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RESUMEN

En este trabajo se discuten aspectos gque conciernen a la
implementacién del método de Lagrange-Galerkin para la resolucién por
elementos finitos de las ecuaciones de Navier-Stokes. Se desarrolla
un esquema que permite tratar redes generales no estructuras, en el
que la busqueda geométrica utiliza un algoritmo basado en quad-trees.
Se analizan las dificultades que aparecen en la construccién del
segundo miembro y se proponen soluciones.

Se incluyen asimismo resultados numéricos para los problemas de
cavidad cuadrada y desprendimiento de vortices detras de un obstéculo
cuadrado, que muestran buen acuerdo con trabajos previos.

ABSTRACT

This paper is concerned with the implementation of
Lagrange-Galerkin finite element wmethods for the Navier-Stokes
equations. A scheme is developed to efficiently handle unstructured
meshes with local refinement, using a quad-tree-based algorithm for
geometric search. Several difficulties that arise in the construction
of the right-hand side are discussed in detail and some useful tricks
are proposed.

The resulting method is tested on the lid-driven square cavity
and the vortex-shedding from a square cylinder problem, with
satisfactory agreement with previous works.
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INTRODUCTION

Efficient solution of the incompressible Navier-Stokes equations
is of primary importance in many applications of computational fluid
dynamics. Several difficultlies appear in the numerical treatment of
these equations: Indefinite and usually ill-conditioned stiffness
matrices, convection-dominated diffusion of momentum at large Reynolds
nuabers, non-linearities coming from acceleratlion terss, and
restrictions in the choice of interpolants for velocities and pressure
so as to satisfy the well-known Ladyshenskaya-Babuska-Brezzi (LBB)
condition (see, e.g., [(8,9].

In this paper, we will focus our attention on the development of
compact codes which appropriately handle the above mentioned
difficulties. For that purpose, local mesh refinement is needed, so
that boundary layers can be resolved without introducing unnecessary
degrees of freedom in regions where no steep gradients are expected.
This leads to the use of unstructured meshes, and we have chosen
triangular elements to satisfy this requirement. However, it is by
now established that Galerkin weighting gives oscillatory {(wiggly)
results at large Reynolds numbers even in very fine meshes, and a
certain amount of ‘upwinding’ is needed to make reallistic problems
tractable.

We have adopted the Lagrange-Galerkin method (LGM) [1,5,6] as a
means of introducing this necessary upwinding. It is based upon a
Lagrangian—frame treatment of the material derivatives, and also
provides a robust way to deal with the non-linear convective terms.
Once the LGM is used., there remains to solve a Stokes problem at each
time step together with the evaluation of the right hand side. The
computational implementation of this last item is essential for the
resulting code to be competitive, and will be given detailed
explanation below.

The plan of this paper is as follows: In Section 2, we state the
continuous problem and perform the time discretization that leads to
the LGM. Section 3 is devoted to the finite element approximation of
the resulting set of equations. At this point, it is seen that exact
integration of the right hand side is not feasible, and Section 4
includes a full description of the numerical scheme we implemented.
Finally, we show several numerical tests in Section 5, to assess the

global behaviour of the proposed scheme. Conclusions are drawn in
Section 6.

THE CONTINUOUS PROBLEM AND ITS DISCRETIZATION BY THE LGM

The dynamical behaviour of an incompressible fluld of density p
and viscosity p is governed by the Navier-Stokes equations
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where 3 is the velocity field, p the pressure, and 7 the body forces.
Equation (1) remains valid even if g varies throughout the domain, as
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is the case if 1t depends on the temperature or some other fleld.
Appropriate conditions to solve (1)-(2) inside a bounded domain Q are,
for example, to specify the imitial velocity field

o’(x.o) = V‘(x) v xef (3}

and boundary data such ss wvelocities or surface tractions on all of
the boundary

