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RESUMEN

El presente trabajo trata del comportamiento no lineal
de placas con apoyos unilaterales dentro de la teoria
elastica clasica. El analisis se lleva a cabo usando una
formulacién directa a través de la minimizacion del
funcional de la energia potencial total con restricciones.
La introduccidén de la técnica de elementos finitos conduce
a un problema de programacion cuadritico a ser resuelto con
el algoritmo de Lemke.

ABSTRACT

The present work deals with the nonlinear behavior of
plates with unilateral supports within the classic elastic
theory. The analysis is carried out by using a direct
formulation through the minimization of the total potential
energy functional with restrictions. The introduction of
the finite element technique leads to a Quadratic
programming problem to be solved by Lemke's algorithm.
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INTRODUCT ION

The contact of one body with another is the manner
through which a structure transmits forces to its supports.

Some structures present the so-called ambiguous or
unilateral supports; that is, they have the possibility to
lose contact with their supports under certain load
conditions (Signorini’'s Problem (1, 2)).

Contact problems in solid mechanics "are nonlinear
because the contact area is not known prior to the
application of loads and require special mechanical and
mathematical considerations.

These problems in elastostatics (small displacements)
can be studied within the - theory of variational
inequalities whose solution can be obtained by finite
element approximations and mathematical programming
techniques.

This work deals with the nonlinear behavior of plates
with unilateral supports. The analysis is carried out by
using a8 direct formulation, avoiding in the discretization,
the introduction of artificial finite elements required for
incremental techniques.

The solution of the problem can be determined in two
ways: using, either a variational formulation (theorem of
virtual work); or by the constrained minimization potential
energy functional. Once the finite element wmethod is
applied [3), the first one leads to a3 system of variational
inequalities and the second one to a quadratic programming
problem.

Up to this point, both procedures can be transformed
into a linear complementarity problem to be solved by
Lemke's algorithm [4], through which the exact solution of
the discrete problem is obtained in a finite number of
steps.

This work is based in others, for example the studies
of Feijoo and Barbosa [(35), and is developed under the point
of wview of the minimization of the energy functional
(primal problem). By the introduction of the Lagrange
multipliers, which release the restrictions, the primal
problem is carried to its dual. Its solution is associated
with the linear complementarity problem.

Numerical results are obtained by modification of a
Mindlin plate finite element program {[6) with reduced
integration, where wunilateral restrictions and Lemke
algorithm for solving linear complementarity problems, are
introduced.

The advantages can be appreciated in the i1nputc and i1n
the outputs whose transparency allows us 0 recognize
immediately the type of support.! Some examples were rarried
out giving satisfactory results.
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FORMULATION OF THE UNILATERAL PROBLEM

Consider an elastic deformable body which occupies .
open region Q in the three—disensional Euclidean space »
Figure 1.

FIGURE 1

The boundary & of the body Q is regular and consists
of three disjoint parts: anu. OO' and ODC. The portion 00‘.

identifies the part of the boundary with prescribed
displacements. On the part oof forces are prescribed. And

the part anc is the actual contact surface that is unknown

because of the unilateral nature of the restriction. Thus,
the points on ang can either resain in contact with the

support or detach from it. The body is under the action of
the body forces b, boundary forces s on the boundary an,.

and prescribed displacements u, on mu.

The problem of finding the deformation and contact
force for equilibrium configurations of the body €, under
certain boundary and loading conditions, is called
Signorini’s problem. In this work the theoretical mechanics
Signorini’'s problem is discussed in regard to the special
case in which no friction exists on the contact surface.

For the case of small deformations, the displacement
field is small enough so that higher-order terms of the
displacement gradient can be neglected jin the equilibrium
and strain-displacement equations.

With all the considerations stated above, Signorini's
equilibrium prodblem without friction assumes the form of a
boundary value problem whose strong formulation tekes the
forms:
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div T(u) + b = 0 in Q (1.a)

u=u =90 on N (1.9)
s (V]

T(u)n = s on 60, (1.c)

r. £ 03 u_ < 03 Foln = o on anc (1.d)

where 7 is the stress tensor and n represents the outward
normal to the surface .of the body, so that ro= r.n,

un = 4.n, are the normal components of the reaction r and
the displacement u on the boundary ane. Conditions (1.d)

are called. complementarity conditions and express the
alternative that when un = 0, contact occurs (T{u)n = r“.n)

and when rn = 0, there is no contact. Besides T and u are

related’ by the elasticity tensor € in the constitutive
equation:

T = CE(u)

with E(u) the strain tensor.

