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ABSTRACT

An analysis of metal forming processes with axial geometry is performed
by an expansion in Fourier Series on the circumferential direction. For
that purpose, an incremental form is presented on the basis of the flow
formulation. For every increment of the non-null imposed boundary
conditions an algebraic system is formed in which the non-linearity due
to the visco-plastic properties of the material is placed ss part of the load
term. In this way, the global stiffness matrix is block diagonal, the coupling
due to material non-linearity being included in the right hand side. Free
surfaces are treated as an interface inside the el ts, as an extension of
the pseudo—concentration method.

1. INTRODUCTION

A large variety of processes can be easily treated with a 2-D model, i.e.
those where plane stress state or axisymmetric configurations are had. However,
there are also many situations in which a full 3-D analysis is required. In some
of these cases this can be achieved by a semi-analytical method through an
Fourier series expansion along one direction. The application of this method is
straightforward when dealing with linear problems {1,2}, in which a decoupling of
the modal components is held, due to the orthogonal properties of trigonometric
functions. The solution of non-linear problems has been reached for particular
cases, trying to produce the uncoupling of the modal components so as to solve
the three dimensional problem as a combination of a number of two dimensional
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ones. Besides, in metal forming problems the flow formulation has provided a
simple and effective way of dealing with metal forming processes. Its application
has been mostly in 2-D situations, and where elastic deformations are negligible.
In this work we present a semi-analytical method to deal with metal forming
processes in terms of the flow formulation.

Furthermore, among various methods to model transient metal forming
processes, the pseudo—concentration method has proved to be efficient, simple and
accurate. It basically consists of treating free surfaces as interfaces between two
media; the metal and a fictitious material with mechanical and thermal properties
conveniently assigned, so as not to disturb the flow of metal. We make use of this
artifice to model the non—-axisymmetric free surface keeping a consistent structure
to allow the series expansion.

The incremental formulation is shown in first place. Then the element with
the series expansion is developed, and the extension of the pseudo—concentration
method for non axisymmetric free surface handling is shown. Finally some
numerical applications are included to check the performance of the model.

2. INCREMENTAL FORMULATION

a) Explicit form

The flow formulation makes use of an Eulerian approach so that, although
. there are large deformations in the processes being modeled, they do not affect in
the non-linearity of the problem, which is due only to the constitutive equation
(material non-linearity). The typical effective strain rate us. effective stress curve
is supposed to be formed by small straight lines (fig. 1).
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Figure 1. Strain rate ws stress for a typical visco-plastic material
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The problem is formulated in the non-linear form in terms of the principle of
virtual velocities

/ 5&;,'65,'& - / 51‘.'}’ (P. - ?_u__. - uju.-‘,-) a0 - $u,;T;dl" =0 (1)
a Q a Tr

which, after peglecting dynamic and inertial terms, and by requiring
incompressibility condition, is equivalent to require stationarity of

/é;,-zpé.-,-m—/é;,p&.-,-dﬂ-/u.-T.-dP:O. (2)
o 2 r
with respect to any virtual velocity variation, and vanishing the power due to
hydrostatic deformation
L §p éud = 0. @)
Taking variations and requiring stationarity of the governing functionals yields,
for a single element
K KI'lfu¥)_[F, @)
K, o1/ o
where
K= / BTuDBdQ, )
o]
and
K, = -5 NTIBdQ. (6)

Here is B such that ¢ = Bu, D, such that s = uDg, and I such that ¢, = =Ig. For
the planc caseis I= {1 1 0]. )

In the incremental formnlation we have

{ulia} = {ul + aul}
{2} = {6Y + ApF) @
so that
§{ul,,} =6 {Aul}
‘{P--n} J{AP }

the values of u¥ mdp":ctasmnntuloondxbonwhenpmngﬁ’omhdstep
n to n + 1. For the first step a constant viscosity is introduced.

Therefore, the srstem will be

K KT]{aAd® Fua K K] [u¥
o s|aE-{%}-16 VI @
The right hand side computes the load due to the initial rate of deformation for the

present increment. Therefore, for analogy with other methods 3], this incremental
formulation can be called the initial strain rete method.

