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When explicit time muching algorithms are used to reach the steady state of
problems governed by the Euler eqns, the rate of convergence is strongly impaired
both in the zones with low Mach number and in the zones with transonic flow,
let say Mach $ 0 and 1Ma.c1&- 11 $ 0, with 0 $ .2 . The rate oi convergence
becomes slower a.s0 diminishes
We show in this paper, with analytical and numerical results, how the use oi a
preconditioning ma.ss matrix accelerates the convergence in the aforementioned
ranges of Mach numbers.
The Preconditioning Mass Matrix (PMM) we advocate in this paper can be applied
to any FEM/FVM that uses an explicit time-marching scheme to find the steady
state. The method's rate of convergence to the steady state is studied, and results
for the one- and two-dimensional cases are presented..
In section 1, using the one-dimensional Euler eqns, we first explain why there
exists & slaw rate of convergence when the plain lumping of mass is used. Then
the convergence rate to steady solutions is analyzed from its two constituents, that
is, convergence by absorption at the boundaries and by damping in the domain.
Next we give the natural solution to this problem, and with several examples we
shaw the effectiveness oi the propolled mass matrix when compared with the plain
scheme. .
In section 2 we give the multidimensional version of the precoDditio~ mass
matrix. We make a stability analysis and compare the group velocities and damp-
ing with aDd without the new mass matrix. To finish., we show the velocity of
convergence for a common test problem.
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where U is the vector of conservation variables, F the flux vector, and A the
Jacobian of the flux vector.
For the sake of simplicity, weuse in this explanation the Steger-Warmingsplitting
spatially differenced according to the first-orderone-sided upwind scheme; never-
thdess, the results that are to be drawn hold for any flux splitting, let say Van
Leer's for example, and for any consistent spatial dilterencing, let say MUSeL-
type or first- and second-order one-sided dilterences, or any other [1-2J. Using
the forward Euler discretization in time and one-sidedfirst-order differentiation in
space, for a uniform grid spacing h, we get

Uj+l = Uj _ ~t (F] - F]-l + Fj+l - Fj),

FJ = (SA*S-l)j Uj, with A* = (A::I:IAI)/2,

here, the Ajs are the matrices that contain the eigen.••.uues of the Jacobians Ajs.
To make a linearized analysisofEq (2), weconsiderthe Jacobian ma.tri.'C a constant,
and using the similarity transformation Vj = S-lUj, weget the system decoupled
in three advection eqns, that is

here, 'I1~j stand for the p-th component orVj .
The maximum At allowable is set by the condition limit of stability
CFLN = .o.tl~,.I/h$ 1, and considering that A = diag(u,u + C,u - c), we get
.o.t•••• = h/(Iul + c). If At•••• is used, the wavecorresponding to the eigenvalue
(Jul+ e) moves at a velocity of one grid spacing per time step, while the slov!test
wave ( min.(Iul, Ilul- el)) mo'VeSat

dements per time step. It follows that when the Mach number If// = lu/c\
is relatively low or it approaches the unity, there will be an extremely slow
wave that can be annihilated only by damping. But, as is demonstrated in the
followingparagraph, if N is the characteristic number of elements in the mesh,
the convergenceby damping needs O(N) times woEk units as compared with the



convergence by absorption at Ule boundaries, therefore we ha1le a very slow rate
~~~~~ .

where CJ > ° is the constant transport velocity and u a scalar quantity. We
may discretize the Cauchy problem defined in Eq. (3) using one-sided first-order
differentiation in space and the forward Euler scheme in time, that is,

_+1 _ a6t(. • \
Vj - Uj = -T Uj - Uj_l}>

here, z = ih, and t = n6t. The adimeswonal number tfJ is the Courant number,
noted as C hereaIter. We imposed periodic boundary conditions in the discrete
problem since in the sequel we will make a Fourier analysis.
The exact solution ofEq. (4) ma,ybe written in terms of Fourier components, that
is,

uj = Lu(k)ei(ijl_aA'},

•
L_

1r INN NIf< - L' = - ,_.,0,._, -1, ,

where i= A, k is the wave number, w the frequency, and L = Nit..