The weak formulation of the problem is established
through the principle of virtual work by multiplying (1.a)
by an arbitrary smooth test function v such that v = 0 on
aou. Integrating by parts, we have:

j CE(u).E(v) ¢@ = [ b.vdn + [ s.v.don+

Q Q 30,

+ f r.v doq vVveH (2)
L]

<

where H is the set of all functions of (H'(O)): which
vanish on anu. The last integral depends on the contact

zone which is unknown, therefore it cannot be evaluated. 1f
the set of admissible displacements is restricted to:

K = { v @« H: v sufficiently regular in 0,

v=0on M, v <0 on I } (3)
[¥] n <

and rn £ 0, then r.v = r".vh >z 0 on anc and the virtual

work (2) can be substituted by .4 variational inequality:
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f CE(u).E(v) dn 2 _[ b.v dQ + f s.v daq ¥Yvek (4)

0 o} 80'

The set K of all admissible displacements is a closed
convex set and a linear cone. Both are useful conditions
for the existence and uniqueness of the solution of (4).

It € is symmetric there exists a function of the form:
1
PE(W)) = 5 CE(u) .E{u) t3)

from which can be derived the associated stress state of
E(u):

= = —09 =
T=TE) = =W

(5) is called the potential energy function which is a
quadratic form positive definite and convex,

Introducing the functional:

Fiv) = [ $tv) da - [ b.v o0 - [ s.v don (6)

0 Q 00'

it can be proved that the solution u € K of (4) is also the
solution of the constrained minimization problem:

F(u) = ain (F(v); v € K } (7)

THEORY OF PLATES

The theory of plates with transverse shear
deformations, assumes that particles on the plate originaly
on a8 line that is normal to the undeformed middle surface
remain on a straight line during deformation, but this line
is not necessarily normal to the deformed middle surface,
Figure 2.

The displacement components of a point coordinates x,
Yy 2, are:

LI AL 2 (8.3}
v ® ~2 py(x.y) (8.b)
- = wix,y) (8.c)




where w is the transverse displacement, ﬂ. and ﬁy are the

rotations of the normal to the undeformed middle surface in
the x~z and y-2z2 planes, respectively, Figure 3.

assumed
deformation

normal fo midsurface
after defor mation

FIGURE 2
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The bending strains €. cyy. Y. vary linearly

through the plate thickness and are give& by the curvature
of the plate:
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£ . au/ ax ap_/ox

= = - 9
c,, v/ oy 2z op/w ()
7y du/dy + dv/Ax 3 [fov - apy/ox

whereas the transverse shear strains are assumed to be
constant through the thickness:

Tyul o M/dy - B

{10y
Mmiax + B

zx

Considering the plate element of Figure 3J3, the
expression for the total potential F(u,ﬁx,py) is:

h/2 -
1 xx
F(fﬂ,ﬁ”,ﬁy) = T [cxx €y Ty Ty dz dA +
A -hs2 Txy
h/2
k T
+ — [r” Y. vz} dz dA - | w p dA (1)
2 T
A" -hs2 xx A

where k is a8 constant to account for the actual
nonuniformity of the shearing stresses.

The state of stress in the plate corresponds to plane
stress conditions (‘rnt 0) and considering an isotropic

material we can write:

T ox € 1 » o 013-/0:
= 1 (o] -
'ryy z e v S ﬁy/&y (12)
Ty 0 ) ap‘/oy-opy/m
Tyz E away-ay
o — (13)
Tan 2(1+v) N/a“‘ax
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Substituting (9), (10), (12), (13), into (11), we
obtain:

1 1
F(w,8,,8) = = J K"cbx dA + - I y'ccr dA - Jw.n dA  (148)
29, 2 Ja A
where:
ap!/ox
K = |-ap /oy (15.a)

o3 /oy~ %, /3

aw/oy—py
Yy = Ow/axwﬁ! (15.b)
Eh: 1 v o]
Cb = 201~ z) » 1 18 (15.c)
v o ° v
2
Ehk 1 O
C. = 1 (15.d)

2(1+v)

In the finite element analysis of an assemblage of
elements, we only need to enforce interelement continuity
on w, p' and py, and we use:

w" = hiui (16.a)
N

Al = he, (16.b)
g" = ne {16.c)
y (SRS

where the hi are the interpolation functions.

Besides, in order to reduce the size of the problem we
make use o©of a substructuring technique by segregating
constrained degrees of freedom.

