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An analysis oC met&!ConniDSprocesses with axiAl seometry is performed
by an expansion in Fourier Series 00 the cin:umCerenti&!direction. For
that purpose, &II inc~ Cormis p_ted on the basis or the flow
Cormulation. For every increment or the non-nun impoRd boundary
eoodilions an &!sebraicsystem is Cormedin which the DOll-linearitydue
to the visco-plasUc properties or the materi&! is placed as part oC the load
term. In this way, t!Ie &Ioba1stilFAessmatrix is block diason&!,the c:ouplinc
due to material _linearity being included in the riSht hand side. Free
surfaces are treated _ an iaterCaceinside the elements, as an e~ or
t!Ie p.eudo-con<:entraLionmethod.

A large variety of processes can be easily treated with a 2-D model, i.e.
those where plane stress state or L-cisymmetric configurations are had. However,
there are also many situations in ,,,hich a full 3-D analysis is required. In some
of these cases this can be achieved by a semi-analytical method through an
Fourier series expansion along one direction. The application of this method is
straightforward when dea1i~ \lrith linear problems {l,2], in which a decoupling oC
the modal components is held, due to the orthO&Onalproperties of trigonometric
functions. The solution of non-linear probk-ms has been reached for particular
cases, tryin~ to produce the uncoupling of the modal components so as to solve
the three dimensional problem as a CODlbinationof a number of two dimensiooal
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ones. Besides, in metal forming problems the flaw formulation has provided a
simple and effecth-e way of dealing with metal formiur; processes. Its application
has bet-n mostly in 2-D situations, and where elastic deformations are negligible.
In this 1I'Orkwe present a semi-analytical method to deal with metal fanning
processes in terms of the flow formulation.

Furthermore, among various methods to model transient metal forming
processes, the pseu~onoentration method has proved to be efficient, simple and
accura~ It basically consists of treating free surfaces as interfaces between two
media;'the metal and a fictitious material with mechanical and thermal properties
conveniently assigned, so as not to disturb the flow of metal. We make use of this
artifice to model the non-axisymmetric free surface keeping a consistent structure
to allow the series expansion.

The incremental formulation is shown in first place. Then the element with
the series expansion is developed, and the extension of the pseudo-concentration
method for non axisymmetric free surface handling is shown. Finally some
numerical applications are included to check the performance of the model

The flow formulation makes use of an Eulerian approach so that, although
there are large deformations in the processes being modeled, they do not affect in
the non-linearity of the problem, which is due only to the constitutive equation
(material non-linearity). The typical effective strain rate 1lS. effective stress curve
is supposed to be formed by small straight lines (fig. 1).



The problem is formulated in the non-linear form in tenDs of the principle of
virtual velocities

L 6iijtTijtln - L 6UiP (Pi - ~i - UjUiJ ) tin - LT 6UiTidI' = 0 (1)

which, after neglecting dynamic and inertial tenDs, and by requiIiol
incompressibility c:andition. is equivalent to require stationarity of

with respect to any virtual velocity variation, and YJlnisbioc the powa' due to
hydrostatic deformation L {,p iiidn =O. (3)

Taking variations aid requirioc stationarity of the governing functionals yields,
for a single elemea&

Here is B such that t. = Bu, D, such that l.= #iD,-, and I such that i.= It.. For
the plane case is I =-11 1 OJ. - - -

In the incrememal fonnulatiOD we have

{u:+t}= {u: + AU:}
{~1} = {p: + Ap:} ,

6{U:+l} = {,{Au:}
{,{P:+l} = {,{Ap:l'

the values of u: and ~ act as an initial cooditiOl1 wDen passing from load step
n to n + 1. For the &rst step a CODStaDtviscosity is introduced.

Therefore. the system wiD be

[:, Kl] {~~} = {Fo·} - [~ Kl] {;g}. (9)

The risJlt band side compute. the load d. to \be iui"-l rMC of ddorwaLioll for \be
present increment. Therefore, for analoQ with othn- mrtbods (31. this incremental
formulation can be caDed the iaitial $bUa f'dc 1Jict1&M.