In the same way, the error of any given solution can be resolved by Fourier anal-
ysis in the harmomc components u(k)ei(b-wf}, and anyODeof these components
introduced in eq. (2) leads to

uj+l(k) = [C(e-iU -1) + 1]uj(k) = Guj(k), (5)

here, G is the amplification factor, which must verify the condition IGI ~ 1 to
have stability. The last condition implie8 C ~ 1.
We now turn our attention to the 1Ie1ocityof propagation of the hanDonic: com~
Dents, that is,

I ( Csin(kh) )
lp = tg- (C(cos(kh) _ 1) + 1) .



_ Re(w(1:» 'P 'P
o = 1: = 1:61 = (1:h) Co,

taking the limit when kh -+ 0 and C -+ 0, we get from Eq. (7) 0- = a, the
expected result to have consistency assured.
To evaluate the velocity of convergence we must use the Group Velocity (GV),
that is, the velocity at which a wave packet moves (a wave packet is composed of a
number of short wa .•.-elength oscillations modulated by a slowly Yarj-ing envelope).
The GV is given by the following fonnula (see (3,4))

where the frequency w and the wave number k are characteristic values of the
modulating envelope, while w and k are the corresponding values for the short
wavelength oscillat~ons.
From Eq. (6) we obtain

&1 Ch -iU i.ul.C
81: = At e e ,

Re (~) =' ;2 {cos(kh)[C(cos(1:h) -1) +1]+ Csin2(kh)}. (8)

In Fig. (1) we can see plots of GV vs C with 1:hconstant.
To evaluate the rate of convergence by absorption at the boundaries, we consider
the number of iterations needed for the reduction of one order in the amplitude
of the relatively smooth harmonic components, because the high frequency modes
are damped out in a few i'teration using C = 1/2 as we will see later. The formula
that give us the number of iterations is the following

L L N
N•••.•••". = IGVI tl,t = h C = C'

where L represents the domain characteristic length that a wave component must
travel to reach the boundary. In the above equation we supposed that the wave is
not totally absorbed at the boundary, but a 10 per cent of its amplitude is reflected
back into the domain.'
Besic:res of being absorbed at the boundary, the harmonic components may be
damped out as they travel through the mesh. From equations (4) and (6), we
have

IU~+ll~ = IGI = A = J(C(cos{1:h) -1) + 1)2 + (Csin(kh»)2, (10)

therefore, those harmonic components for which IGI < 1, will be damped out as
they travel through the mesh. The value of A2 = /(1:h, C) is shown in Fig. (2).
From Eq,. (5) we see that G \Vies linearly with C from (l,iO) for C = 0 to e-iU
for C = 1, therefore, for tm1 1:, the distance to the origin IGI will be minimum
for C = 1/2. Using C = 1/2, the mGZ.\GI is the value that limits the rate of



convergence by damping, and this value is reached for " = f (the case " = 0 is
noL considered).
The rate of convergence by damping is measured as the number of iterations needed
to reduce in one order the amplitude of the more slowly decaying by damping
harmonic component, that is,

from the above study we can see that the convergence by damping is extremely
slow for smooth errors. For I; < .,./..[ii the convergence by damping is slower than
the convergence by absorption, and the lower the Ie the slower is the convergence.
This means that art.er all the modes of high frequency have been damped. out,
the convergence by damping is insignificant and we can reach the exact solution
(to reduce the residual several orders) only by advection and absorption at the
boundaries. (Note: we can also work out the problem using a multi-grid technique
for example.)
From Eq. (9) we see that the number of iterations needed to transport the error
component to the boundaries is inversely proportional to the Courant number,
therefore, we must use the maximum allowable time step. On the other hand, we
know that when a system of eqns, like the Euler eqns, bas different eigenvalues,
only the eigenmode that has the greatest eilenvalue is integrated with CFLN = 1,
all the others are integrated with CFLN < 1 as was explained (see 1.1).

