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En este trabajo se discuten aspectos que concieMlen a la
Iapleaentaci6n del aetodo de Lagrange-Galerkln para la resoluci6n per
eleaentos finitos de las ecuaciones de Hayier-Stokes. Se desarrolla
un esque_ que peral te tratar redes generales no estructuras, en el
que la bUsqueda geo~trica utlliza un algoritllO basado en quad-trees.
Se anal1zan las dificultades que aparecen en la construccl6n del
segundo mieabro y se propenen soluciones.

Se Incl\Ql'en as1a1sao resultados nu.ericos para los proble_ de
cavidad cuadrada y desprend1miento de vOrtices detrU de un obat6culo
cuadrado, que auestran buen acuerdo con trabajos prevlos.

This paper Is concerned with the 1lIP1eaentation oC
Lagrange-Galerkin finite element aethods for the Havler-Stokes
equations. A scheae Is developed to efficiently handle unstructured
8eShes with local reCineaent, usIng a quad-tree-be.sed algoritha for
geometric search. Several diCCicult ies that arise in the construction
of the right-hand sIde are discussed in detall and soae useful trIcks
are proposed.

The resulting aethod is tested on the l1d-drlven square cavity
and the vortex-sheddIng frea •. square cylinder problem, with
satIsfactory agreeaent wIth previous works.



Erf'lclent solution of' the Inco~slble Navler'-Stokes equatiODS
1. of' prl..ry .1.portaDCe In aany applications of' collpUtational f'luld
dynaalcs. Severa.l dl f'f'lcui ties appear In the n~rlca1 treat_nt of'
these equations: Indef'lnlte aDd USl&l1y llI-condltiooed stif'fness
_trices, convecticm-doa1nated dlff'usion of __ ntua at larp Reynolds
nuabers, non-l1~ities coalng fro. acceleration te~, and
restrictIons in the choice of Interpolant. for Yeloclties aDd pressure
so _ to saU.f'y the well-known 1.Ild)IBhenskap-Babuska-Brezzi (LBB)
condition (see, e.g., (8,9).

In this paper, we will focus our attention on the developaent cd
~t codes which appropriately handle the aboYe _ntioned.
dirf.1culties. For that purpose, local _h retine_nt is needed, so
U•. t boundary l~ can be resolved without introducill8 unnecessary
degroees or freedo. in regions where no steep gMldients are expected.
This leads to the _ cd unstMlCtured aeshes, and we have chosen
trluaaular ele_nts to satisfy this roequire_nt. 80_1', it is by
now established U••t Galerkin weighting giYeS oscillatory (wiggly)
results at larp Reynolds numbers eYen in very fine IleShes, and a
certain ..ount of 'upwindll18' is Deeded to aake realist ic proble_
tractable.

We have adopted the Lasrange-Galerkin _thod (LCH) (1.5.6] as a
aeans of' introducing this necessary upvinding. It is based upon a
Lagrangian-fraae treat_nt of the _terial derivatives, and also
provides a robust -.v to deal with the non-linear convective ter_.
Once the L.GHis used, there re_ins to solve a Stokes proble. at each
ti_ step topther with the evaluation cd the right hand side. The
COJIPUtational iaplnaentation of this last i telll is essential for the
resu.lting code to be coapetitive, and will be given detailed
expl_tion belovo

The plan of' this paper is as follows: In Section 2, we state the
continuous proble. aDd perlo,.. the ti_ discretizatIon that leads to
the LGM. Section 3 15 devoted to the finite ele_nt approxi_tion of
the resulting set of equations. At this point, it is seen that exact
integration of the right hand side is not feasible, and Section 4
Inch.s a f'ull descrIption of the m.erical sche_ we i.pleaented.
Finally, we shoWseveral nu.erical tests In Section 5, to assess the
global behavIour of the proposed sche_. Conclusions are drawn in
Section 6.

The dynaaical behavIour of an Incoapressible fluid of
VIscosity II is governed b)' the Havier-Stokes equations
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where ~ is the velocity field, p the p-essure, and "1 the body forces.
Equation (1) re_iDS val1d even 1f' II varies throughout the do_in, as



is the CII&eU' it depends _ the t.,..,erature or so. other fielel.
Appropriate COIldItl_ to sol've (1)-(2) IDSlde a bounded domain Q are.
for ex&IIPle. to .pecU'y the lniUal velocity field

and boundary data ••• __ locitl_ or surf'ace trw:U_ OD all or
the bounc:tary

1Iov. l.t as recall froII el_ntwy .e<:baftics that the
acceleratlOD is the tl. cler1vathe of tbe velocity fielel alone the
path Uues of tbe nuld particl •• that i.