In this &y$tcmof equations the viscosity, which multiplies the matrix Ko is a
function of the velocity field. Its woe in each point is supposed to be constani
throughout the load increment, h~ been calculated at the beginnin,; of it. This
hypothesis 1rill be acceptable when the load increment is sufficiently amall, and
here is the linearization of the viscoplastic flow problem. As reprds the lengthof
these steps, Cormeau (4] has studied the critical woe that aISUIelIthe stability of
this t)'P«l of integration schemes.

By this procedure and, when taking a sufficient number or steps, an acceptable
precisioil can be achieved compared to the full non-linear solution. 'This has
been tested calculating the normalized residual with the solution yielded by the
incremental scheme. Table I shows these .••••ues for various numben of steps, for
a direct extrusion case, modeled with nine elements.

TahL. T
Number of steps Norm. Res. CPU( min:sec)

3 0.03493· 1:08
5 0.01907 1:34
8 0.01129 2:10

10 0.00890 2:40

It ahou1d be pointed out that in addition, this scheme is suitable to deal with
perfectly plastic materials, where the tangent stiffness matrix is singular. infinitely
large velocities increments would be obtained for a pven increase in the external
loads. Therefore, a Newton-Rapbson scheme c:annot be applied [5}, and when
solved by a back-substitution procedure, a great number of iterations is required
to achieve convergence of the algebraic .,.stem.

This sc:beme also allO\VSthe treatment of free surfaces, as ShOlm in the
following section, this being very interesting because the generality of the method
is conserved.

b) Extension to cases with free surfaces

It is well known that, in metal forming processes, several free surfaces are
usually encountered. Thus, the fiDal form of a stationary process is included
in what has to be found out. Due to this factor, a non-li.nearity inside each
increment appears. When imposing the free surface condition, ~locity increments
not tangent to the surface can be obtained. If the coordinates of the nodes are
then modified in order to fulfill this condition, one has that although the velocity
field has not changed, the geometI)' of the domain has. Then it is necessary to
r«alculate the globaJ stiffness matrix so as to have n_ displacements values.
With tht'm, the nodal coordinates are newly adjusted, and itt'lations continue
until convergence is achi~. For the i" iteration we define the residual

N". ( )2R= L :t -mt ,
tal I:



Itsr. ( )'N=l: !!. •
tal tI"

where
NSL number of nodes or the free surface.

. m" slope of the tangent to the domain on node i,
u", v" velocity components of node k. . .
and the sub-iterations au continued until

R
N <6.

where 6 is the conv~ tolerance.

However, being the variations in geometry for each load inc:remeut smaJI.,
a modified Newton scheme can be proposed for the iterations within the step.
This means using an equal tan.,"eD.tmatrix on it. L'l this way in each iteration the
residual is recalculated but the global matrix is not triangularized. This ~th_
is supported on the fact that the DO:1-linearity associated to the free surfaces is
a mild one; ;.:: ~ocity field is fixed with respect to the nodes, and 10. in fact.
convergence of the sub-problem is achieved within the first three iterations. Each
one of them requires. in c:a&ethis simplification is not assumed, the fuR solution
of the equations system. Time saving due to the adoption of the quasi-Newton
scheme is considerable.

A further step in simpJificz.t~ usumptions coasista of linearizing this DOlI-

linear sub-problem as well. assuming that the geometry found by integration of
the Cree sur£&a!S is such that the velocity increments ealculu.ed on the basis ol
tha.t ~try fulfill the free surface bocndary conditions. This is equi·.-aleat
to eliminating every sub-iteration in the load inc:.-emems. Apin. the results ol
this simplific ••tions are very encour--~ They.are evaluated by c:alculating the
normalized residual in terms or the inc:rem.emal solution. on the non-liDear system
of equations.

It can be seen that the approximation made to linearize this problem is at
most of the same order than that made to reach the iDcraneDtal form. So the
method con,·e:gt"S linearly with the nwcbel" of load steps. e'V'eD. wbeD simulta.uec-
treatment of free surfaces is CIllDSidered. When the DIIDIber of load steps is
increased, the differences between the three methods tested lowers, until it is DOt
appreciated, g~ .• from nwuber or ad steps pe&ter thaD 20.