Now, let wus recall from elementary wmechanics that the
acceleration is the time derivative of the velocity field along the
path lines of the fluid particles, that is

de, 50 o (x.t)-¢ (x,t")
3, (x,t) = 5 (1) + 0 (x,t) =, (x,t) = :1;————1—:—9—— (4)

vhere x stands for the position at time £’ of the particle that passes

through x at time t. The LGM [1,5,6) is based upon a matural
approximation of Equation (4): If we choose a time step At and define

" (x) = ¢ (x,t ) (s5)
1 1 »
where t- belongs to the chosen time discretization, we can approximate
the accelerstion terms by

S0 - &)
axt) = —p—— (6)

Collecting the previous results, and with implicit treatment of
the other terms, we have

£ o"x) - 2 ol R PR ™
Bt %W ax”‘aTj e, ax"‘ X % %

= =0 (8)

It should be noted that, in the neighbourhood of Iinflow
boundaries, some of the x will fall outside 2. This is due to the

particle-following properties of Lagrangian representation and must be
considered during the spatial discretization.

FINITE ELEMENT APPROXIMATION

Equations (7)-(8), at each time t , give rise to a generalized

Stokes problem whick can receive standard finite element treatment.
As sald in the introduction, we chose triangular elements for all
filelds, so as to work with umstructured meshes. To be more specific,
we implemented the 4xP1/P1 element [8.8], consisting of four equal
linear conforming sub-triangles Iinside the (also lipear and
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conforming) pressure element (see Fig. 1).
We now perform the usual Galerking-finite element weighting of

Equations (7)-(8), obtaining the linear system that corresponds to the
so called 'direct’ LGM (we have adopted the nomenclature of [6]):

K .""fvpf"'f (9)
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-

T
Ky ¥ (10)

where !', g“ are the velocity and pressure unknown at step n and

v - " GN: anj arr: oN;
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with R' (M') the I-th velocity (pressure) basis function.
Also

1
[g"] = 2 [ o oNt Goax + of riwlax « [ elar (13)
Q Q an

where _g’ is the surface traction. The first integral in (13) is not
tractable by analytical means, as 3“"(5) is a quite general (far from
polyhedral in most cases) continuous function. Also, the position X

cannot be found exactly, as it is the solution of an ordinary
differential equation at each point x of Q:

dX _
T =3 xr), v (14)
with initial condition
X(t ) =x (15)
n
and then x comes from
X = X[t ] (186)
= n-1

In the next section, we describe a numerical scheme to evaluate

the first integral in Equation (13) by non-exact integration with
approximate solution of Eq. (14).

In what concerns the solution of the linear system (9)-(10), we
used a conjugate gradient algorithm on pressure unknowns, with the
preconditioner proposed by Cahouet and Chabard (5]
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EVALUATION OF THE RIGHT HAND SIDE

It is known that the LGM, when integration 1S exact, leads to an
unconditionally stable, conservative scheme. Morton et al. (8] have
shown that approximate evaluation of the right hand side renders the
scheme not only non-conservative, but also conditionally unstable in
most cases. They proposed a variant, /called ‘area weighting’, that
recovers unconditional stability but unfortunately does not work on
unstructured meshes. Therefore, we implemented non-exact integration
by numerical quadrature, but care was taken in the selection of the
quadrature points (see 4.c). In this way, Equation (14) must be
solved only at the finite number of points chosen for quadrature.

Particle tracking
Notice that the velocity field at time t‘ is not known at the

moment of constructing g’ Nevertheless, if At is small, trajectories
can be accurately determined by fixing ¢ at t._l. solving

g"? = X)) X(t) = x (1mn
a
and setting
x= x{tﬂ] (18)

After comperison with other possibilities (explicit Euler,
Runge-Kutta), a second-order predictor-corrector method was chosen,
giving

x =x - A& (19)
x = x - At r’l(x') (20)