As solution to the aforementioned problem, we propose to U3e a preconditioning
mass matrix which introduced in Eq.(2) give us the following scheme:

_+1 _ atetal +c) 0 (')" •

V,.i = V,.i - Ia SIgn A,. u.V,.i'

nnd now, using ~t ••u set 0)0 the condition CFLN ~ 1, all waves move attile same,
maximum allowable velocity; that is, one grid spctec per time atep fa-" CFLN = 1.



To compare numerically the rate of convergence of the proposed scheme with that
or the original, we ran scyeral test cases, all were run using abaorbiug boundary
conditions and a CF LN = .00. ,
The first is the case of a Mach = 0.9 uniform flow perturbed with a pressure
peak of high value. The pressure profiles for the original and proposed scheme are
shown every two iterations in Figs. (3) and (4), respectively.
For the original scheme, the wave of eigenvalue u-e = -O.le is 11 times slower than
that of the eigenvalue u + e = 1.1e, on the other hand, with the proposed scheme
both waves have the same velocity. The density profiles have the same pattern
of wave velocities, that is, for the original scheme there are two slow components,
u -e = -O.le and u = O.le, whereas with the proposed scheme all wave velocities
are the same.
The next test is to check the velocity or formation of a shock wave. The upstream
and downstream boundary conditions correspond with Mach numbers of 1.10 and
.91, respectively. The initial values of the state variables on the central part of
the domain are a linear interpolation between the extreme values. The pressure
profiles for the original and proposed scheme are shown every two iterations in
Figs. (6) and (6). The resulting profiles talk by themselves.
Another interesting case is the passiug or a perturbation through a shock wave.
This case was selected mainly because the linearized analysis can not predict the
behavior of the scheme in a flow discontinuity. The perturbation is a pressure peak
and the shock is from Mach=1.5 to 0.70.
The pressure profiles for the original and proposed scheme are shown every two
iterations in Figs. (7) and (8), respectively. We can see that the scheme works
cqua11y well in this case, and again the rate of convergence is extremely high as
compared with the original scheme.
The last case is the velocity of movement of a shock wave whose extreme Mach
numbers (boundary conditions) are not compatible. The pressure profiles for the
original and proposed scheme are shown every two iterations in Figs. (9) and (10).
The original scheme gives a shock velocity e.·<tremely slow when compared with
the given by the new scheme.
With a few examples we have shown nlDDerically the fast rate of convergence giYCD
by the proposed modification to the explicit time-stepping scheme. Using multigrid
algorithms, we add to the intrinsie high rate of convergence of the algorithm,
the aforementioned property of equal velocity of propagation for all the wave
components.



if the system is diagonalizable there exists a similarity transformation that simul-
taneously diagonalizes all the Jacobians, that is, iC T = ~, then U of = TV,(.
and introducing this transCormation in Eq. 14 we get

B~, = r1 AZiT,
and now the Bz,s are diagonal matrices.
Making a linearized analysis oC Eq. 15, we can see that the new system is a system
of decoupled, scalar, advection equations.
Now j( the diagonal matrix C = (Bz,Bz,)l/2 has elements (its eigenvalues) of
different magnitude, physically this means that the transport velocity of the de-
coupled scalar eqns are different, the max. time step for the explicit integra-
tion schemes is imposed by the maximum diagonal element, while the number
oC iterations needed to reach convergence is imposed by the minimum diagonal
element. ThereCore, the velocity or convergence to the steady solutions is in-
versely proportional to the condition number oC C, that is, the greater the quotient
(mazCii/minCii) the slower the rate oC convergence. The natural solution in this
case is to use C as a preconditioning mass matrix. then Eq. 15 is modified as
follows

and we can see that only the temporal part is modified while the condition number
of the new system is one. The PMM to be used with the original scheme is

Design conditions for the PMM:
1) If the system is of Hyperbolic type, then the change in the temporal part must

not change the hyperbolic condition of the system of PDEs.
2) The number of Dirichlet boundary conditions to be specified on the boundaries

must not be changed by the use of the PMM.