c) The implicit inc:renleDtal scheme

The aim of the prescDt section is to be abk to expftss the tlow !ormllJ.tioa in
such a.way that a. Fourier e-xpaDSionmay be possible. It is then DKesaary to hue
a stiffness matrix non-depeodem OBthe circu:nIrrential cOOI'dinace. But, as the
,-iScosity, which is a. fador of a suh-matrix of the atifrnru matrix. is a fuDdioo
of the raie of del'orulatioo, 11II implicit ikr&u"C ICbcme bu ~ bf \lied, iD order
to achie\-e this condition. taking as 11II ~uh-aleot load part of the product 01 t1lle
complete matrix by the appmximak dutioa wd«.
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This expression can be used in an iterative process writing

• 41
%••+1 = -- - -% ••Go Go

where 6 is a tolerance of convergence.

The solution procedure is represented in Fi~. 2, from which the following
observations can be made

1) for convergence of the algorithm it is required that Go > 0./2. 1£ Go = 0./2,
.numerical solution osa1lates between to values at a same distance from the
exact solution, and if Go < 0./2 the algorithm diverges.

2) convergence is faster as Go approximates a.
3) for values of Go p-eater than a th~ is no limitation on COIl'\"l"rgenee. but it is

desirable w ba~ GQII low II possible, for the re&llOn pointed out ill 2)
4) the numerical solutions make a mooOtooiailly ~ when 0.0 > a, while

it is altnnated if a > Go > _/2
5) clearly, if lie = 0 ~ exad solution is reached in a singl~ step.



By means of this procedure ~ analyze the possibility of reachinr; the solution
if the coefficient of the unknown is non-eonstant and it is desired to iterate with a
constant slope. When extendinr; this solution scheme to the visco-plastic flow
problem with Fourier series expansion we will have a coefficient matrix non-
dependent on the circumferential direction. remaining the variable component of
.the matrix as part of the load term. This condition of matrix non-dependent on
the eircunferential direction is necessary to allow the series expansion, with the
uncoupling of the modes in the global stiffness matrix.

On considering the vi.sc:c>-plasticproblem, the visc:osity is .•.-ritten

where P = p(x), P' = p'(x), and PII = c:on.Ucmt, and x is the position
vector. In what follows .we introduce this notation: by defining the matrix
Ko = 10 BTDBdn. we will refer to K (equation (5». as K = pKo. Althoush
P depends OIl the position vector, we denote the use of different definitions of
viscosity (which is is a factor in the integrand), as the product ofthat viscosity by
the matrix Ko, whiCh only depends on ~etric factors. The implicit incremental
scheme results in

[P~K~o Kl] {~;i} = {Fo• } - [PK~' Kl] {;i}
- [p~:o~]{~;i=:}. (18)

where Pi is the a'-erage viscosity on ,"I. element, and NE the total numbel' of
elements. It is not required to take the absolute maximum ,isc:osity tbrour;bout
the whole domain. and this is con,·enient in order to approximate the product
of the matrix norms (19) to unity. this condition allows a faster eon'_gence of
the algorithm. It should be noted that element matrices are evaluated only at
the beginning of every load step; afterwards it is ODlyneeessaI)· to ewa1uate the
rir;ht hand side of (18). Moreover. the in''ftSion of the r;lobal stiffness matrix can
be avoided in the steps after the first one. by proper sealing of the first invuted
ma trix. This helps to save eomputiDt; time..

This sectioa deals with the three--dimt-nsiooa1. uisyJDJDetric in r;cometry
problem. We cooaider arbitnuy loads aDd boundary ronwtioDs. A F~



series expansion is performed in the circumferential direction. Previous steps of
linearization and stating the problem with a roostant stiffness matrix were aimed
at to make the following development possible.

There are two objectives, namely the element matrices generation, and the
evaluation of the load terms.

Acxording to the aolution strategy proposed, we seek to solve lIlI many
uncoupled systems of equations as base functions are taken to make the series
~on. As it has already been shown, the problem has been transfo~ so as
to ha~ constant coefficient matrices, uon-dependent on the azimuthal coordinate.
'this has been at the cost of solving in an implicit way, and thus, iteratively, a
problem which in absence of the series expansion would be explicit and linear, due
to the small increments taken when imposing the loads,

To achieve the uncoupled solution of the modes. we ~e to compute the
right hand side for each mode considering the contribution of every mode. In
this way the coupling due 10 the non-linear nature of the visco-plastic material is
considered, without losing the uncoupling of the equations system to be solwd in
each iteration.