®
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In this system of equations the viscosity, which multiplies the matrix Kg is a
function of the velocity field. Its value in each point is supposed to be constant
throughout the load increment, having been calculated at the beginning of it. This
hypothesis will be acceptable when the load increment is sufficiently small, and
here is the linearization of the viscoplastic flow problem. As regards the length of
these steps, Cormeau [4] has studied the critical value that assures the stability of
this type of mtegratxon schemes.

By this procedure and, when takinga suﬁcxent number o( steps an acceptable
precisién can be achieved compared to the full non-linear solution. “This has
been tested calculating the normalized residual with the solution yielded by the
incremental scheme. Table I shows these values for various numbers of steps, for
a direct extrusion case, modeled with nine elements.

: Table I
Number of steps | Norm. Res. | CPU(min:sec)
3 0.03493 1:08
5 0.01907 1:34
8 - 0.01129 2:10
10 0.00890 2:40

It should be pointed out that in addition, this scheme is suitable to deal with
perfectly plastic materials, where the tangent stiffness matrix is singular: infinitely
large velocities increments would be obtained for a given increase in the external
loads. Therefore, a Newton-Raphson scheme cannot be applied [5], and when
solved by s back-substitution procedure, a great number of iterations is required
to achieve convergence of the algebraic system.

This scheme also allows the treatment of free surfaces, as shown in the
following section, this being very interesting because the generality of the method
is conserved.

b) Extension to cases with free surfaces

It is well known that, in metal forming processes, several free surfaces are
usually encountered. Thus, the final form of a stationary process is included
in what has to be found out. Due to this factor, a non-linearity inside each
increment appears. When imposing the free surface condition, velocity increments
not tangent to-the surface can be obtained. If the coordinates of the nodes are
then modified in order to fulfill this condition, one has that although the velocity
field has not changed, the geometry of the domain has. Then it is necessary to
recalculate the global stiffness matrix so as to have new displacements values.
With them, the nodal coordinates are newly adjusted, and iterations continue
until convergence is achieved. For the i** iteration we define the residual

R= "zf (- m.)'. (10)
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and the norm
Nyt u 2
.~=2(—‘i) : (1)
by \UR
where
NsL number of nodes of the free surface,
_my slope of the tangent to the domain on node k,

g, U velocity components of node k, -
and the sub-iterations are continued until

R .
Tv- <$¥, (u)

where § is the convergence tolerance.

s However, being the variations in geometry for each load increment small,
a modified Newton scheme can be proposed for the iterations within the step.
This means using an equal tangent matrix on it. In this way in each iteration the
residual is recalculaied but the global matrix is not triangularized. This hypotheses
is supported on the fact that the non-linearity associated to the free surfaces is
a mild one; 77 2 velocity field is fixed with respect to the nodes, and so, in fact,
convergence of the sub—problem is achieved within the first three iterations. Each
one of them requires, in case this simplification is not assumed, the full solution
of the equations system. Time saving due to the adoption of the quasi-Newtan
scheme is considerable.

A further step in simplificeting assumptions coasists of linearizing this non—
linear sub—problem as well, assuming that the gecmetry found by integration of
the free surfaces is such that the velocity increments calculated on the basis of
that geometry fulfill the free surface boundary conditions. This is equivalent
to eliminating every sub-iteration in the load increments. Again. the results of
this simplifications are very encouraging. They .are evaluated by calculating the
normalized residual in terms of the incremental solution, on the non-linear system
of equations.

It can be seen that the approximation made to linearize this problem is at
most of the same order than that made to reach the incremental form. So the
method converges linearly with the numcber of load steps, even when simultaneous
treatment of free surfaces is considered. When the number of load steps is
increased, the differences between the three methods tested lowers, until it is not
appreciated, generaily, from number of load steps greater than 20.

c) The implicit incremental scheme

The aim of the prescnt section is to be able to express the flow formulation in
such a way that a Fourier expansion may be possible. It is then necessary to have
a stiffness matrix non-depeudent om the circumferential coordinate. But, as the
viscosity, which is a factor of a sub-matrix of the stiffness matrix, is a function
of the rate of defonnation, an implicit iterative scheme has t0 be used, in order
to achieve this condition. taking as an equivalent load part of the product of the
complete matrix by the approximate solution vector.
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Fig\u‘e’ 2. One—dimensional scheme for the incremental algorithm
Let us consider the solution of a linear equation with a single unknown
az+b=0. (13)
If we express the coefficient a as a = ag 4 a;, we can say

b ay
z=—-—-— 2z, 14
2 o (19)

This expression can be used in an iterative process writing

b ay
el = —————Zg. 15
| il % a.z ( )
The solution of {13) is reached when
|Za41 = zal < &, (16)

where § is a tolerance of convergence.