The nrst condition is related with st."\bility. A system or PDEs 01. CII'C1erODemust
be hyperbolic (real eigenvalues), otherwise the sy__ is WlconditioDally unstable.



For the case or the Eulcr cqns, it is well known that there exists a similarity
transformation that symmetrizes simultaneously all the Jacobians (~ the so
called entropy ~bles Ii).7)). Writin, the Euler system in this base, we obtain

MU,I + A,&;O,a; = 0,

and introduciug in Eq. 17 a typical solution ei(l;z;_), we get

'l-wM + l:jA,&;)ei(l;zJ_C) == o.
ConsiderU:r; that any linear combination or A.z;s is symmetric, then the eigen-
ftIues w or the eigcnYalue problem

11jA,&J - wMI = 0,

are real on the condition that M be ·a real, symmetric., definite matrix.

The second condition to be fuUilled by the PMM has to be with the number of
ingoing characteristics at the boWlda.ry. This number is the number of negative
eigen .••-alues of the matrix njAzIt where the nil are the c:omponents of the unit
outward normal to the boundary. We will show that this condition is fulfilled by
positive definite, symmetric Ms.
Using the chaDp of variables defiDed by M-l/2 == ~,then FAt- 17 ean be written
as

:R.1= M-1/2A,aIM-1/2 ,

and from Eq. 19 it can be demonstrated IS usinr; the eigenvalue separation prop-
erty, and the theory of determinants, that for the case of simultancously sym-
metrizable systems, the number of negative eigenvalues of M,:-I/2 (niA.,.)M-I/2 is
the same as that one of njAz, with the only condition that M be positive definite
with real eigenvalues.
Condition (I) imposes the symmetry and definiteness of M in the base where the
A.zJ• are symmetric. Condition (2) imposes only the positive definiteness because
being M symmetric it is diagonaliza.ble and has real eigenvalues.

5.1 Continuous problem:

The analysis o( the group velocities for the continuous problem is very important
because (or smaIl wave numbers the consistent discretizations approach the dif-
(erential operators, and on the other hand, only the convergence by absorption at
the boundaries works because this is in the nature o( the hyperbolic systems.
All the consistent schemes o( discretization in space reduce to the continuous
clifrerential operators when the size or the discretization tends to zero. ·With regard
to the discretization in time, we can use any nonconsistcnl scheme £Ordrivin, the



explicit algorithm. The oo)y conditions that these sc:bcmes have to verify are those
related wit.h st.ability and convergence.
We rewrite the Euler eqns as fonows

here, M represents the general nm of precooditioning mass mat.rices that ~y
give the nonconsist.ent time-marching schemes we were referring to.
To study the group velocit.ies for the continuous case, we must know the numerical
frequency as a function of the vect.or wave number k. We can obtain III = w(k} by
introducing in Eq. 20 a t.ypical Fourier component Uei{l:jEj--), that is

[_iwMiCl:jEj-W') + (i1:1AE
+ i1:2A,)ei{l:jEj_')]U = 0,

thereIore, the frequencies can be obtained from the following eigenvalue problem

and the group velocities, that. is, the velocities-of wave packets representing part
of t.he solution error, are [3-4] :

GV: = Owl}",
• %j

here, we have t.he group velocity or the ".t.h eigenmode in t.he Zj-th cartesian
direction. It is evident from Eq. 21 that a scalar multiple in k modi5es w as
follows

therefore t.he WI are homogeneous functions of degree one in k. Taking derivatives
or Eq. 23 with respect to kj, we obtain

8 8
8J:.(w,,(Ak» = 181:_ (w,.(k}),, ,

8 .
1 -.-(w,.(k}) = AGV,.(k),

81:j

where k = >. k. Therefore 01',.(£:) = GV,,(k), and this means that the GVs are
homogeneous functions of degree zero in k.