HI HI .1(X.t>•..•I(!·t·)
a (x.t) • at (x.t) + • (x.t) b (x.t)· U. t _ t' (4)
I J J t·.

where ! staDds for the poslU_ at U. t' of tbe particle that ••• _

tbrouab x at tl. t. The LGIC (1.5.6) Is b&8eclupoIl a •• tural
approxl_tlon of Eq\at.lon (4): 11' we ~ a U. step At and deClne

where t. belonp t.o the ~ U. eliscreUzaUOIL, we can approxt_te
the accel_UClIl t...- __

.al(x) _ .n-t(x)
I -al (x. t.) • At

Collect1ac tbe prevIous results. and vlth Il1pl1clt treataent of
the other ~. we have

+ :f.<X)
I

It should be noted that. In the nelghbourbDad of Inflow
boundaries, __ of the ! vlll fall outside Q. Thi. Is clue to tbe

partlcle-follov1ac properties of l.agraDclan ~tatiOD and ~ be
considered clurlna the spatlal cl1scretlzatlO1L

Eq\atlons (7)-(8), at each tl. t ••• lve rl_ to a aenerallzed

Stokes prabl_ whlch can receive standu-d finite el_nt tr-hent..
As said In the IntrocluctiOD. we chose trianeular ele_nta for all
fields, so as to work vlth ~ructurecl aesbes. To be sore apecU'lc.
we Illple.nt.ed t.he bPtIP1 el.-Dt 18.91. eoMlsthli 0' tour ..-1
1h_r conf_iac .ub-trl ••••l_ 1_1de tbe (al_ 11_ and



We now perfora the usua.l Calerltlll8-flni te element weightlll8 of
Equations (7)-(8). obtainlll8 the linear s~te. that corresponds to the
so called 'direct' LGM(we have adopted the noJIeDClature of (6)):

I: v'"-[ p8.r!'
V'I - _Yp - -

N"' dx + I~[BN: + BN~][a~+ B~ dx
1 g 2 aXJ aXI aXJ ~J

BN
I
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with iI (HI) the l-th velocity (pressure) basis function.
Also

where l is the surface traction. The Clrst integral In (13) is not

tractable by analytical means, as ~-1(l5) is a quite general (far froa

polyhedral In JDOstcases) continuous function. Also. the posItion ~

cannot he found exactly, as it is the solution of an ordinary
differential equation at each point x of Q:

dX(t) '" 6 (X(t), t)
dt

x '" x(t )- n-l

In the next section, we descrlhe a nuaerical sche_ to evaluate
the first integral in Equation (13) by non-exact integration with
approxiaate solution of Eq. (14).

In what concerns the solution of the linear s~te. (9)-(101, we
used a conjugate gradient algorithll on pressure unknowns, with the
precondltloner proposed by C&houet and Chabard {5]



It is known that the LGM,when integration is eXllCt, leads to an
unconditionally stable, conservative scheme. Morton et a1. (8) have
shown that approxi_te evaluation of the right band side renders the
scheme not only non-conservative, but also conditionally unstable in
~st cases. 1bey proposed a variant, called 'area weightlnc'. that
recovers unconditional stability but Wrortunately does not _rk on
,unstructured _s~. Therefore, we laplellented non-exact Integration
by numerical quadrat_, but care __ taken in the selection of the
quadrature points (ses 4. c). In this ~, EquatIon (14) aust be
sol ved only at the flnl te nuaher of points chosen for quadrature.

Notice that the velocity field at ti_ t. Is not known at the

IIlOllentof constructinc J!. Nevertheless, if At is s_11, trajectories

can be accurately deteralned by fixing. at t_
I
, solvinc

dX 1'-1dt • eXet)); X(t.) • x

Arter coaparison with other possibilities (explicit Euler,
Runge-Kutta), a second-order predictor-corrector method __ chosen,
giving

• At __ I

x • X - 217 (x)
__I •

~ • x - At 'fJ (x)

To construct J!. this procedure iapUes thee valuation of the field

,...' at two positions (x· and x) for each quadrature point. This- .
operation involves interpolation within the eleaents where x (or~)

lles. which is not knovn, and requires special attention (see 4. b. ).
If the point lles oursUE the do_in, it aay be due to t_ si tuatio_:

- x is near an inflow boundary: Generally. at inflow boundaries.

velocities are prescribed. In this case, we assign to t"""1(!)

the prescribed value at the point where the particle entered
the do_in.