To construct g‘ thig procedure implies thee valuation of the field
- -
& at two positions (x and x) for each quadrature point. This
L]

operation involves interpolation within the elements where x {or x)
lies, which is not Xnown, and requires special attention (see 4.b.).
If the point lies OUTSIDE the domain, it may be due to two situations:
- X is near an inflow boundary: Generally, at inflow boundaries,
velocities are prescribed. In this case, we assign to 3""(_)_()
the prescribed value at the point where the particle entered

the domain.
~ Numerical errors in solving Equation {17): The numerical scheme
(19)-(20) can lead to x or X spuriously falling outside the

dommin. To determine if this is the case, every time a point
falls outside 0, the time step 1s subdivided (up to 1/16 of itsg
original value) and several predictor-corrector substeps
applied to more accurately find X (see Fig. 2). In this way,

spurious exits are removed near corners with no need of
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correcting the global At (this procedure is also discussed in
Section § and called 'substepping’, the only difference being
that in that case it is applied all over the mesh).

Geometric search

The LGM, as described above, leads to several evaluations of the
velocity fleld at positions not coincident with any node of the mesh.
This can be a very expensive operation if programmed with ingenuity.
Below, we describe three algorithms, with increasing complexity, that
accomplish the geometric search function.

The mesh element K that contains a given point X=(x,y) is to be
found in order to interpolate the velocity field at X from its values
at the nodes of K.

-ALGORITHM NA (naif):
loop I=1, number of elements in the mesh
test if X belongs to I
if this is the case, return K=I
else continue
end loop

-ALGORITHM SAM (structured auxiliary mesh [1,11]:
1. Pre-processing step (outside the temporal loop):
~Construct an auxiliary mesh formed by rectangles and store
the locations X‘(l-rl,NX). Y‘(i=1).NY) of the dividing

(vertical and horizontal, respectively) lines. Rectangle

RU is [Xl. X‘Ol] b3 ”,'Y,.;]' Of course, the auxiliary

mesh must cover the domain (see Fig. 3).
-For every R”. construct a table T”. containing the

indexes of the original mesh elements that intersect R”.

2. Search step (inside the temporal loop):
-Find the rectangle RlJ that contains X (this is easily done

as the auxiliary mesh is structured).
~Sweep table T” to find the element K of the original mesh

that contains X.

- ALGORITHM QT (quad-tree structure [7]): This is a variant of the
previous algorithm, replacing the auxiliary rectangular mesh by a
quad-tree. The quad-tree leaves being automatically subdivided to
account for local densifications of the original mesh.

By inspection of the algorithms, Alg. NA is clearly seen to be
of highest order. In fact, as at leaszt one search must be performed
for each quadrate point, Alg NA is O(N®). This order soon renders it
prohibitive with increasing the number of degrees of freedom. Alg SAM
and Alg. QT are similar, but QT handles more efficiently meshes with
local refinement, and is to be prefered. However, the best cholce
turned out to be a COMBINATION of SAM and QT, each rectangle of an
auxiliary REGULAR mesh being given a quad-tree structure. In Fig. 4,
we show the resulting auxiliary structure for the vortex-shedding
experiment to be described in Section §. With this method, geometric
search becomes inexpensive when compared to the solution of the linear
systenm.
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Numerical quadrature

We performed the first integral in Eq. (13) numerically, by
evaluating the integrand at a finite set of points and weighting this
value according to the quadrature rule. We tested several quadratures
for the more simple problem of advection-diffusion of a scalar
quantity. We summarize the possible choices in Table 1.

Table 1: Quadrature formulae

£ | POINTS |TRIANGULAR COORDINATES| MALTIPLICITY|WEIGHTS |oRDER
1 3 (1/2,172,0) 3 1/ 2
2 3 (1/6.1/6,2/3) 3 173 2
3 . (1/3,173.1/3) 1 21748 | 3
(1/5,1/5,3/5) 3 27/48
. 6  |(.81685,.08157, .09157) 3 .1099517| 4
(. 10810, . 44595, . 44595) 3 . 2233816

An analysis of the effect of these quadratures on LGM has been
reported by Bermidez et al [4], for steady-state (non-linear) problems.
They find that all the formulae in Table 1 lead to acceptable
solutions. However, our results on the pure advection of a cone have
shown that formulae 2 and 3 are UNSTABLE for this transient problem.
We do not include the full analysis here for brevity, but formulae 2
and 3 are excluded in the following because of this reason.