In the present configuration the rate of deformation tensor is written in
cylindrical coordinates

By geometric considerations, it is convenient to define the series expansion of the
velocity components as follows

(
V) ( 110) L [( VI cos18) ( -u-I sin 18) ]
v = VO +L v/~18 + -t'_/sin18 .
W Wo 1=1 w/sml8 w_/cosl8

This form results from considering that a symmetric load directed along the r or z
coordinates will yield symmetric displacements along r and =, but antis}'IIlJI1etric
along 8, the converse occurring with S}"ll1JI1etricload directed along 8. This fact,
together with the signs adopted )ield a global system that is uncoupled in the
harmonic components, and it}a single harmonic, the u' component is uncoupled
with respect to the u-'. Finally, as will be shown in what follows. the matrices for
both components of a same harmonic are idt'ntical. This reduces the time required
for its evaluation and resolution. There are. so, 2£+ 1systems of dimension ]Vx]V,
where N is the 1l\mlber of degrees of freedom for each harmonic componcut, •.here
there are only L + 1 matrices to calculate and in\"ert.

This grouping of the two phases of the "'elocity components into a single
mode I (whim we will denote with a posith'e and negatit'e subindex. rt"Specth'el~')



(
COSII

I' = 0
o

(

sin 18
K'= 0

o

~11 51,8)
o 0)sin II 0
o -00818

(more precisely, each element of I' and K' is a diagonal matrix of order equal to
the number of nodes of the element). So, we can rewrite (22) as

L

U = 110+ 2:: (u,I' - U-lK')
1-1

We can also express the strain rate tensor as the sum at the amtributioDll of each
harmonic component

L

{i} = {i}o + 2:: ({i},+ {i}-l)
1-1

{i}D = Bolio

( , . '){i}, = BoI -lBK D,

{i}-I'= (-BoK' -lin') U-l

where, from (21) and (22) results

(26)

(27)

(28)

m...
0 0IIr

0 m.. 0IIzl!.. 0 0
Bo = rm.. m.. 0II: 8r

0 0 m.. _l!..
8r r

0 0 m..
It:

When talki~ about harmonic components of the velocity, _ wiD refer in what
follows to their DOCla1 values, so that, for easi_ of uotation. the lRlperindex N
will be omited.



Equations (26) to (28) define the matrix B, relating velocities with strain
rates. It will be .

will be obtained, with sum OIl j and where i,j vary from 1 to L.
For the 3-D case we have

12•.
o d8=27r

12.. f'"o sin iBd8 = 0 ClOII iBdJJ = 0

L2ft

fXJSi8fXJSj8dJJ =12ft

aiDiSsinj8d8 = {;

12",
• sin i8cosj8d8 = 0,

ifi=j
ifi#=i

from which equation (32) yields a block diagonal coefficient matrix such that, for
i=j

fA (Br p.vDBo - j(Bi PMDiW
-i(BT p.A/DBot + ijBT PJlDB)d.4.

o J-I(Brll;"DBo ~j{BrpjlDB). ]
_i(BT p.uDB,)· + ijBT p",DB)d.-l

(36)

(37)



(1 0 0)
L= 0 1 0

o 0 -1

In addition. matrices K, and K~ are computed. They stand for
incompressibility condition and the second term of (32). Similarly, the pressure p
has been expanded

L

P = Po+2: (pIcas IS - p-I sin IS) •
1=1

K~, = (N~(Na.r +Nu/r) N~Na .• j~Nu/r) (41)

Again, a same matrix is had for both components of the i'ia harmClDic.
As already mentioned, the preceding eva1uation of a block diagonal matrix

requires the computation of the coupling due to the material non-linearity as an
equivalent load. As the real viscosity is non-constant on 8, the difference between
a constant value 11M will have to be integrated aloog 8, and the acthogmallity
properties will not be useful any longer.

According to section 1.c: there has to be evaluated the load vector

F = {Fun} _ [I1Ko K~] {u.} _ [(11 - I1M)Ko .0] {~u2:} (42)
o K, 0 p. 0 0 ~p.