The locus of points that describe in the (GVE - GV,) plane the poup velocit.y
for the ".th branch of eigenmodes is obtained V&r)iDgthe k-versor on the unit
circle. For each Jl we obtain a closed cur'o-e that is characteristic of the system
we are dealing with. For instance, the curves for the pressure eigenmodes of the
unmodified Euler eqns (M = I) are two circles with center at V and radius Co The
remaining two branches or eigenmodcs, which represent the vorticity and entropy
transport, reduce to a point, that is the velocity V in the plane or group velocities.
The above description will be more clear after paragraph 5.1.1.
If we consider the eFL condition, we presume, and the real numerical stability
anaJ1si:s for t.he dilactized tqm coofinlll it., t.bU t.he IlUWmWD aUowablc: time
step has to be lea than h/lGVI_ •. The fastest eigenmode (", k) ••• travels at
a speed of one element per \Une step. Other eisamodes travel at a speed of



(IGl'''{k)I/lGV''···(k.u)l) elements per time step. The slowest eigenmode trav-
els at a speed of (IGV"···(k.i.)I/IGV,.. ••(k_,,)I) elements per time step. We
define

as the GV-conditioD number for the continuous problem. From this definition, we
see that the lower Ie, the greater the rate of conYersence-

We can rewrite the eigenvalue problem Eq. 21 by using the similarity transfOrm&-
tio~ A" = ~A,,~-l, where A" is the diagonal matrix containine; the eigenvalues
of A". and ~ is the matrix containing the right eigenveetors of A".

1(~lA.+ k,~-1 A,~) -1.0111 = 0.

The solution to this eigenvalue problem is

Now we can obtain the group velocities by taking the derivatives of the WI with
respect to the kiS, that is

We can see that in the (GVII -GV,) plane, the pressure eigenmodes descri~ circles
of ramUlI c with center in (V,O), and the eigenmodes of vorticity and entropy
transport are represented by a single point of coordinates (V, 0).
For k = (1,0). the group velocities are

It can be demoDstrated, and for this cue is evident from the curves, that the veraor
k is perpendicular to the locus of points that represent the different eigenmodes
in the (CVII - GV,) plane.
For small wave numbcn, all the consistent differential operators represent the
continuous case. Having real eigenvalues, the hyperbolic systems have DOdamping,
therefore for small wave numbers there is no damping and the only mechanism oC
convergence is the absorption at the boundaries.
From Eqns 26 and 27 we can see that for the case V - c, IG1'''I•••;" appears Cor
k = (1,0) and IS = 4, that is ICY"I•••;. = IV - eJ. OIl the other hand, IGV"I ••u



a.ppears for k = (1,0) and p = 3, that is \GV"I ••u = IV + cI- Therefore the
GV-condition number for this case is

IV+cl IM+ll
Ie= IV-cl = 1M-II"

The number or iterations that the s1~est eigenmode 'needs to pass one element
is Nda ••, = It/CFLN, where CFLN makes reference to the value obtained in the
stability analysis for wa.venumbers (~.•,1:,) e [(-11',11'), (-11',11')}. For exa.mple, £or
the case M=0.95, CFLN=0.76, and then Nda ••, = (1+0.95)/(1-0.9S)/0.76 =~ 51.
This value can be verified in Fig. (13) curve 1 .

5.1.2 Group velocities with (IA.•I+ IA,I)/(c+V) as the PMM:

The PMM is defined as

(c: V) (lA.•1+ IA,o-<c: V) ~(IA.•I+ ~-lIA,I~)~-l. (29)

1(1:1A.•+ 1:2~-JA,~) - w( --!.-V) (IA.•I+ ~-JIA,I~) 1=0. (30)
c+

In Fig. (11) we can see in the (GV.• - GV,) plane plots representi~ the group
velocities for the different eigenmodes, for Mach numbers ranging from 0.50 till
0.95 in Fig. (l1)-a., and for Mach numbers ranging from 1.05 till 2.00 in Fig.
(l1)-b.
Looking at the locus of ~p Te10cities for 1.1=0.86, ~ ClLI1 see that the charac-
teristic circles of the two pressure wave branches have been distorted in teh loop
ABCB'. The vorticity transport branch is the triangular shaped figure OED', and
the entropy transport branch is the point C.
