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ABSTRACT

An isoparametric axisymmetrical finite element is developed for the
analysis of multilayer composite structures wound by wide nlies. This
element takes into account the variation of angle along the width of a
layer, i.e., along a given parallel between two meridian lines of a
revolution structure. Evaluation of strain and stress tensors is perforam
ed in mean fiber and in extreme fibers directions of a ply; so, those
extreme values give bounds of a trust interval centered on the mean
direction values obtained with a classical element, presenting a cons
tant filament direction along the width of the ply, the relative differ
ence between stresses in mean and extreme directions can reach 20X! More
over, the model can represent geometrical nonlinear behaviour and mate-
rial nonlinearities. The influence of the variation of angle on the in-
tralaminar degradation onset is described and different choices of de-
gradation factors are compared on a model of a real wound structure.
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INTRODUCTION

The winding technology has application in the domain of aerospace
structures as motor cases of launchers and missiles which need an ex-
ceptional resistance/weight ratio, Other applications are investigated
in the marine activities (offshore petroleum structures, ...) [1,2],
Thus, it seems very important to understand the behaviour of such
structures.

Actually, some manufactures wind structures with wide layers. This
kind of winding process constitutes an economical and mechanical inte-
rest. But, in extreme structure's regions, fibers of a layer, make with
the meridian line, an angle which changes on a given parallel.

The paper's purpose consists in developing a finite element form—
ulation for analysis of multilayer composite materials, taking into
account this variation of angle along the width of a ply. This fimite
element, representing geometrical nonlinear behaviour and material non-
linearities, is very useful to study wound structures; indeed, such
structures are formed with multidirectional composite for which intra-
laminar degradation process occurs before delamination [3,4].

After having presented, in the first section, 2 basic description
of a wound composite structure, some theoretical assumptions of the
finite element model are described in the second one and the degradatiom
models in a third sectiom.

The effects of the variation of angle on the degradation process
are described in section fourth. Finally, different choices of degrada-
tion onset are applied on an academic application; we also compare, on
a real wound structure (a spherical motor case of missile), the results
given by our new method to results obtained with the classical element,
having a constant filament direction along the width of a ply.

1. Description of a Wound Composite Structure

Generally, vound composite structures are cylinders having two
axisymmetrical rings at their extremities. They are manufactured with a
metallic liner wrapped by wound composite layers. The liner is used
as a mandrel during the manufacturing process, insures gastightness and
provides also a small amount of the mechanical strength [2].

An example of a wound structure is shown in Fig. l. Only a quarter
of the whole wound tank is presented: the z-axis is the revolution one
and the plane oxy constitutes the equatorial plane of the ring (extreme
part of the structure); the curve (I) represents the trajectory of a
fiber on tank's surface: near the opening's region (waximum value of z-
coordinate), (I) has to be tangent to the last parallel.
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Fig. 1: wound axisymmetrical tank
- cylindrical part
~ extreme ring with openings

In the polar zone, near the gap of the ring, there is local in-
creasing of composite thickness because the plies have to be bent for
going on the winding. This region is critical when internal pressure
grows because of important local flexioms. Fig. 2 illustrates the thick
ness profile of composite material wound on a sphere.

thickness
increasing

Fig. 2: Thickness profile of composite material
wound on a sphere

Angular position
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To extenuate this effect (i.e., to spread the local "bubble"” in
the thickness profile of Fig. 2) and to decrease the winding time, some
manufactures wind structures with wide layers (for example, the ratio,
width of the ply to radius of cylinder, can be equal to 0.05). But the
width of plies influences mechanical properties of composite material,
which is still orthotropic in a global way. In fact, as shown in Fig. 3
in extreme structure's regions, filaments of a layer, make with the
meridian line, an angle which changes on a given parallel. One assumes
that fibers are distributed in an interval [al,a ] . To keep axisymme-
trical properties of the structure, symmetrical fllameats are setting
inside interval [—az,-ol] .

Fig. 3: Variation of angle along the width of
a layer (MjM;), on a given parallel of
revolution structure with extreme gaps.

a
X : revolution axis perpendicular to paper
o : trajectory of half-width fiber of the ply

The difference of angles along the width of a ply can reach 50
degrees near the polar zones of the structure! Thus, it seems important
taking into account this effect to evaluate failure criteria because
polar regions are often critical. In the Fig. 4, one can see evolution
of angle fiber/meridiam line along a surface's meridian line of &
spherical tank (as in Fig. 3) with opening at a latitude angle of 85
degrees. For this case, the width of a layer is 10 millimeters; at the
equatorial plane, all angles are equal to 6.3 degrees. The four curves
represent angles at the edges of a ply (ul and @,) , the angle at half
width (dashed curve) and the mean angle (ul+az) 2 . The two last
angles differ only in the polar zone; there, the curve of mean angle

tends to the curve of a, just when al reaches its maximum value
(90 degrees).
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Fig. 4: Evolution of angles along a surface's meridian line of a
spherical tank with openings at a latitude angle of 85 degrees