- NwlericaI errors In _lv~ Equation (17): 1be nuaerlcal scheme
(9)-(20) can 1.-1 to x or ~ spuriously lalUnc outside the

do_ln. To deteraine If this is the case, eYer)' time a point
falls outside Q. the time step Is subdiVided (up to 1/16 of its
original value) and several predictor-corrector sUbste~
applied to acre 8CCuralely flDd ~ (ses Fla. 2). In this W¥,
spurious eXits are relllOWlClnear corners vi th no -ct or



correcting the global At (this procedure is also discussed in
Section 5 and called 'substepping', the only difference being
that in that case it is applied allover the Desh).

The LGM.as described above, leads to several evaluations of the
velocity field at positions not coincident with an;y node of the Desh.
This can be a very expensive operation U' progr-aa.ed with ingenuity.
Below, we describe three al gorlt hE , with increasing coaplexity, that
accoapUsh the geoDetrlc search function.

The mesh element K that contains a given point X-(x.y) is to be
fOund' in order to interpolate the velocity field at X froa its values
at the nodes of ~.

-ALGORITHMNA (naif):
loop 1-1. nuaber of eleaents In the IIleSb

test if X belongs to I
if this is the case, return K=I
else continue

end loop

-ALGORITHMSAM(structured aUXiliary _sh [1. 11J:
1. Pre-processing step (outside the teaporal loop):

-COnstruct an auxiliary aesb foraed by rectangles
the locations XI(i-1.NX). YI(i-1),NY) of the

(vertical and horizontal, respectively) lines.
RIJ is [XI' XI+1J x [Y

J
•YJ+1). Of course, the

mesh aust cover the cIo_in (see Fig. 3).
-For every RIJ• construct a table T

IJ
•

indexes of the original aesh eleaents that

2. Search step (inside the teaporal loop):
-Find the rectangle R

IJ
that contains X (this is easily

as the auxiliary aesh is structured).
-Sweep table 11J to find the eleaent K of the original

that contains X.

and store
diViding

Rectangle
auxil iary

containing

intersect RIJ

- ALGORITHMQT (quad-tree structure [1]): This is a variant of the
previous algori thll, replacing the auxi liary rectangular aesh by a
quad-tree. The quad-tree leaves being auto_tically subdivided to
account for local densifications of the original .esh.

B;y inspection of the algorithE. Alg. NA is clearly seen to be
of highest order. In fact, as at l~t one search aust be perforaed
for each quadrate point, Alg HI. is O(N). This order soon renders it
prohibitive with increasing the nuaber of degrees of freecloa. Alg SAM
and Alg. QT are similar, but QT handles acre efficiently _shes with
local refinement, and Is to be prefered. However. the best choice
turned out to be a COMBIJIATIONof SAMand QT, each rectangle of an
auxiliary R£GULAR aesh being given a quad-tree structure. In Fig. 4,
we show the resulting auxiliary structure for the vortex-shedding
experiment to be described in Section 5. \lith this method, geoaetric
search becomes inexpensive when coaparecl to the solution of t.he linear
s;ystea.



We perfonaed the tlrst Integral In Eq. (3) nUJlerleally. by
evaluating the integrand at a finite set of points and weighting this
value according to the quadrature rule. Wetested several quaclratures
for the IIOre siaple preblea of advection-diffusion of a sealar
quantity. Weswasarize the possible choices in Table 1.

£ POINTS TRIANGlLAR CXlORDINATES tlLTIPUCITY WEICHI'S CIUD

1 3 U/2.1/2,O) 3 1/3 2

2 3 (11'8,116.2/3) 3 1/3 2

3 4 (1/3,1/3.1/3) 1 -27/48 3

(1/5,1/5.3/5) 3 27/48

4 6 (.81685,.09157 •. 09157) 3 .1099517 4

(.10810 •. 44595•. 44595) 3 .2233816

An anal)"Sis of the effect of these quadratures on l.CH has been
reported by BersOdez et al (4), for steady-state (non-linear) prableas.
They find that all the foraulae in Table 1 lead to acceptable
solutions. However, our results on the pure advection of a cone have
shown that forlllulae 2 and 3 are UNSTABLEfor this transient prablea.
Wedo not include the full anal)"Sis here for brevity, but foraulae 2
and 3 are excluded in the follOWing because of this reason.