For V -+ C, k.• = I, and k, = 0, the group velocities are

GVO.2) = (V ,0), CV<3) = (V/4 ,~), and CV<C) = (V/4 ,- ~) (32)

From Eqns 31 and 32 we can see that for the cue V -+ C, IGV"I••i••appears
for k = (1,0) and p = 4, that is IGV"I ••i••= ~1M2 - lie. On the other hand,
IGV"l ••••• appears for II = (1,2) and for all k, its value is IGV ••I•••• = v. Therefore
the GV-condition number for this case is

4
" = 31M2 - 11'

The number of iterations that the slowait eisenmodc need. too pass one element is
Ndam, = /c. For example, for the c:aseM=O.9S, CFLN=I.00, and then Rd_ ••, ~ 10.
This value can be verified in F'". (13) curve 3 •



5.1.3 Group velocities with IA"I/(e +V) as the PMM:

The PMM is defined as

where A" is the diagonal matrix cootaining the eigenftlues of A", and the columns
of. are the right eigenvecton of A". In this case, the eigenvalue problem to be
solved 'is

l(lIA"+ ~(e ~ V) .-1A,.) - w(e ~ V) IA"II= O. (35)

In Fig. (12) we can see in the (GV" - GV,) plane plots representing the group
velocities for the different eigenmodes and for Mach numben ranging from 0.50
till 0.95 in Fig. (12)-a, and for Mach numbers ranging from 1.05 till 2.00 in Fig.
(12)-b.
The solution to the .eigenvalue problem when M -. 1 is discontinuous. F'U'Stwe
eonaider the case M < I, the group velocities for this case are

.,/1.) e ( M'
Gv" = ±J (l:z '~J 11 01'11»12 + 12-M!....- - ...".-

" , II-API

V
Gy(l,2) = (V 0) Qy(I,,) = (e ±'J ), , 'II-wi

From Eqna36 and 37 we am see that for the case V •..•C, IGV"I••in appears for
k = (1,0), with value IGV"lmi" = IVI. On the other hand, IGV"\mu appears
for k = (0,1), and its value is IGV"I••u = Jll~MOI' Tberefore the GV-condition
number for this case is

1
Ie= ';11- M21

Comparing this GV-condition numberwith that of M = I, we see that there exist
a great improvement if we limit the analysis to the continuous case.

To assess the velocity or convergence using the preconditioning mass matrix, we
hnve to choose a pven scheme to discretize the problem both in space and time.
An explicit, first-order accurate time-discretization is the forward Euler scheme,
that is



With regard to the space discretization, we choose a FVM that uses the Steger-
Warming flux-splitting. Let the computational domain n be decomposed in dis-
junctive quadrangular elements (subdomains). A restructuring of the quadrangu-
lation is done by constructing a new _h in which each element contains exactly
one node of the quadranption. This is ll.CCOmplishedby joining the centroids of
the q\ladrangles having a node as a common corner and the midpoints of the sides
passing through that node. In Fig. (14) the following notations are used: m is the
nwnber of quadrangles that have to N i as a common node, G ij is the centroid of
the j-th quadrangle, Iij the midpoint of the side NiNij• and Ar(N,) the shaded
area that corresponds to the node N,.
The approximation test function space V" consists of piecewise constant functions,
constant in each cell. The approximatIon problem is to find U;+1 e V" lIuch that

f (un+l un) fJo "A~" tin + 10FjJ(U1) tin = 0,

Using Green's formula, we get

Both the stability analysis and the velocity of convergence are evaluated by consid-
ering a constant flow perturbed with an error which written in Fourier components
haa the form

u = E {}(I:"I:»C' (I:j#j-).

i.,'1

where, k), k2 are the wave numbers in the %It %2 directions, and Jfr is the velocity
of propagation of the harmonic: component (k), k2).

The fundamental tool for the stability analysis will be the Van Newmann metbocl,
which ignores boundary conditiaos, yet still, usually yields the best results (8-
9,10,12).



