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El presente trabajo trata del ca-portamiento no lineal
de placas con apoyos unilaterales dentro de la tvor1a
el~stica c l~sica. El an~lisis se 11..,•• cabo usando una
formulaci6n directa a tr.v~ de la mini.izaci6n del
funcional de la enerola potencial total con restricciones.
La introducci6n de la t~nica de elementos finitos conduce
a un problema de prograMaciOn cuadr~tico a ser resuelto con
el algoritmo de Lemke.

The present work deals with the nonlinear behavior of
plates with unilateral supports within the classic elastic
theory. The analysis is carried out by using a direct
formulation through the minimization of the total potential
energy functional with restrictions. The introduction of
the finite element technique leads to a quadrAtic
programming problem to be solved by Lemke's algoritn..



The contact of one body with another is the manner
thrOUQh which a structure transmits forces to its supports.

Some structures present the so-called ambiguous or
unilateral supports; that is, they have the possibility to
lose contact with their supports under certain load
conditions (SiQnorini's Problem [1, 2J).

Contact problems in solid mechanics
because the contact area is not known
application of loads and require special
mathematical considerations.

are non linear
prior to the

mechanical and

These problems in elastostatics (small displacements)
can be studied within the· theory of variational
inequalities whose solution can be obtained by finite
element approximations and mathematical programming
techniques.

This work deals with the nonlinear behavior of plates
with unilateral supports. The analysis is carried out by
using a direct formulation, avoiding in the discretization,
the introduction of artificial finite elements required for
incremental techniques.

The solution of the problem can be determined in two
ways: using, either a variational formulation (theorem of
virtual work); or by the constrained minimization potential
energy functional. Once the finite element method is
applied [3J, the first one leads to a system of variational
inequalities and the second one to a Quadratic programming
proble••

Up to this point, both procedures can be transformed
into a linear compleMentarity problem to be solved by
Le-«e's algorithm [4J, through which the exact solution of
the discrete problllPmis obtained in a 1inite number of
steps .

This work is based in others, for example the studies
of Feij60 and Barbosa [~J, and is developed under the point
of view of the minimization of the energy functional
(primal problem). By the introduction of the Lagrange
multipliers, which rllPleasethe restrictions, the primal
problem is carried to its dual. Its solution is associated
with the linear complementarity problem.

Numerical results are obtained by MOdification of a
Mindlin plate finite element program [bJ with reduced
integration, where unilateral restrictions and Lemke
algorithm for solviA9 linear complementarity problems, are
introduced.

T~@ advantao.s can b. appr~c1at@d in th~ lnput~ and 1n
the outputs whose t·ransparvncy 0111 lows uS ,0 recognIZe
immediately the type 01 suppor\; Some examplps we'. ~~rrled
out OivinO satisfactory r.~vlt~.



Consider an elastic defor •• ble body Mhich occupies .4"
opwn region Q in tlw thr'ee-di~sional EuclidWAft space It"".
Figure 1.

The boundary tlO of the body 0 is regular and consists
of three disjoint parts: clO••' tlO, and «lc. The portion clO••

identifies the part of the boundary Nith prescribed
displacements. On the part «l, forces are prescribed. And

the part «l is the actual contact 5Urface that is unknaooon
c

because of the unilateral nature of the restriction. Thus.
thl!the points on clO can either r_ain in contact Nith

c
support or detach frc. it. The body is under
the body forces b. boundary forces s on the

the action of
boundary tJO"

The problem of findinv the defor •• tion and contact
force for equilibriwa configurations of the body Q. under
c.rtain boundary and loading conditions. is called
Signorini's probl_. In this Nark the theoretical mechanics
Sionorini's problem is discussed in rl!9ard to the special
case in which no friction •• ists on the contact surface.

For the case of -.11 deformations. the displilce_nt
fi.ld is smilll enouejlh so that higher-ord.r terms of the
displacement t;lradient can be nlr91ected in the Itquilibrium
ind Itr.in-dl.pl.c.-.nt ~Ition •.