The above aentioned tests for tile pw-e transport of a cone also
showed that fOMllula 4 is not worthy, as it is IlUChIIOre costly than
fOMNla 1 but brings no extraordinary 1JllroveaeDl.

We chose fOMNla 1 and studied its behaviour in what concerns
lack of conservatlvity and nuserieal diffusion. Both effects were
seen to decrease with aesh ref"1ne_nt. The nuaerieal diffusion
inc~ed with s_ller tiae steps. This is in avee_nt with. ters
O(h /At) in the error bound for our interpolation (3,10), and iapHes
the existence of an opti_l tiae step of order h. However, this
deleterious effect of very sJll8.ll ti_ steps was only noticeable in
transient probleas.

In this section. we discuss the perforwance of the above
mentioned •• UlOd on t_ well-known test exasples: The Hd-driven
sqlare cavity (see (12) for a cOllparison of several finite eleaent
methods) and the vortex shedding behind a square cylinder (see [9] for
experimental data. (13] for nUllerieal predictions). We include an
1I1ll.1ysli of the effect or tht U. Itep Oft the I'eIlUU ••



The problem 18 to find the steady-state 2-D t"low inside a
uni tsquare cavity with the boundary condi tions

for a fluid with unit density. The Re)'llOldilnUllber (Re) of this t"low
is defined as

\Ie solved this problem f'or Re •• 100 and 400, with the IleSh shown in
Fig. 5 (1003 unknown) and several ti_ steps. In Figures 6 and 7. we
plot the prof'iles of' horizontal veloci ty along the vert ieal centre
line, f'or both Re, as compared with a ref'erence computation -.de on a
riner _sh consisting of' 2660 degrees of' f'reedom. Also included are
the results at Re •• 0 (Stokesian f'low), to allow f'or comparison.
Clearly, the steady nuaerical results depend on the choice of' the ti_
step. This is ·not surprising, since the evaluation of inertia is _de
through Eq. 6 above. and is only exact in the li.it of' vanishing At
(cf'. Eq. (4». However, the error in this approxi_tion may co_ f'ro.
ttllO different sources: Eq. (6), even if' x is traced-back exactly.
introduces an error of order At. On the other hand, the ti_ step is
also involved in the deteraination of ~, as can be seen from Eqs. (19)

and (20). Notice that. when obtaining steadrstates, Eq. 17 i.plies
no additional approxi_tion as t>-1 equals 7 for large n. To see
which of' the previous reasons is the origin of' the sensitivity to
temporal discretization shown if' Figs. 6 and 7. we solved Eq. (17) by
successive application of (19)-(20) NPti_s. with auxiliary time step
At' • At/NP. This procedure. which we will call sUbstepping, brought
no not iceable improve_nt in the results even with NP-8. From this we
conclude that the first order approxi_tion of the _terial derivative
in Eq. (6) is responsible for the ti_ step dependence of the steady
velocity f'ield. This observation provides a means of esti_ting the
adequate ti_ step for simulation of steady phenomena. In fact. the
error introduced in (6) can be calculated locally at each quadrature
point siaply by coaparing the accelerations obtained witb the proposed
At and a suitable ~ll fraction of it that properly approxi_tes the
amit of Eq. (4).

But probably the IIOSt important consequence of the observations
reported in the previous paragraph is the following: As the
particle-tracking shows unexpensive with the quad-tree-based
algori tha, the method tlIOuldbe improved by replacing the first-order
sche_ of Eq. (6) by the second-order accurate ttllO-step _thod



llIIlere the pol•• ! and I .,..the l~l-. at tl_ t_t and t_

~pectlvely. ot the pu-tlcle tJlat 1. at x at tl_ t.. W. t_ted thl.

alternative. tlhlch 111 will call ·tlD-Step.cbeM· In the tollowi ••••
and contl.-.ed the above conJecture. In .Ft••••• 8. 111 COIIpU'ethe
prerUes obtalDed. witIa At • O.1 at Be. 100. tor tba o_tep aDd
two-step sche_. 1be reterence c..-- corresponds to a finer -.b as
above. lbe •••• Is cto-. at Re-4OO. In n•••.•9. Clearly. bl •••••
tl_ steps are allO'ed when _I ••• Eq. (21). aDd tba COIIPUtll11tl_
reduce conlleqUltntly. For all .-ults at Re-4OOwe lIMd the substeppllll:
procedure. with.· 2.