The domain with periodic b.c. in the square (-L,L),(-L,L)}, and the wave
number vector are all the combinations

"lr "2r(klok2) == (T'T)' "1.2 == -N + 1,...,-1,O,1, ...•N,

where N == Llh, and h is the element size.
The (I,J)-th node of the domain n = {(z,tI)/(z.tI) e (-L.L),(-L.L))}, baa
coordinates (I h, J h). We can rewrite the FV formulation already described as
fon~

(':') (U(t1 - U(I.J) == - ~t [At(U('I.J) - U(1-1•.1)

+At(U(I.J} - U(i.J-l» + A;(U('I+1,J) - U(I.J)

+A;(U(I.J+l) - U1i.J)] ,
(41)

A:t: _ A••, ± IA"il ·th I I I I I••, - 2 • WI A ••, == ~ Az, ~- •

Equation 41 can be put in the following form

U••+1 yTtl I1t cM-11 [A (U" yTtl)
(I.J) == V(I.J) - T 2 .. (IH.J) - V(1-I,J)

+A,(U(I.JH) - UCi.J-l» -IA"!(U(IH.J) - 2U(1.J)+ U(I-I.J»

-IA,I(UCi.JH) - 2U('1.J)+ U(I.J-I»] ,
(42)

and substi tuting a typical Fourier component of wave number (kl• k2) in the above
Eq., we get

u..+1 == {I_l1tcM-1! [A (eilt,l_e-ik,l)+A (eik,"_ e-il•l)
(I.J) h 2" ,

_!A ••I{eU,l -2 + e-iIt,l) -IA,I(eU•l - 2 + e-i kOl)]}I (43)

B = B(P.UloU2,.Mach.c"lc.,klok2).

The spectral decomposition of B, that is, ~A~-I, is such that in general both
the eigenvectors and eigenvalues are complex. Uaing this decomposition of B, we
rewrite Eq. 44 as



;n+1 = e-;w61 ;n = (I _ C A);n = G,pn, (45)

and to have conditional stability, the amplification matrix G mu.t have all it.
eigenvalues within the UDitcomplex circle, that is

_ . 2Re(>';) ( )
e=.~n ----'\12 • ~.=1•..~4 A;

By making sweepings through a discrete number of angles of the flow with the mesh
( Q E (0,45) degrees for the domain ( - L. L), ( - L, L») ), for all the combinations
of wave numbers

(k L) - (~ !!!!)
10"'2 - L' L '

1I(here N = Ljh, and for a discrete number of flow conditions ( Mach numbers
within the range we are interested in ), we obtain for each combination by using
Eq. 46 the max. c admissible, then the min .(mu: .(c» will give us the Courant
limit C(M) as a function of the Mach number.

The group velocity (GV) of each eigenmode for each (kltk2), can be evaluated
rewriting Eq. 45 as

-iw,At = log(l - c>.,),
where the subscript I represents the I-th ei:;enmode, and differentiating the above
equation with respect to kj• we obtain the group velocity in the cartesian direction
%j for the I-th eigenmode (3-4)

where c represents the value min.(mczz.(C» obtained from equations 45-46 for all
the combinations (1:1,1:2,Q).
To measure the convergence velocity in terms of the number of iterations needed
for the reduction of one order in the amplitude 01 the harmonic: component by
absorption at the boundary, we define

N - Lnt••l Lntul (48)
,-, - IGVnti.I(At)••u = c(~)IGVnti.J'

where Lmul represen&s the c1Jaractenstic lengtb of the domain that a wave c0m-
ponent has to travel to reach the boundary,



and c is the max. vallie allowed by the stability condition, Eq. 46. In Eq. 48
we supposed that the wave is not totaIl)' absorbed at the bounduy, but a 10
per cent of its amplitude is reflected back as a result of the obliqueness of the
incidence direction with the normal to the bounduy, that is, (kt, k,) isn't parallel
to (nit n2)' For the calculations L•••••" = h = 1 , and N,nI., refers to the number
of iterations that the eigenmode needs to pass through a single element.