With all the considerations stated .bov •• Signorini·s
equilibriu. probl_ ••ita-at fri-c:tiun the form of •
boundary value probl_ ~ stl"'OmJ f~lat.ion takes U.
for••



- 136-

div T(u) + b • 0 in 0 (l.a)
u •. u •. 0 on an (lob)• u

TCu)n .. s on an, (loc)
r S 0; U S 0; rn,un ••0 on tXl (lod)

•• " c

where T is the stress tensor and n represents the outward
normal to the surface ·of the body, so that r = r.n,

"un • u.n, are the normal components of the reaction rand
the displacement u on the boundary etOc Conditions Cl.d)
are called. complementarity conditions and express the
alternative that when u 0, contact occurs (T(u)n ••r .n)n n
and when,. ••0, there is no can tact. Besides T and u are••related' by the elasticity tensor C in the constitutive
equation I

The weak formulation of the probl_ is established
through the principle of virtual Nark by ~ltiplying (l.a)
by An arbitrary smooth test function v such that v = 0 onaD•••Integrating by parts, we have:

J CECu).E(v) dO- I b.v dO + I s.v dtXl+

o 0 an,
+ I r.v daD

«l
c

where H
vanish on

is the set of
cXl. The last

u

all functions of
integral depends

(H1IO))3 which
on the contact

zone which is unknown, therefore it cannot be evaluated. If
the set of ad.issible displac~nts is restricted to:

~ - { v « H: v sufficiently regular in 0,

v ••0 on etOu' v" SOon tXlc} (3)

and r S 0, then r.v - r.v ?; 0 on cJO and the virtual
n rt n c

work (2) can be substituted by ,4 variational inequalitYI



S CE(u) .E(v) dO ~ J b.v dO + J s.v dcJQ
o 0 dO,

The set k of all admissible displacements is a closed
convex set and a Iinear cone. Both are usefu 1 condi tions
for the existence and uniqueness of the solution of (4).

¥E(u» • ~ CE(u) .E(u) (~)

from which can be derived the associated stress state of
E(u) :

~ '"CE(u)tlE

(:5) is called the potential tmergy funct.ion Nhich is a
quadratic form positive definite and convex.

F(v) = J 4>fv) dO - J b.v dO - J s.V ddO (6)

o 0 dO,

it can be proved that the solution U E k of (4) is also the
solution of the constrained minimization problem:

The theory of plates with transverse shear
deformations, assumes that particles on the plate originaly
on aline that is normal to the undefor_d middle surface
remain on a straight line during deformation, but this line
is not necessarily normal to the de10r_d middle surface,
Figure 2.

The displac.-ent components of a point coordinates x,
y, z, are:

"'- z,,(x,y)•
v -z IfJ ex ,y)

y
•• = ••(x,y)"

(8.a)
(B.b)
(B.c)



wher ••• is the transv~rs. displ.c •••nt, f3 and f3 are the
" yrotations of the nor.al to the undeformed .iddle surface in

the .-z and y-z pl.ne., respectively, Figure 3.

adual
delqrmatia

assUTl1fi!d

<i?fonna.'ion~,

/
rot"mal 10 midsurface
after deformafion

/
9"

The bending strains #: • #: • Y vary
•• yy -y'

through the plate thickness and are given by the
of the plate:

linearly
curvature



whereas the transverse shear strains are assumed to be
constant through the thickness:

kJ · [~/" P'J (0)

ltw/ ih< + fJ"

Considering the plate ele ••nt of Figure 3, the
eMpression for the total potential F(N,fJ ,fJ I is:

" y

J J
h/2 1&

[ xx

A -h/2
[::1 d. dA •

J.
A

k
+ --

2 1.[:[r~ r••] kl d.

where k is • constant to account
nonuniformity of the shearing stresses.

The state of stress in
stress conditions (T '" 0)-material we can write:

[:::] ·· .-:. [:
[:::] '"

the plate corresponds to plane
and considering an isotropic



SUbstituting (9). (10). (12). (13). into (11), we
obtain:

[

"wI lJy-p y]
bw/"x+(J

x

Eh:J [ 1 v

l~V]
C = •.. 1 (1S.c)to 12(1-•.•z)

0 0

Ehk [~~)C (1S.d)• 2( 1+v)

In the finite element analysis of an assemblage of
elements. we only need to enforce interelemen t continui ty
on w, 13. and Py' and we use:

Besides, in order to reduce the size of the proble~ we
make use of a substructuring technique by segregating
constrained degrees of freedom.

ay repl.~in9 (16) into (lq) we .rrive to the 1011owinQ
se9regated matrix expression of the total potential:



F(w ,SN,SN)
N • Y

A.. '" f" [cJh;, ~ + cJh;, ~] dA
~I A i1y i1y i1x iI.