The solution procedure is represented in Fig. 2, from which the following
observations can be made

1) for convergence of the algorithm it is required that ay > a/2. If ay = a/2,
.numerical solution oscillates between to values at a same distance from the
exact solution, and if ag < a/2 the algorithm diverges.

2) convergence is faster as a; approximates a.

3) for values of ag greater than a there is no limitation on convergence, but it is
desirable to have ag as low as possible, for the reason pointed out in 2)

4) the numerical solutions make a monotonically succession when ao > a, while
it is alternated if a > 2o > /2

5) clearly, if ag = a the exact solution is reached in a single step.
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By means of this procedure we analyze the possibility of reaching the solution
if the coefficient of the unknown is non—constant and it is desired to iterate with a
constant slope. When extending this solution scheme to the visco-plastic flow
problem with Fourier series expansion we will have a coefficient matrix non-
dependent on the circumferential direction, remaining the variable component of
-the matrix as part of the load term. This condition of matrix non-dependent on
the circunferential direction is necessary to allow the series expaasion, with the
uncoupling of the modes in the giobal stiffness matrix.

On considering the visco—plastic problem, the viscosity is written
“p=p+pa (17)
where u = pu(x), p' = u'(x), and pyy = constant, and x is the position
vector. In what follows we introduce this notation: by defining the matrix
Ko = [, BTDBdQ, we will refer to K (equation (5)), as K = uK,. Although
# depends on the position vector, we denote the use of different definitions of
viscosity (which is is a factor in the integrand), as the product of that viscosity by

the matrix Ko, which only depends on geometric factors. The implicit incremental
scheme results in

puKo KT][fAut) _ [Fuu) _[4.Ke KT][ut
K, ] Apt ] K, 0]\p»t
wKo 0] fAui-?
- [“o o 0 {A::—l }' (18)
It is required, to assure convergence, that

I,II[(#--;:)M.)& g] <1, (19)

This condition is automatically fulfilled if we take

HALn Ko K;r -
K, 0

Baa = max i (20)

where p; is the average viscosity on i'* element, and Ng the total number of
clements. It is not required to take the absolute maximum viscosity throughout
the whole domain, and this is convenient in order to approximate the product
of the matrix norms (19) to unity, this condition allows a faster convergence of
the algorithm. It should be noted that elemnent matrices are evaluated only at
the beginning of every load step; afterwards it is only necessary to evaluate the
right hand side of (18). Moreover, the inversion of the global stiffness matrix can
be avoided in the steps after the first one, by proper scaling of the first inverted
matrix. This helps to save computing time.

3. SEMI-ANALYTICAL FORMULATION

This section deals with the three-dimensional, axisymmetric in geometry
problem. e consider arbitrary loads and boundary conditions. A Fourier
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series expansion is performed in the circumferential direction. Previous steps of
linearization and stating the problem with a constant stiffness matrix were aimed
at to make the following development passible.

There are two objectives, namely the element matrices generation, and the
evaluation of the load terms.

According to the solution strategy proposed, we seek to solve as many
uncoupled systems of equations as base functions are taken to make the series
expansion. As it has already been shown, the problem has been transformed so as
to have constant coeficient matrices, non-dependent on the azimuthal coordinate.
This has been at the cost of solving in an implicit way, and thus, iteratively, a
problem which in absence of the series expansion would be explicit and linear, due
to the small increments taken when imposing the loads.

To achieve the uncoupled solution of the modes we have to compute the
right hand side for each mode considering the contribution of every mode. In
this way the coupling due to the non-linear nature of the visco—plastic material is
considered, without losing the uncoupling of the equations system to be solved in
each iteration.