Unlike the 2-D implicit incremental case, the degrees of freedom of the
problem are now the harmonic components of nodal velocities and pressun!S.
Looking at the matrices we see that, being p. a function of the circumferential
coordinate, the global matrix will not be block diagonal, but there will be a
coupling of the modes: to evaluate the independent tenn of a mDde it is necessary
to compute also the contribution of the other modes. In order to calculate the
integrals on 8 we evaluate these independent terms in different angles, makinr;
then a nwnerical integration by a Gaussian quadrature rule. We rmlark that this
coupling does not extend to the global matrix of the S)"Stemto be soh-ed, so each
hannonic will be solved independently.

For' the first tft"m of (42), in what roocems tbe degJftS or fftedom
corresponding to velocities. it can be seen that it is onl~' necessary to e"'aluate
a few simple matrices, namely

I. = L 2pN?;N ...tl.4

12 = L I'N:r;,N,zd.4.



-I.ioi. ilcoojl ]
-I. cooil j oi. jl

-I.i.i. ilcosj'

(Il/2-Ir -1.-1./2) cooilc •••jl
+I.i oi. ilj oi. jl

(44)
It should be noted that the viscosity, being a function of the velocity field, is
constant throughout each load step. Therefore, the first term in (42) is constant,
and the second term is re-evaluated by simple matrix products. Only for I = k
the matrix

LIiBr JlDBoljdA

[

(I. +1.+1./2) cooilcoojl
+I./2i oiDilj oi. jl .

= Ii cooil coojl

-Ii COI i'j.ill jl
-4iaia i'coaj'

I. cooil coojl
(1.+1./2) cooilcoojl
+1o/2i OiDifj oi. jf

-tr cooilj .iDif

will be non-zero, so the subtraction will be necessary only in these cases.

As regards the terms corresponding to the pressure, it can be seen that £Or
being linear their derivation is straightforward and yields

F~'ii = dii [~' ~J'{:~j}

where K~, has been obtained in (41). The derh'ation for the reciprocal
contribution, Fi ij is fully analogous.

The transient forming processes modelled with the flow formulation [6J have
firstly been solved by Lagrangian approaches [6,7J with moving meshes attached
to the material, involving the tl'pical drawbacks of these procedures, namely
errors due to element distortion, and remeshing. Thompson [SJ has proposed a
method by which transient problems are handled in terms of an Eulerian approach
with no distortion of the elements. Free surfMeS. corresponding to free 1l1O\'ing
boundaries are treated as an interface of it with a fictitious material whose physical
( i. t:. viscoplastic and theTmal) properties are such that the flow of metal is not
disturbed. Moving imposed boundary conditions are handled by definition of a
velocity for the mesh, which follows usually simple pattern.'1, as are the descent of
a hammer, dosing the two ha1\'eSof a matrix, etc.



De lk
-=-+(u-ujI)·Ve=ODt lJt

for a sc:a1ar field e, defioed ill such a way that an isoc:urve of it identifies the
interface between both materials. Here. UJI desipls the mesh velocity usipled to
impose moving boundary cxmditioDs. The solution to (46) yields the scalar field
for the next time step, and the new position of the free surfaces anJ determined
by finding again the isoeurve taken •• a reference for the interlaces. After that, a
new solution of the constant time problem is reached (Uta.' ,Pt ••• ), and a further .
time step is performed.

The method is simple to apply, and sevnal goals have been iound: it is
conservative (while most Lagrangian transient schemes are not), large time steps
can be taken, for there is an acceptable appracimation of the velocities on the
zone to be occupied by the metal, prorided by the fictitious material. F'mally,
very good results anJ obtained when compared with experimental data, as lIho.rn
in the applications.

Prior to the following eltteDsicm to model free surfaces of stationary processes,
it is worth pointing out that on this method it is aec:essary to handle two maierials
on a aingle element. There anJ ways of doing so in an "exact" In&IlDer, e.g.
dividing the element ill sub 'rrnents, each ~ a single material However,
acceptable results anJ obtained by simply increasing the number of integrating
points during the ealculatiOl1 of the element si.iifDessmatrix, thus resulting in a
simple algorithm.