J D [cJh;, cJh 1-10' cJh cJh]
S .. '" -;: - -;- fl. i;: dA~I

A fly

f
A

{ D [=;, cJh. 1-v cJh. 2]+ " [h;,hj] } dA
c..•• ---J. -~

'J II. 2 i1y

fA" [ -
cJh.

hj]D..•• - • dA~I i1y

D~ .•• (" [ - h. 2]dA~J ~

E..·tK [:i hj]
dA

'1
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E~. f.K [h~ 2] dA'I

JAD [ -
Mol. cJh. I-v Mol. ~]F.. • v -' --J -' dA

'I ~ ". 2 ".
• fAD [ - v ••••• cJh . 1-v ••••• 2]F~. -' --J -' dA

'I ". ~ 2 ~

oj • I p h. dAA 1A

MATHEMATICAL QUADRATIC PROBLE"

F( ••• S",S") is now iI function of iI finite number of
" • y

dR9rees of freeda. ••.• eN. e", whose ainimiziltion ..auld
, • y

provide the coefficients of the solution ilppoxilllation.

It is convenient "to construct. reduced pri_l proble.
by condensation of ill 1 dR9r.es of freedOlll non related to
the cont.ct surfilce.

The condensiltion process is possible provided that the
de fOrlllable body is properly restrilined. The procedure
consists in the steps explilined below.

The •• themiltical QUildriitic problem is to lIIinimi~e the
objective function F( •• ,eN,eN) subject to the ineQu.ality

N )I Y
constrilints: Gw S c,and non-neQ.ativity restrictions: w ~ o.

min {
",8,e

• y

F(••,8 .8 ) }x y
G.. S 0
••~ 0



""e can lIP1iminate both unJcnowns froat the functional. They
""ill btr calculatlrd later, once the value of w ~ obtain,
fro. the following expresions:

H '" 8 - FC~T

T •• a - Fc--a
• c

W '" DT - FC-IET

X C-'FTH-lW C-lET

The IIPKpre55ion (17) can be rllPwritten in ab501ute
notation as:

F(w,8 ,8 ) {; [""TAM + ••TD8 + ••'I'E8
y
] _ ""TO +• y • A

1
[8:Aw ++ 8TDB + 8TE8] _ 8Ta +

2 • • • y • •
1

[8;Aw + }+ 8'1'DB + eTE8] _ eTa (21)
2 y • y y y c

By replacing (20.a) and (20.b) into (21), this reduclr.
to the primal proble-:



.in IF I••••)}
GNsct
•• ~ 0

For the solution of (23) WIP use Lemke"s algorithm
••••hich solve the linlPar complementarity proble. associated
to (23). Then, the above problem will blP rlPdUClPdto such a
problea which is the purpose of this section.

Under the assumptions on the conveMity of the
objective function and the symmetry of thlP stiffnlPss matriM
K which is also positive definite, the calleq primal
problem (23) is equivalent to the saddle-point problem;

where A E RM is the Lagrange multiplier introduced in order
to release the constraints Gw S c.

As the minimization over ••••is now unconstrained, it is
obtained:



which corresponds to t~e 'I' minimum of the COIIlpletnentary
energy, .and where P • 61<ta is an __ s~tric .atrix and
10 • GI<~ - c is an _ vector.

The resulting quadratic problem hAs the simpler
constraint set ~ ~ o.

Takino ~•• 2~ and~· 0 successivvly, and settinC)
PA - 10 •• p, the linear complementarity problem associated
with (26) is stated as follows:

{

p - P~ : ~s
••..~ 0

p.~ • 0

Lemke's aloorithnl is a comple_ntary pivoting _thod
which solves 1inear complementari ty probl_s such as that
de1ined in (27). An interesting property of the Leake's
aloorithm is that oives the exact solution of the discrete
problem in a 1inite number of steps. Also, it is a pivoting
method which seems to be one of the -est efficient
developed for linear and Quadratic problems and then
extended to linear complementarity problems. Finally,
Lemke's algorithm has an vasy computer imple_ntation.

A finite .lv_nt program is implemented to solve
platvs with .bilateral and unilateral supports. These
unilateral supports can restrain displacements, either
neoa tive, pasitive or both. P 1ates are tROde11lrd with
quadranoular elements of B nodes and CAn be loaded with
distributvd and concentrated loads.

Once the olobal stiffness .atrix is found, its ro_
and columns associated with unilateral r~trictiDns are
seorlP9ated in such a way that the upper part of the
stiffness matrix is associated with the restrictions and
the lower part is associated. with the non restricted
variables (such as the rotatiDfts).



Workinljlwith lIlatrix alQeb•..a oper••tions. _ ••r•..ive ••t
the _trix P and vectOr" s of the du••l proble •• (2.) which
••re nlHtdH for solvinljl the line ••r complementarity problem
by Leake". "lQoritn.. It • .elution ••llows us to obt ••in the
r••• inder displacements and the rotations.

In order to show the fe••sibility of the developed
vari ••tion ••l forlllUlation ••nd ••lgo•..i thlll we pr-esent in this
section two nuaeric ••l exaaples.