The above mentioned tests for th pure transport of a cone also
showed that formula 4 is mot worthy, as it is much more costly than
formula 1 but brings no extraordinary improvement.

We chose formula 1 and studied its behaviour in what concerns
lack of conservativity and numerical diffusion. Both effects were
seen to decrease with mesh refinement. The numerical diffusion
inc ed with smaller time steps. This is in agreement with a term
O(h"/At) in the error bound for our interpolation (3,10], and inplies
the existence of an optimal time step of order h. However, this
deleterious effect of very small time steps was only noticeable in
transient problems.

NUMERICAL EXAMPLES

In this section, we discuss the performance of the above
mentioned method on two well-known test examples: The 1lid-driven
square cavity (see [12) for a comparison of several finite element
methods) and the vortex shedding behind a square cylinder (see [9] for
experimental data, [13] for numerical predictions). We include an

analysis of the effect of the time step on the results.
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The l1d-driven square cavity

The problem 18 to find the steady-state 2-D flow inside a
unitsquare cavity with the boundary conditlions

ot(xl.xz-l) =1
01 (xl-O. xz)-o‘(xl. x’-o)-ol(xl-l .xe)-o
oz(x1=0.xa)-oz(x1=1.xz)-oz(x‘.xz-O)-oz(xl.xz-l)uo

for a fluid with unit density. The Reynolds number (Re) of this flow
is defined as

1
RQ-E

VWe solved this problem for Re = 100 and 400, with the mesh shown 1n
Fig. 5 (1003 unknown) and several time steps. In Figures 6 and 7, we
plot the profiles of horizontal wvelocity along the vertical centre
line, for both Re, as compared with a reference computation made on a
finer mesh consisting of 2660 degrees of freedom. Also included are
the results at Re = 0 (Stokesian flow), to allow for comparison.
Clearly, the steady numerical results depend on the choice of the time
step. This is .not surprising, since the evaluation of inertia is made
through Eq. 6 above, and is only exact in the limit of vanishing At
(cf.Eq.(4)). However, the error in this approximation may come from
two different sources: Eq.(6), even if x 1s traced-back exactly,
introduces an error of order At. On the other hand, the time step is
also involved in the determination of x, as can be seen from Egs. (19)

and (20). Notice that, when obtaining steady-states, Eq. 17 implies
no additional approximation as & ' equals for large n. To see
which of the previous reasons is the origin of the sensitivity to
temporal discretization shown If Figs. 6 and 7, we solved Eq.(17) by
successive application of (18)-(20) NP times, with auxiliary time step
At' = At/NP. This procedure, which we will call substepping, brought
no noticeable improvement in the results even with NP=8. From this we
conclude that the first order approximation of the material derivative
in Eq. (6) is responsible for the time step dependence of the steady
velocity fleld. This observation provides a means of estimating the
adequate time step for simulation of steady phenomena. In fact, the
error introduced in (6) can be calculated locally at each quadrature
point simply by compering the accelerations obtained with the proposed
At and a suitable small fraction of it that properly approximates the
limit of Eq.(4).

But probably the most important consequence of the observations
reported 1in the previous paragraph is the following: As the
particle-tracking shows unexpensive with the quad-tree-based
algorithm, the method would be improved by replacing the first-order
scheme of Eq.(6) by the second-order accurate two-step method

38" (048" ()48 Py

-’
55T (21)

alx)e
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vhere the points x and x are the locations, at times t._l and t__.
respectively, of the particle that is at x at time t_. Ve tested this

alternative, which we will call 'tw-~step scheme’ in the following,
and confirmed the above conjecture. In Figure 8, we compare the
profiles obtained, with At = 0.1 at Re = 100, for the one-step and
two-step schemes. The reference curve corresponds to a finer mesh as
above. The same 13 done, at Re=400, in Filgure 8. Clearly, bigger
time steps are allowed when using Eq.(21), and the computing times
reduce consequently. For all results at Re=400 we used the substepping
procedure, with MP = 2.