The artifice of taking a free surface as an interface has been used to model
those who take place in a stationary pt"ocess, where the interface is moved subjected
to the condition of having the velocity tangem 10 it. The imer£ace calculated by
integration along a streamliDe is used to calculate the scalar field. It has been
shown to be a good practice IS) evaluating for each node as the distance of it to
the curve. At the element level the scalar field will be interpolated, and different
properties will be considered regarding the value of the scalar field in a pven Gauss
point with respect to the reference value.

By this procedure the disaetized domain is JIOt changed, this ~ especiaIly
interesting when modelling the problems described in the previous lIeCtioa.,where
the computation of stiffness matric:es requires the domain to by axisymmetric,
whereas it may actually not be 110, due to \be pnseoce of free sur£aces.

Fig. 3 reproduces the initial mesh of a cylinder that should be axially forpd
to have a reduction in height of ~ This -.h is initially oec:upied by the
metal and on ill sidell two run of elrmnnl m added to contain the J)lIeudo-
mat<.'rial. Only a quarWr cl the mesh is -~ for S)"1JIIIIetry CIOIISideI-ations.In
fig. 4 the final shape is showD (thick tiDe). qetber willa the ~ abapes
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Figure 4. Free forpll;. 61lal and intermediau shaptoS.

correspondins to e"eI1' 10% reduction. plot.red in fine lint'S. In tiS. 5 1 it is shawn
the experimmtal result, in thick liDc-.in comparison witll our rC'SuIts(fine line).
The external contour reproduces the experimental results fairlr well. A non-
hardening visco-plastic model has been used. This shape hIlSbeen reached after
twelve constant time solutions. onl)"one half of those which \\'OUldbe required in
a Lagrangian descriptiOIL This saling is on the most time conswtlins part of the
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calculation. It is due to the fad that a veIoc:ity field is given also for the ~ DOt

occupied yet by the metal, and it sena as a good approximation for the velocity
of the material, wbeD reaching this part of the domain. We also c:ompaRd our
results with those yielded by a Lagrangian description (9). This is shown alao
in fig. 5, where II c:uresponds to a rigid-plastic model, and III and IV, to an
elasto-plastic model, with eight nodes elements. In these, meshes of t-t>· u-.e
and fifty elements, respectively, have been used, and best results 'WIereprovided
by using a high order integration. The improremeut in the lI01utioo wbeD the
pseud<H:OllCentration method is applied is apparent, even using a lower number af
elements: as is shown in fig. 3 we tOok twenty elements for the initial domain of the
metal, four elements to model boundary frictioo and twelve to receive the flow af
the metal during the deformation. This is al80 combined with the aforement.ioned
savin& in the number of time steps.

In the next example an axisymmetric: bed.-.rard extrusion has heeD mocJeDed
startin,; £rom a cylindric:al piece. A ~ion of 90% in height is achieved ia
nine time step&- In the solution of this probIftn atickiq fridioo was iDteDtiooally
imposed 00 thoeboundaries, iD ocder to compare rsults "'ith a similar case anal}'Zed
in re£t"I'eIl«' 6. Fiprea. 6 to 8 compare remits obtained by both methods.. In view
of the di&raac:es £rom tboR of the ~ (dashed lines). ~ "mfied in our
results the CXIDStAnt \-olUlDe CIClIldition,and woefound that it is fultilled withiD IIlI
of error. The, are also at speet.ed far the bouad.uy cooclitions im))08CC1. even
though it is DOt a realist.ie beha....... This cae has also beeo soh'eeI coasidaiDc
boundar,. frictioD. by addiac a •.• &ict.ioo eIemeata CIG ~ bo'lmdaries, tlwa
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allowing a relative velocity between the metal and the matrices. The results show
a similar pattern in comparison with the sticking friction case. Stresses can be
seen to reduce abruptly when the material is DO lon&'Uunder the punch.



