm Al is a detailed theoretical version that allows us to prove its
mmByobouﬁn;Mutmﬂythdpﬁlhmopeu@auvduuy? Ji€eS i
obvious that it is only necessary to preserve those values (which constitute i set of decreasing
cardinality), because between them, vector y” has a linear behaviour. In this way, the
algorithm can take the following practical implementation:

Algorithm Al
Step 0: set NT= N+1
xj=(i-l)h . Yi=L,NT
yj= *(xj) + ¥j=LNT
i=2
Step 1: If i+1 > NT, stop {the solution b2Y is the linear interpolation of values y;jon

the points x;, j=1, NT)
I i < NT-1 go to step 2.
Step2:set  Dy= (41— %)/ (xigg = %)
Dy= (5= %)/ (- %)

if Dzsnl. set i= i+1, and go to step 1.

ifD2>Dl.let xj=xj+l Yj=4%4....,NT-1
Y= Y541 Vi=i....,NT-1
set NT= NT-1

i= max (2,i—1), and go tostep 1.
5. APPLICATION

5.1 Examples

We present here some examples correspouding to different functions ¥ and various sizes of N. -
Example 1:
The fanctioa ¢ has the following form
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p=-sen(xt) sen(wrqt) t € [o0,1)
the problem was solved for the values of g=19, N=1000. See Figure 1.

Example 2:
The function ¢ has a linear behavior between values generated in a random fashion. The

results are shown in Figure 2 for the value N=200.

5.2 Time Comparison Between Algorithms Al and AO

In the following tables are shown the times of computation employed by Algorithm Al and
A0. Algorithm A0 is stopped when the relative error with respect to solution Yy is smaller
than ¢. The values corresponds to different parameters N and e.

It can be observed that times for Algorithm Al are independent of ¢, and are asymptotically a
linear function of N. Also, it is evident that Algorithm Al improves dramatically the
performance of the computational procedure to solve the obstacle problem. For ¢ = 1078 aud
N= 400 the improvement is of 99,95 %.

TABLE 1
Times
P 102 13 1074 10°
N Al Ab Al A0 Al A0 Al AQ
20 5" 5.6 5" 629" 35 703" 5 851"
40 5.2" 8.07 5.2 9.83" 5.2° 1.7 527 15.43"
100 571  49.81" 571 73.40° S.717 3 sr 2

200 6.66" 4 33" 6.86" 758"  6.86" m» 18’

400 851"  90IT” g51r My s shp g5 hape
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TABLE 2
N Times (A1)

100 5.11"
200  6.86"
400 851"
1000 13.73"
4000 39.76"
8000 74.42°

10000 91.78"

Remark 5.1: These results were obtained in a computer PC-IBM/AT, and the programs

were written in Fortran77.

6. CONCLUSIONS

We have presented here a fast algorithm for the numerical solution of the one-dimensional
obstacle problem. We have proved that it converges in a finite number of steps. Examples
of comparison show its efficiency and usefulness.

The methodology above presented can be exiended to deal with a problem issued from a
field of image processing, that is the problem of fiding the least convex envolope of a closed
curve. This will be the subject of a paper in preparation.
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