Vortex shedding behind a square cylinder

We consider here the two-dimensional flow past a square obstacle,
of a fluid with freestreaam velocity U, viscosity p and umnit density.
The Reynolds number is defined ss

Re
Re ——
“Th

shere ! is the width of the obstacle. For our experiments, we took
&1 and Re=100 and 400. The finite element mesh and dimensions of the
computat ional domain are showm im Figure 10. Adherence conditions are
imposed at the obstacle, the exit is traction-free, the fluid eanters
the domain with uniform velocity U (horizontal), and symmetry 1is
assumed at the top and bottom boundaries. No mass forces are present,
and also no perturbation of the boundary conditions is needed to
obtain an oscillatory flow, with vortices periodically leaving the
obstacle. Both experimental [8] and numerical [13] results are
available iIn the literature for this probleam. A typical dimensionless
value for comparison is the Strouhal number, defined by
b4

St-u—

where f is the frequency of the shedding. With our wmethod, we
obtained St = 0.13 at Re = 100 and St =0.14 at Re = 400, 1in
reasonable agreement with reported values. The flow pattern (see
instantaneous streamliines around the obstacle in Fig. 11 for Re = 400)
and pressure contours (see Fig. 12) also resemble published results.

Ve now turm to a study of the effect of the time step. In
Table 2, we show the Stroubal numbers obtained with several At.
Clearly, the shedding frequency is sensitive to temporal
discretization. Substepping only modifies the results with At = 0.5,

Table 2: Effect of the time step on the Stroubml number for the
vortex-shedding experiment.

Re |STEP=0.0S | STEP=0.20 | STEP=0.5 STEP=0. 5(WP=4)

100 0.130 0.130 0.116 0.113

400 0.145 0. 142 0.124 0.123




- 240 ~

However, as mentioned in 4.c, smaller time steps with fixed mesh
enhance numerical diffusion for transient problems, and probably the
results obtained with At = 0.05 are no better than those with
At = 0.2. The small effect of substepping suggests that, for this
problem also, errors in solving Eq.(17) are unimportant. We thus
conjecture that the two-step scheme (21) could be useful. Further
tests are 1in progress to verify this assertion.

CONCLUSIONS

We have presented a Lagrange-Galerkin based method to- solve the
transient Navier-Stokes equations. Several difficulties that appear
in the computation of the right hand side have been given satisfactory
solytion, in such a way that non-trivial problems can be handled on
relatively small computers (we used VAX 11-780 and MICROVAX II).
Numerical results have been shown to assess the numerical accuracy of
the method.

An analysis of the effect of the time step led us to propose a
two-step approximation for the derivative along characteristics. This
modification, when applied to the 1lid-driven cavity problem, gave
encouraging results and further tests are under way.
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FIGURE CAPTIONS

Fig. 1: 4><P,/F'I mixed element.
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[ ]

Schematic diagram showing how substepping prevents x
from spuriously falling outside .
An example of the structured auxiliary mesh.

Auxiliary structure automatically generated in  the
vortex-shedding experiment.

Finite element mesh for the lid—driven square cavity
problenm.

Profiles of horizontal velecity along vertical centre
line at Re = 100. Effect of the time step.

Idem Fig. 6 at Re = 400.
Comparison of i-step and 2-step schemes at Re = 100.

Idem Fig. 8 at Re = 400.

10: Finite element mesh and dimensions for the

11:

12:

vortex-shedding example.

A plot of instantaneous streamlines near the obstacle at
Re = 400.

Instantaneous pressure contours at Re = 400.
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