In the present configuration the rate of deformation tensor is written in
cylindrical coordinates

. 2w
23 ar
: v
py T
. . w
Pi=d w il (21)
3 on gv
c." 18 8z -: ar
ou cw %
E';' r 3¢ + or r
Eor 18y Bw
r 8¢ [:23

+
By geometric considerations, it is convenient to define the series expansion of the
velocity components as follows

u g L ujcos lé —u_;sinlé
v)]=1{w |+ || vicosld |+ | ~vysinig |]. (22)
w wy =1 w; sin 16 w_;cos 8

This form results from considering that a symmetric load directed along the r or z
coordinates will yield symmetric displacements along r and z, but antisymmetric
along 8, the converse occurring with symmetric load directed along 6. This fact,
together with the signs adopted yield a global system that is uncoupled in the
harmonic components, and in a single harmonic, the u’' component is uncoupled
with respect to the u~’. Finally, as will be shown in what follows. the matrices for
both components of a same harmonic are identical. This reduces the time required
for its evaluation and resolution. There are. so, 2L+ 1 systems of dimension N x N,
where N is the number of degrees of freedom for each harmonic component, where
there are only L + 1 matrices to calculate and invert.

This grouping of the two phases of the velocity components into a single
mode ! (which we will denote with a positive and negative subindex. respectively)
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is taken into account by definition of the matrices
coslé O 0
I'=| 0 «cosld6 0
0 0 sin 18

sin 10 0 0
K = 0 sinlé 0

0 0 —cosld

(23)

(more precisely, each element of I' and K is a diagonal matrix of order equal to
the number of nodes of the element). So, we can rewrite (22) as

L
u=n5+ 2 (w I - uk*) (24)
i=1

‘We can also express the strain rate tensor as the sum of the contributions of each
harmonic component

L
{&} ={&o+ Y ({h+{é}-) (25)
J=1
where
{€}o = Bouo (26)
{eh = (BoI' - tfn(') w (2
()t = (~Bok! —1BF) uy (28)

where, from (21) and (22) results

2 0 0
0 2 0
B Ba g 0 (29)
0= | N =
goog 0
I
o o T
and
000
000
= Ny|0 01
B=—"100 0 (30)
100
010

When talking about harmonic components of the velocity, we will refer in what
follows to their nodal values, so that, for easiness of notation, the superindex N
- will be omited.
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Equations (26) to (28) dcfine the matrix B, relating velocities with strain
rates. It will be -
ug
a
a-!

{é§}=B{u}={By, B, B_, ... By B_.] : (31)

ul
u-¥

‘On application of virtual velocities, terms of the type

5[ @Lp (0, [ @Ltmden- [Lrae] =0 (@

will be obtained, with sum on j and where i, j vary from 1 to L.

For the 3-D case we have
I={1 110 0 0] (33)
and
2
2 0
D= 2 (34)
0 1

By considering the orthogonallity of the basis functions of a Fourier series results

2x

dé =

21'
/ sin:10df = f cosifdf =0

il r fi=j
l cos 18 cos 70d6 = / sinibsin j0d8 = {0 i

(35)

2%
sinif cos j8d8 = 0,
°
from which equation (32) yields a block diagonal coefficient matrix such that, for
1=}

Ja(BTrarDBo - j(B uuDB)

Ki=r —i(BTuaDBo)* + ijBTuaDB)dA , _ i
0 J1 (B3 kDB, — j(Bg upuDB)*

—i(BTuyDBy)* + t'jB(;sﬂ)MDB)dA

0

where
M* =ML (37)
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0 0o
L= 1 0 (38)
532

In addition, mairices K, and KZ' are computed. They stand for
incompressibility condition and the second term of (32). Similarly, the pressure p
has been expanded

QO

L
p=po+ ) (p'cosld — p~'sinld). (39)

I=1

By an analogous procedure we obtain

Ki_ o0
K, = ms,-,[ (;" X ] (40)
P

where .
K%, = (N;’.(N.,',. + N, /1) NIN“', jNTNu/") (41)

Again, a same matrix is had for both components of the i** harmoaic.

As already mentioned, the preceding evaluation of a block diagonal matrix
requires the computation of the coupling due to the material non-linearity as an
equivalent load. As the real viscosity is non—constant on 8, the difference between
a constant value pujs will have to be integrated along #, and the orthogonallity
properties will not be useful any longer.