c) Direct extrusion

The followint; example is presented to companl results yielded by a usual free
surface procedure (i.e. changing nodal coordiuates (101), with the one proposed
in this paper. A layer of elements with fictitious material bas been added to the
classical scheme to make both cues mote easily comparable. Noticeable differences
on the CIOOI'dinatesof the free surface are.found only when the mesh used is too
COlIl"lIe, in this case munerical solution depends strongly OIl the diac:retization. The
'Variations of the free surface for the in~bued algorithm until convergence is
obUked are plotted in tis. 9, and fi&. 10 shows the maximum shear stress~ which
~, as well as the other mapitudes, with the standard solution (10).
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Rolling of pieces with circular section is a frequent process in industrial cases.
In this problem the non axial S)"Dlmetry is especially important due to imposed
loads, and to the handling of free SU%'faces,which will also be non axially symmetric.
We show firstly the rolling of a solid bar, with the aim of reducing its diameter.
The imposed velocity is of the form

whcn- u is in the (r, =) plane, and is tangent to the roll. Figure 11 shows the
layout of the problem. Rr and Rn are, respectively, the tube lUld roll radius,
and w is the roll angular velocity. The rolls are placed at 120- one each other, as
sllO"'11in fig. 11. The analysis is performed with two and three terms (cos3n8,



--t--
i
I

R.·Ro+~1I-81
Iv.- w.R.

•• -.1..
III

••
II

•
It

'".,
II

••..
"••..
•0



iL.



- 279-

••• ...
••
•..
II.,
II

os..
••
•• .ft.j..•.•
II .W

fJ4.

I•. '

iL-.



with n = 0, NH); because of the re1ati~ roU-tube magnitude considered here,
negligible differences are observ.!d between both casea.. In figures 12 to 14 is clearly
seen the decrease in the velocity field unifonnity for increasiDg values of I, &om
8 = <r to 8 = 00-, due to the lack of axial symmetry of imposed velocities.
The components of the strain tensor. vanishint; at the symmetry plane become
important at increasinr; angles. then in these zones the viscosity is lower and,
consequently, it appears a steep velocity gradient near the roll.

Free surCaces for this case are obtained as a function of', but variations are not
relevaoi, at least compared with the diameter. In fact. free surfaa: variations are
also small for the axisymmetric case. It C&D be expected, how~, that variations
ftx the hollow case will be mOle noticeable.

Figures 15 and 16 show, respectively, the axial stresses and the stress tenson,
-evaluated at an intermediate angle. The dl'ect of the roll can be clearly seen on
the material tensile state.

Ymally ~ consider the rolling of a seamless tube. Ylg. 17 shows a 3-D view
of the sol\l'ed structure. Rows of additional elemeDis are included to contain the
fictitious material at the beginninl of the c:alculaiico. Later the free surfaa: has
been nryiDg inside the discretized region, as previously described. In the angles
where the equivalent load vector is evaluated for its numerical integration. it is
also recombined the velocity and the integration along a streamline is performed.

Figures 18 and 19 show the isocurves of the velocity module for the ext~
integration angles, for the newtonian fluid. and 20 and 21. for the viscoplastic
fluid. In the linear case it is clearly seen that the material goes faster at the plane
of symmetry, while the converse occurs at angles corresponc:liIlg to the sides of the
roll. The same happens in the non-linear case, where the high velocity gradient
is eecn in these angles. There are, also, high shear stresses in these places. as
is shown in &sure 22. On a qualitative stanefutg. the same ClOIDJDeDtsas in the
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axisymmetric cues can ~ made 011 the teDsile state. It should be DOted that the
~ln axial a~'IDIDCky iI a fuuaioD of \bc diulr~ relation bet'fttll roll and tube.

In 2-D situatiODs emphasis is placed 011 the mesh '''llriatioDs between initial
aud final ~ Here. iDstead. DO meaA variation is made. as required
b~' the Fourier series ecpansioa The -i.ated shape of the mesh is reached by
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solving an axis}'11Ulletricproblem with nodal coordinates updating. Figure 23
sho\\"s the outer free surface obtained b~· the interface based method. In spite the
yanations are at least an order or magnitude greater than in the solid bar. they
are hardh· noticeable with respect to the tube diameter.
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A semi-analytical form of the flow formulation has been developed. It allows
numerical simulation of non-axisymmetrica1ly loaded processes. An incremental
formulation has been necessary to deri\"e, which in addition is a suitable scheme
for modeling perfectly plastic materials, where the tangent matrix is singular and,
when solved by a ba.ck-substitution procedure, convergence is very slow.

A new scheme for treating free surfaces has also been shown, which gives good
results}or plane configurations; its applications to non-axisymmetric problems has
made-°it possible to include free surfaces in the semi-analytical formulation.
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