Vortex sheddl •• behlDd a ~ C)"liDder

we consider here the two-dl_l~ now .-t a ~ oa.t-ele.
ot a flu1d with treestreaa velocIty U. vl~lty ~ and unIt deDslty.
The Re)"llOlclsnu.ber 1. deflDed ••

Be.!!
IJ

where t 1. the width or tile obstacle. For our experl_t.. we took
~1 aDdRe=I00 and 400. 1be tlD1te el_nt _h and di_iOlW ot the
COIIpUtatlonal~ln .,.. s'- III Flaunt 10. Adherence CODditl_ are
It1pOl1edat the obstacle. the exlt Is tractlon-f'ree. the fluid _ters
the do_1n with unifoMl _locity U (horizontal). and s~try Is
ass.-eel at the top and bottoa boundaries. No _ forces .,.. present.
and also _ perturbation of the boundar)" conliitl_ is -.ded to
obtain aD oscillatory tlow. witla _rtices periocUcally I_vi... the
obstacle. Both experl_nlal (9) and n~rlcal (13] ~ults .,..
available in the literature tor this probl_. A typical dl __ ioDl_
value tor COIIIl8J"lsonis the stroubal m.ber. defined by

st • rt
u

where t Is the frequeDC)' at the sheddl.... With our _thod. we
obtalned st. O.13 at •••• 100 and St. 0.14 at Re. 400. 1n
reasonable agree.nt with reported values. The !"low pattern (see
InstantaDeOus stre_llnes around the obstacle 1n Flg. 11 for Re • 4(0)
and pre_ure contours (see FlC. 12) also resellble published results.

we _ t_ to a stud)' at the ertect of the tl_ step. In
Table 2. we show the stroubal nUllbers obtained vlth __ ral At.
Clearl)', the sheddl ••• trequeDC)' 1. _nsltl_ to tellpOral
discretization. Substeppl ••• OI11y.odlfi_ the ~lts with At • O.s.

Table 2: Ertect or tba tl_ step on tba Stroubal m.ber tar the
vortex-sheddl... experl~.

Re STEP-o.<05 STEP-o.2IO STEP-o.5 srEP-o. 5(1F-4)

100 0.130 0.130 0.116 0.113

400 0.145 0.142 0.124 0.123



However. as aentioned in 4.c. s_ller tiae steps with fixed lllesh
enhance nUlllerical diffusion for transient problelDS. and probably the
resul ts obtained with At • O.OS are no better than those with
At • 0.2. The s-.ll effect of substepping sugesta that, for this
proble. also. errors in solving Eq. (17) are uni.portant. We thus
conjecture that the tllO-step scheae (21) could be useful. Further
tests are in progress to verify this assertion.

We have presented a Lagrange-Galerkin based _thod to· solve the
transient Havier-Stokes equations. Several difficulties that appear
in the coaputation of the right hand side have been given satisfactory
solution. in such a ~ that non-trivial proble_ can be handled on
relatively _11 collpUters (we used VAX 11-780 and HICJlOVAXII).
N~rical resul ts have been shown to assess the nuaerical accuracy of
the _UlOd.

An analysis of the effect of the ti_· step led us to propose a
tllO-step approxi-.tion for the derivative along characteristics. This
lIOCIifi cation. wben applied to the lid-driven cavity proble., gave
encouraging results and further tests are under ~'
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•na. 2: Sehe_tic dlap'UI sbowlDCbowsubstepplas ••••wots x
fro. spurl_l)' faUlna outslcle 0-

Fla. 3: AneX&llpleof the stMlCt_d auxllllll")'--.
Fla. 4: AuxUllll")'structure auto_ticall)' generated In the

vortex-sbeddlna experl_at.
Fla. 5: Flnite ele-.t _b fOIl"the lld-drlw. square cavit)'

proble•.
FlB- 6: Profiles of horlzontal wloclty alons vert leal centre

line at Re• 100. Effect of the tl_ step.
7: Idea Fla. 6 at Re• 400.
8: Coaparlsonof l-step and 2-step sc:~ at Re • 100.
9: Ic1eaFla. 8at Re • 400.

10: Flnlte el.sent aesh and dl••nslons for the
vortex-sheddlngexaaple.

Flg. 11: Aplot of Instant&DeOUS.tre_llnes near the ob8ue1e at
Re • 400.

Flg. 12: Instantaneous ~_ contours at lie • 400.
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