From eq. (1~) we can observe that when

IlB,I= ..j(1 - CRe(Ai»)2+ (C1m(Ai»' < 1,

the hanDonic component of the error we are dealing with will be damped out at a
velocity given by

log(10)
Nola •• , = -log(IAB,1),

where N"••••, is the number of iterations needed for th~ reduction of one order in
its amplitude.

The two mechanisms of con~gence already described work together, therefore to
assess the convergence rate we can use the value

Num. of Iter. =min(N,r ••"N" •••,).

For a given Mach nmnber, the evaluation of the rate of convergence is done by
evaluating

where the en are a number of flow-mesh angles e [0,45) and the kis stand for all
the possible combinations of values

111'

k- Nh'

here h is the mesh spacing usually taken as unity, and a good value for N may be
16.

The calculation of GV s for the continuous case was intended to give some insight
into the working of the PMMs. But now we know that the value of N,roa, must
be considered instead of the single value of GV. From Eq. 48 we see that N,roar
is inversely proportional to the product (IGV"'i••16t), therefore for a given PMM



levmi ••1 could be very high. while At •••u mllYbe so small as to give an exceedingly
high N,rou,; and takinr; into account that Ni- ••••, is also very high for a very low
At •••••• the resulting rate of convergence will be very slow. This is the case £or
M = IA%I/(c+ V). However, for M = (IA%I+IA.D/(c+ V) the rate of CODYergence
is much higher than that of the identity matrix.
In what follows we give the numerical results that compare the rate of convergence
of the original scheme, M = I, with that of M = (IA%I+ IA.D/(c + V). In Fig.
(15) is plotted the Num. of Iter. vs the wave number for 1:. = 0, Q = 0 and 45
degrees. From this we can see that the max Num. alIter. needed is for Q = 0 and
wave numbers 1:%~ 0.60 with a gain of 250 per cent when the PMM is used. Fi&-
(16) shows the case I:~ = k. with a = 0 and 45 degrees. In this case again the
max Num. alIter. appears for I: ~ 0.60 and for the wave number vector aligned
with the flow direction, that is 45 degrees. For this case the gain is also 250 per
cent.
It was Hen from the numerieaJ studia that the max Num. of Iter. alwa,. appears
for wave numbers aligned with the flow velocity and that for small wave numbers
the convergence is mainly by absorption at the boundaries, while for medium and
high wave munbers the mechanism of CODvergenceis damping.

A channel of length 7 and height 3 units contains a circular arc profile of chord
length unity as a part of the bottom solid wall. The circular arc is centered on teh
bot tom at a distance of 2.5 units from the inlet. The thickness of the arc is equal
to 4.2% of the chord (11].
The computations were started imposing a uniform fiowfield with Mach 0.85 over
the entire mesh. At solid 'Illo-alls,tangential velocity is imposed as the boundary
condition [13,16]. At the inlet and outlet far field boundary. the number of bound-
ary conditions to be imposed depends on the normal Mach number (16). For this
case. both velocity and density were spcci1ied on the inflow boundary and pressure
on the outflow boundary.
The convergence rate on Do coarse 14 x 42 mesh of quadrilateral elements is depicted
in Fig. (17). where the impro~ent due to the preCODditioDing mass matrix is
shown with the RMS of A.pl A.t VB. the Num. of Iterations. It took 600 iterations
to arrive at a residue of order 10-5.0 when the PMM was UIICd.,while without the
PMM the residue for the same number of iterations is of order 10-2.1.
In Fi&. (18) we can see the iso-Mach tiDeS while in F'1&.(19) we see the pressure
distribution.

The numerical scheme prcseDt.ed in this paper is:
(i) ver)' efficient in terms of computing time,

(ii) simple to progt'am,
(iii) so robust as the ori5inaJ sc:beme,
(iv) the steady solutions are captured in many less iterations as compazed with the

same space discretization but without usilll the PMM.
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