According to section 1.c there has to be evaluated the load vector
— JFun #Ko KT fua (8 — par)Ko O] [ Auj?
F"{ 0 }_ K, 0']{1’-}—[ 0 oj\asiry

Unlike the 2-D implicit incremental case, the degrees of freedom of the
problem are now the harmonic components of nodal velocities and pressures.
Looking at the matrices we see that, being u a function of the circumferential
coordinate, the global matrix will not be block diagonal, but there will be a
coupling of the modes: to evaluate the independent term of a mode it is necessary
to compute also the contribution of the other modes. In order to calculate the
integrals on § we evaluate these independent terms in different angles, making
then a numerical integration by a Gaussian quadrature rule. We remark that this
coupling does not extend to the global matrix of the system to be solved, so each
harmonic will be solved independently.

For the first term of (42), in what concerns the degrees of freedom

corresponding to velocities. it can be seen that it is only necessary to evaluate
a few simple matrices, namely

L= / 2uNTN d4 (43a)
A

L= /A 4NTN_dA (43b)
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L= / 24NN .dA (43¢)
fi= [t Naa (434)
n= [, - S (43¢)
I = / ,;-—-N dA (43f)

so we will have, for instance, and recalling the notation introduced in (24) to (28)

/ I'BTuDB/dA
A
(L1 +14+13/2) cos idcos j& . . ~Iyisimifcos j@
+X4/2i%in i0 sin j# 13 cos 8 cou jo ~Y cosifjsin jO
. . I341:/2)cos ifcos j# .
= I‘{ cos id con ;@ (:-Ll‘zlit)in “;-':‘j: ~Igisin n'cos?l

~I7 con i#j sin 8

! (1. /217 ~14 ~1,/2) cos i cos j#
~I4isinifcos j

~17 cos i€j sin jO +14i sin i0j sin 50

(44)
It should be noted that the viscosity, being a function of the velocity field, is
constant throughout each load step. Therefore, the first term in (42) is constant,

and the second term is re-evaluated by simple matrix products. Only for [ = k

the matrix
Ko 0
0 0

will be non-zero, so the subtraction will be necessary only in these cases.

As regards the terms corresponding to the pressure, it can be seen that for
being linear their derivation is straightforward and yields

Kj, 0 .
up xS | 0P 1.4 P
=[5 g ) {2 (o

where K{;, has- been obtained in (41). The derivation for the reciprocal
contribution, F", ; 18 fully analogous. v

4. FREE SURFACES BY PSEUDO-CONCENTRATIONS

The transient forming processes modelled with the fiow formulation [6] have
firstly been solved by Lagrangian approaches [6,7) with moving meshes attached
to the material, involving the typical drawbacks of these procedures, namely
errors due to element distortion, and remeshing. Thompson [S] has proposed a
method by which transient problems are handled in terms of an Eulerian approach
with no distortion of the elements. Free surfaces. corresponding to free moving
boundaries are treated as an interface of it with a fictitious material whose physical
(i.e. viscoplastic and thermal) properties are such that the flow of metal is not
disturbed. Moving imposed boundary conditions are handled by definition of a
velocity for the mesh, which follows usually simple patterns, as are the descent of
a hammer, closing the two halves of a matrix, etc.
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For every time stcp an advective transport equation is solved

%=%+(n—ou-Vc=0 (46)
for a scalar field c, defined in such a way that an isocurve of it identifies the
interface between both materials. Here. ujys designs the mesh velocity assigned to
impose moving boundary conditions. The solution to (46) yields the scalar field
for the next time step, and the new position of the free surfaces are determined
by finding again the isocurve taken as a reference for the interfaces. After that, a
new solution of the constant time problem is reached (u,,,,,p1,,,), 30d a further
time step is performed.

The method is simple to apply, and several goals have been found: it is
conservative (while most Lagrangian transient schemes are not), large time steps
can be taken, for there is an acceptable appraximation of the velocities on the
zone to be occupied by the metal, provided by the fictitious material. Finally,
very good results are obtained when compared with experimental data, as shown
in the applications.

Prior to the following extension to model free surfaces of stationary processes,
it is worth pointing out that on this method it is necessary to handle two materials
on a single element. There are ways of doing so0 in an “exact” manner, e.g.
dividing the element in sub-elements, each containing a single material. However,
acceptable results are obtained by simply increasing the number of integrating
points during the calculation of the element stiffness matrix, thus resulting in a
simple algorithm.