The first ex•••ple consists in •• square clamped pl.te
subject to a distributed load. Figure ~ shows •• quarter of
the plate (for it. sv_try) lM'dell.d bV four rectanljlular
i.epar ••• tric elements of 8 nodes. The plate is cl ••mped ••t
nodes 1, 2, ~, 4, ~, 6, 9, 14 ••nd 17, and has an unil.te~al
support at node 21, pl.ced at a dist.ance of 0.48 • 10 ••••
fre- the allis.

I• " 10 ~*
,.
~

•

To prove the p"'OQ•..a.. •• solution is obt.ained by ••
superposition method usinQ a classic finit.e element pr09ram
which solves plates.

As it is shown in FiQur. 5, the first. step conside •..s
the clamped pl ••t. _ith anv unilate •..al support. We look fa •..
thtP load for which thtP plat ••.. eaches the displacement of
0.48 x 10-4mm.

A second
suppo•..t in the
lo"d sue:h t!'\at,
total load of
example.

ApplyinQ the superpositicm _tt\Od the solutiOn is the
_ of both. while ",ith the ut\il.t ••..••l prCMjlr_the solution

staljle consists in the •• _
.iddle point 21 subject to
add.d to thtt previous on.,
the unil ••t ••..••l supported

plate _i th a
a distributed

".sul ts in the
plate of the
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The corresponding support- reactions are listed in
Table 1, where it is possible to appreciate the agreements
of the results.

Node Rt R Rt+R R

1 -0.23 -0.76 -0.9'i -0.999
2 -2.15 -1.96 -4.11 -4.118
3 -2.76 -2.58 -5.34 -5.34
4 -7.16 -5.46 -12.62 -12.b24
5 -3.80 -2.34 -b.14 -b.14
I, -2.15 -1.96 -4.11 -4.118
8 0.0 0.0 0.0 0.0
9 -2.7b -2.58 -5.34 -5.34

13 0.0 0.0 0.0 0.0
14 -7.16 -5.46 -12.b2 -12.624
16 0.0 0.0 0.0 0.0
17 -3.80 -2.33 -6.14 -6.14
18 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0
21 0.0 -6.56 -b.56 -b.557

The second example is that of a circular plate of
external radius R = 390.0 am and mean thickness e = 110.0
mm, resting on elastic supports in accordance with radius
R ••298.75 mm and R •• 340.0 mm respectively. The plate is
under the ·action of bolt force~ and an inner pressure
p = 11.5 N/mmz•

The discrete model adopted corresponds to a quarter of
l:llatl! (by the symmetry) as it is shown. in F-'igure6. The
mesh consists in 78 nodes and 21 quadrangular elements of 8
nodes.



of 60 KVII. followinV wi th 90 KV", 120 KV- • 1~ t<v-. 180
KV- .nd1BO KQm plus the action of the pressure.

Figure 7 shows the dlPformation of the platlP (in e;ach
state) alonQ a radius and Figure B shows the dlPflection of
the central point (node 21) in each stIPP resplPCtively.
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Unil~ter~l constraints problems arlE! more frequ~t than
bilateral, but their for-ul~tion involves inequalities ~nd
this means m~thematical difficulties. Developments in
linear proQramming, conve>l analysis ~nd vari~tional
inequalities, provide new techniques for the solution of
unilateral problems in structural engineerinQ.

The authors want to relll~rk that this work ••ust be
considered ~s an appl ication of uni l~tlE!nll contact
problems within the area of structural analysis. It is
taken into account the equilibrium proble •• for plates in
terms of displacements whereas the nature of the .aterial
concerns an elastic one.

We try to show a rather simple procedure to lllOdify a
computer proQralll to solve contact problems. For this, we
basically use a pl~te finite element proQr~m and, by making
specific modific~tions it becomes ~vaiable for our needs.

Thus, the proble... is statRd by
minimization enerQY functional.' lwhich is
appro>li_te solutions can be obtained by
of the finite element technique.

the constrained
quadratic), and

the introduction



Up to this point, it d~ not s_ to be a si.ple
fo~~lation, ntrithR~ in its .atn.-atical procedu~., no~ in
t.~.s of co-putational storav •• The ntrxt .t.p consists in a
c~_tion p~oc_. introduced in o~de~ to a~~ive at the
So-called du.l probl~ with a .i~ltr~ ••t of rtrst~ictions.
Thtrn, _ artr ablIP to nPduce our p~obl~ to a linear
ca-pl..-,tarity probl~ and, thertrfore, to ••ve storave
capacity.
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