By replacing (16) into (14) we arrive to the following
segregated matrix expression of the total potential:
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A D E,
1 iy i i§
Fiw _,8%,8%) = — [n..a‘.e‘] p*. 8. . F
N T x v 2 i oxy [ T O B ¥
TFTc.
(S IR % T ¥}
Aj
- lw,6',6] Jo (17)
[N vy »j
(3]
By calling:
En’ Ehk
D = K =
12(1~-»%) 2(1+w)

we distinguish:
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M M. 1-v S M
sto -y — — - — — | 0n
Y a dy ax 2 &x oy

ah ah  1-v o oh
F. = J p}-»— = e — I ogp
b ax dy 2 ay ox

MATHEMATICAL QUADRATIC PROBLEM

F(uN.G:,e:) is now a function of a finite number of
degrees of freedom ui, e:. 9:. whose wminimization would

provide the coefficients of the soclution appoximation.

It is convenient to construct a reduced primal problem
by condensation of all degrees of freedom non related to
the contact surface.

The condensation process is possible provided that the
de formable body is properly restrained. The procedure
consists in the steps explained below.

The mathematical Quad;atic problem is to minimize the
objective function F(uu.e_.ev) subject to the inequality

constraints: Gw £ c,and non-negativity restrictions: w 2 0.

min { F(w.Gx,By) } (18)
w'eu'gy Gw £ O
w 2 90

As the minimization over 6‘ and ey is unconstrained:

F{w,8 ,8 )
x y

= 0 (19.a)

29
»*
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HFiw,0 ,8 )
x 'y

= 0 (19.a)

6
y

we can eliminate both unknowns from the functional. They
will be calculated later, once the value of w be obtain,
from the following expresions:

o = H™YMT - Ww) (20.a)
6, = Xw - Y {20.0)
where:
H=8 - FC'F'
T=a - rc“ac
w=0" - FcTe”
x = CT'FTH'w - c%eT
¥ = CTFTHT'T - c"nc

The expression (17) can be rewritten in absolute
notation as:

1
F(w,8 ,0 ) = {— [n'm + wDe + u':-:a] - w'o o+
x' Ty 2 = y A

1
. - [e"Au + 6'D8 + e’Ee] - e'o_ +
2 x x x x y B

1
. - [e"Au +e'pe + 6'ee | - 6’0 (21)
2 y y x y y y €

By replacing (20.a) and (20.b) into (21), this reduces
to the primal problem:

1
Fiw) = — wKw - W'V + const (22)
2
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withs
K =a-DHW - WHTT + €x + XxTeT + wH T BH "W -
- WIHTTFX - XTFTHT'w + xTex
Ve - [DH"T -€EY -g, - WIHTBH™'T « XTFTH™'T +
+ WHTTFY - w'H"o_ - x¥cy + x'oc]

and the inequality constraints.

REDUCTION TO A LINEAR COMPLEMENTARITY PROBLEM

The quadratic problem is now:

min {%(w)} (23)
Gw c
- (¢}

W IA

For the solution of (23) we use Lemke's algorithm
which solve the linear complementarity problem associated
to (23). Then, the above problem will be reduced to such a
problem which is the purpose of this section.

Under the assumptions on the convexity of the
objective function and the symmetry of the stiffness matrix

K which is also positive definite, the called primal
prablem (23) is equivalent to the saddle-point problem:

min max {%u’ku - WV + (Gw - €)™ } (28)
w A0

where X € R™ is the Lagrange multiplier introduced in order
to release the constraints Gw < c.

As the minimization over w is Now unconstrained, it is
obtained:

w=K%v - 6™ (25)

Substituting (23) into (24) leads to the dual problem:
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min { ;- AT - ATs } (26)
220

which corresponds to the minimum of the complementary
energy, .and where P = GK is an mxm symmetric matrix and
s = GK - c is. an m vector.

The resulting quadratic problem has the simpler
constraint set A 2 O.

If A is the solution of (26), then:

(PA - s)(A" =) 2 0 va'zo

Taking k.- 2\ and A. = 0 successively, and setting
PN — s = p, the linear complementarity problem associated
with (26) is stated as follows:

p - P\ = -3
>
pz0O (27)
x=2zo0
P = 0O

Lemke’'s algorithm is a complementary pivoting method
which solves linear complementarity probless such as that
detined in (27). An interesting property of the Lemke's
algorithm is that gives the exact solution of the discrete
problem in a finite number of steps. Also, it is a pivoting
method which seems ¢to be one of the most efficient
developed for linear and quadratic problems and then
extended to linear complementarity problems. Finally,
Lemke’'s algorithm has an easy computer implementation.

COMPUTER IMPLEMENTATION

A finite element program is implemented to solve
plates with . bilateral and unilateral supports. These
unilateral supports can restrain displacements, either
negative,positive or both. Plates are modelled with
quadrangular elements of 8 nodes and can be loaded with
distributed and concentrated loads.