The artifice of taking a free surface as an interface has been used to model
those who take place in a stationary process, where the interface is moved subjected
to the condition of having the velocity tangent w it. The interface calculated by
integration along a streamline is used to calculate the scalar field. It has been
shown to be a good practice [§] evaluating for each node as the distance of it to
the curve. At the element level the scalar field will be interpolated, and different
properties will be considered regarding the value of the scalar field in a given Gauss
point with respect to the reference value.

By this procedure the discretized domain is not changed, this being especially
interesting when modelling the problems described in the previous section, where
the computation of stiffness matrices requires the domain to by axisymmetric,
whereas it may actually not be so, due to the presence of free surfaces.

5. APPLICATIONS
a) Free forging

Fig. 3 reproduces the initial mesh of a crlinder that should be axially forged
to have a reduction in height of 50%. This mesh is mitially occupied by the
metal and on its sides two rows of elements are added to contain the pseudo-
matcrial. Only a quarter of the mesh is solved, for symmetry considerations. In
fig. 4 the final shape is shown (thick hine), together with the intermediate shapes
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Figure 3. Free forging, initial mesh for the metal.
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Figure 4. Free forging. final and intermediate shapes.

corresponding to every 10% reduction. plotted in fine lines. In fig. 5 I it is shown
the experimental result, in thick line. in comparison with our results (fine line).
The external contour reproduces the expecrimental results fairly well. A non-
hardening visco—plastic mode] has been used. This shape has been reached after
twelve constant time solutions, only one half of those which would be required in
a Lagrangian description. This saving is on the most time consuming part of the
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Figure S. Free forging, expenmenull results [9], compared with numerical

solutions.

calculation. It is due to the fact that a velocity field is given also for the zone not
occupied yet by the metal, and it serves as a good approximation for the velocity
of the material, when reaching this part of the domain. We also compared our
results with those vielded by a Lagrangian description [9). This is shown also
in fig. 5, where /I corresponds to a rigid—plastic model, and IIJ and IV, to an
elasto~plastic model, with eight nodes elements. In these, meshes of twenty five
and fifty elements, respectively, have been used, and best results were provided
by using a high order integration. The improvement in the solution when the
pseudo—concentration method is applied is apparent, even using a lower number of
elements: as is shown in fig. 3 we took twenty elements for the initial domain of the
metal, four elements to model boundary friction and twelve to receive the flow of
the metal during the deformation. This is also combined with the aforementioned
saving in the number of time steps.

b) Backward extrusion

In the next example an axisymmetric backward extrusion has been modelled
starting from a cylindrical piece. A reduction of 90% in height is achieved in
nineﬁmes&eps.hlhesduﬁonofthispm&emsddﬁngﬁidionmin&mﬁonaﬂy
imposedonthebwnduia,inordcrtocompmmﬂtswithasinﬁhrcasemalyzed
in reference 6. Figures. 6 to 8 compare results obtained by both methods. In view
ofthcdi&rencesfmmtho-eofthemfamce(dnhedlines).wevexiﬁedinour
results the constant volume condition, and we found that it is fulfilled within 1%
of error. They are also as expected for the boundary conditions imposed, even
though it is not a realistic bebavior. Thkcasehunlsoheeasdvedmnsidﬁing
bmmduyiﬁction,bynddingahyerdﬁidimdmenbmtheb«mduies.thm
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Figure 7. Backward extrusion, 60% reduction in height.
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Figure 8. Backward extrusion, 90% reduction in height.
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allowing a relative velocity between the metal and the matrices. The results show
a similar pattern in comparison with the sticking friction case. Stresses can be
seen to reduce abruptly when the material is no longer under the punch.

Figure 9. Direct extrusion. free suface for the interface-based algorithm.




- 276~

¢) Direct extrusion

The following example is presented to compare results yielded by a usual free
surface procedure (i.c. changing nodal coordinates [10}), with the one proposed
in this paper. A layer of elements with fictitious material has been added to the
classical scheme to make both cases more easily comparable. Noticeable differences
on the coordinates of the free surface are.found only when the mesh used is too
coarse, in this case numerical solution depends strongly on the discretization. The
variations of the free surface for the interface-based algorithm until convergence is
obtiined are plotted in fig. 9, and fig. 10 shows the maximum shear stress, which
agree, as well as the other magnitudes, with the standard solution {10].
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Figure 10. Direct extrusion, maximum shear stress.

d) Non-axisymmetric rolling

Rolling of pieces with circular section is a frequent process in industrial cases.
In this problem the non axial symmetry is especially important due to imposed
loads, and to the handling of free surfaces, which will also be non axially symmetric.
We show firstly the rolling of a solid bar, with the aim of reducing its diameter.
The imposed velocity is of the form

Ju| = up(a — beos @), (47)

where u is in the (r,z) plane, and is tangent to the roll. Figure 11 shows the
Iny out of the problem. Ry and Rp are, respectively, the tube and roll radius,
and w is the roll angular velocity. The rolls are placed at 120° one each other, as
shown in fig. 11. The analysis is performed with two and three terms (cos3né,
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Figure 12. Rolling of & bar: velocity module, at # = 0.
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Figure 14. Rolling of a bar: velocity module, at § = 54°.
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Figure 16. Rolling of a bar: stress tensors, at § = 54°.
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with n = 0, Ny); because of the relative roll-tube magnitude considered here,
negligible differences are observed between both cases. In figures 12 to 14 is clearly
seen the decrease in the velocity field uniformity for increasing values of 8, from
8 = 0° to & = 60°, due to the lack of axial symmetry of imposed velocities.
The components of the strain tensor, vanishing at the symmetry plane become
important at increasing angles, then in these zones the viscosity is lower and,
consequently, it appears a steep velocity gradient near the roll.

Free surfaces for this case are obtained as a function of #, but variations are not
relevagt, at least compared with the diameter. In fact, free surface variations are
also small for the axisymmetric case. It can be expected, however, that variations
for the hollow case will be more noticeable.

Figures 15 and 16 show, respectively, the axial stresses and the stress tensors,
evaluated at an intermediate angle. The effect of the roll can be clearly seen on
the material tensile state.

Figure 17. Tube rolling: 3-D development of discretization.

Finally we consider the rolling of a seamless tube. Fig. 17 shows a 3-D view
of the solved structure. Rows of additional elements are included to contain the
fictitious material at the beginning of the calculation. Later the free surface has
been varying inside the discretized region, as previously described. In the angles
where the equivalent load vector is evaluated for its numerical integration, it is
also recombined the velocity and the integration along a streamline is performed.

Figures 18 and 19 show the isocurves of the velocity module for the extreme
integration angles, for the newtonian fluid. and 20 and 21, for the viscoplastic
fluid. In the linear case it is clearly seen that the material goes faster at the plane
of symmetry, while the converse occurs at angles corresponding to the sides of the
roll. The same happens in the non-linear case, where the high velocity gradient
is seen in these angles. There are, also, high shear stresses in these places, as
is shown in figure 22. On a qualitative standing, the same comments as in the
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Figure 18. Tube rolling: velocity module, at 8 = 0° (linear case).
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Figure 19. Tube rolling velocity module, at 8 = 58° (linear case).
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axisymmetric cases can be made on the tensile state. It should be noted that the
aen axial symmetry is a function of the diameter relation between roll and tube.

In 2-D situations emphasis is placed on the mesh variations between initial
and final configurations. Here, instead, no mesh variation is made, as required
by the Fourier series expansion. The estimated shape of the mesh is reached by
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Figure 20. Tube rolling: velocity module, at # = 0* (non-linear case).
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Figure 21. Tube rolling: velocity module, at & = 58° (non-linear case).

solving an axisymmetric problem with nodal coordinates updating. Figure 23
shows the outer free surface obtained by the interface based method. In spite the
variations are at lcast an order of magnitude greater than in the solid bar, they
are hardly noticeable with respect to the tube diameter.
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Figure 23. Tube rolling: free surface.
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6. CONCLUDING REMARKS

A semi-analytical form of the flow formulation has been developed. It allows
numerical simulation of non-axisymmetrically loaded processes. An incremental
formulation has been necessary to derive, which in addition is a sujtable scheme
for modeling perfectly plastic materials, where the tangent matrix is singular and,
when solved by a back-substitution procedure, convergence is very slow.

A new scheme for treating free surfaces has also been shown, which gives good
results for plane configurations; its applications to non-axisymmetric problems has
made-it possible to include free surfaces in the semi-analytical formulation.
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