Once the global stiffness matrix is found, its rows
and columns associated with unilateral restrictions are
segregated in such a way that the upper part of the
stiffness matrix is associated with the restrictions and
the lower part is associated with the non restricted
variables (such as the rotatioms).
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Working with matrix algebra operations, we arrive at
the matrix P and vector s of the dual problem (26) which
are needed for solving the linear complementarity problem
by Lemke’'s algorithm. Its solution allows us to obtain the
resainder displacements and the rotations.

NUMERICAL EXAMPLES

In order to show the feasibility of the developed
variational formulation and algorithm we present in this
section two numerical examples.

The tirst example consists in a square clamped plate
subject to a distributed load. Figure 4 shows a quarter of
the plate (for its sysmetry) msodelled by four rectangular
isoparametric elements of 8 nodes. The plate is clamped at
nodes 1, 2, 3, 4, 5, &, 9, 14 and 17, and has an unilate_:al
support at node 21, placed at a distance of 0.48 x 10 mm
from the axis.

* 44
L] [ ] 20 jat *_ d
“ ™
? 19
. .
1 2 » < 5 X T
i 'iau.so“
A
FIGURE 4

To prove the program a solution is obtained by a
superposition method using a classic finite element program
which solves plates.

As it is shown in Figure 5, the first step considers
the clamped plate with any unilateral support. We look for
the load for which the plate reaches the displacement of

-4
0.48 x 10 mm.

A second stage consists in the same plate with a
support in the middle point 21 subject to a distributed
load such that, added to the previous one, results in the
total load of the wunilateral supported plate of the
example.

Applying the supcrmitlor: method the solution is the
sum of both, while with the unilasteral progras the solution
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is obtained in one step.

Q= 10
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FIGURE S

The corresponding support: reactions are listed in
Table 1, where it is possible to appreciate the agreements
of the results.

Node Rt R R*+R? rR*
1 -0.23 -0.76 -0.99 -0.999
2 -2.1% -1.96 -4.11 -4.118
3 -2.76 -2.58 -5.34 -5.34
4 ~7.16 -5.46 -12.62 -12.424
5 -3.80 -2.34 -6.14 -6.14
6 -2.15 -1.96 -4.11 -4,118
8 0.0 0.0 0.0 0.0
9 ~-2.76 -2.58 -5.34 -5.34
13 0.0 0.0 0.0 0.0
14 -7.16 =-5.86 -12.62 -12.624
16 0.0 0.0 0.0 0.0
17 ~3.80 -2.33 -6.14 -6.14
18 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0
21 0.0 ~6.56 -6.56 ~6.557

* Results of the unilateral program

TABLE 1

The second example is that of a circular plate of
external radius R = 390.0 mm and mean thickness e = 110.0
mm, resting on elastic supports in accordance with radius
R = 298.75 mm and R = 340.0 mm respectively. The plate is
under the ‘action of bolt forces and an inner pressure
p = 11.35 N/mm".

The discrete model adopted corresponds to a quarter of
plate (by the symmetry) as it is shown. in Figure &. The
mesh consists in 780 nodes and 21 quadrangular elements of 8
nodes.

We solve for & load states. Starting from a bolt load
o

L Ty



- 148~

_of &0 Kgm, following with 90 Kgm, 120 Kgm , 150 Kgm, 180
Kgm and 180 Kgm plus the action of the pressure.

Figure 7 shows the deformation of the plate (in each
state) along a radius and Figure 8 shows the deflection of
the central point (node 21) in each step respectively.

bt

FIGURE 6
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CONCLUSI10ONS

Unilateral constraints problems are more frequent than
bilateral, but their formulation involves inequalities and
this means mathematical difficulties. Developments in
linear programming, convex analysis and variational
inequalities, provide new techniques for the solution of
unilateral problems in structural engineering.

The authors want to remark that this work must be
considered as an application of unilateral contact
problems within the area of structural analysis. It is
taken into account the equilibrium problem for plates in
terms of displacements whereas the nature of the material
concerns an elastic one.

We try to show a rather simple procedure to modify a
computer program to solve contact problems. For this, we
basically use a plate finite element program and, by making
specific modifications it becomes avaiable for our needs.

Thus, the problem is stated by the constrained
minimization energy functional' (which is quadratic), and
approximate solutions can be obtained by the introduction
of the finite element technique.
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"Up to this point, it does not seem to be a simple
formulation, neither in its mathematical procedure, nor in
terms of computational storage. The next step consists in a
condensation process introduced in order to arrive at the
&7——:.11«! dual problem with a simpler set of restrictions.
Then, we are able to reduce our problem to a linear
complementarity problem and, therefore, to save storage
capacity.
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