2. Finite Element Model

The model used consists of an isoparametric, axisymmetrical dis-
placement finite element as basic element. We can use one element per
layer discretization: like that, each ply has its own displacement
field. In the other part, one can postulate a unique displacement field
for several plies; in this case, the stiffness matrix is obtained by
summing the contribution of each layer, using the same field for the
vhole element which becomes a multilayer element. The total number of

degrees of freedom of the element is then independent of the number of
layers. {6]

Orthotropic stress-strain relations are introduced for each ply.
These stress-strain relations may be linear, nonlinear or multilinear
before degradation of material matrix. In additiom, two different
stress-strain relations are adopted for the post-degradation behaviour.
The matrix and fibers degradations are governed by failure criteria as
TSAI-HILL's, TSAI-WU's and SANDHU's ones.

This kind of finite element is very useful to study wound
structures; indeed, such structures are formed with multidirectional
composite for which degradation occurs before delamination. The model,

based on displacement assumptions, also includes geometrical nonlinear-
ities [3].

o
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The structural axis (E_,E,,E.) of element, local axis (et,ey,ez)

and orthotropic axis (&),%4,,é3) of a ply are shown in Fig. 5.

z) , local (;x-:yv;z)
#),¢;,%3) axis systems

Fig. 5: Structural (Er,E ,E
and orthotropic ?

This element takes into account a variation of angle along the
width of a ply. To keep economical advamntages of an axisymmetrical
studv, we had to do some geometrical and material properties assumptions
{4]. ¢

In the material properties part:

- in the case of wound structures, a given parallel is crossed by
filaments of angle (+a) when the ply passes and fibers of angle
(-a) when the same ply comes back, that for the case of constant
angle; so, the structure is globally orthotropie; to approach the
real structure, and, in the same time, to conserve material symmetry,
one assumes that each layer (a) of an element is formed by two sub-
layers (*a) , having the same thickness; so, the Hooke matrix, de-
fined in (2.1), keeps, along a whole parallel, its orthotropic pro-
perties in the local axis system reported in Fig. 5,

§ - BUW) + HG0) 2.1)

where H(+a) is the Hooke matrix, in the local axis system of sub-
layer (+a); H(+a) and H(-a) , taken separately, don't have an
orthotropic form.

In the geometrical part:

- as shown in Fig. 6, the variation of angle is assumed to be linear
between %4y and a, values, along the width of a ply:
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Fig. 6: Linear variation of angle along the width of a ply

~ an equivalent layer, having the same thickness that the real one,
containg filaments in an uniform equivalent direction; graphical
interpretation of equivalent angle is represented in Fig. 7; this
angle is the same for all other plies along the parallel (Fig. 6),
then geometrical axisymmetry is respected.

€

&

Fig. 7: Variation of angle and equivalent angle in the layer's plane

We can apply the precedent suppositions to layers presenting
variation of angle along the width on a given parallel. For taking into
account this change, one should have to calculate an equivalent Hooke
matrix summing the contributions of all directions of fibers, so:

r’ [R(+a) + H(-a)] da
e

Heq = (2.2)
2 (uz-ql)
wvhere a, and a, are limits of the variation of angle on a ply.

We can easily show that expression (2.2) can be reduced with good
approximation to:

H(+aeq) + ﬂ(-aeq)

_ 2.3
e 2 (ag-a,)
"with a__ , the arithmetic mean angle (ul+02)I2 of the two extreme
angles.
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To verify strength of a layer, failure criteria are evaluated with
stresses calculated in the direction of mean filament and in the di-
rection of extreme fibers of the ply. The used criteria are valid for
orthotropic plies. Thus, all those quantities are evaluated on assuming
orthotropic material properties in each direction (mean and extreme).

We can imagine that the real layer is composed by three thin plies
having filaments respectively at constant a »0, and (ulkx }/2 angles,
Obviously, those three thin plies could be d{scretizated epoicitely

but this model should be more expensive and, moreover, problem of select
ing right thicknesses persists.

Stresses in the three orthotropic directions are obtained by (2.4);
Fig. 8 illustrates the axis system;

. 0 =H ¢
~om zor ~om

-1
* %al l:or a1 gor 5* Y Com 2.4

- - *
* 9.0.2 lzlm: £a2 Eot& 2 -.e.(!l
with R* , a rotation matrix from :1- to :12 with an angle Y
equal to (ay=a;)/2 ;
with a = (alﬁlz)ll .

€2,83n,67,822

Fig. 8: Local axis system (:x-:y': ).
Orthotropic axis systems él .32,33)
for the three directions.

Stresses are calculated in the sub-layer (+4a, ,+a, ,+a ) ; indeed,
in sub-layers +a, and -a,, normal stresses have the same values;
only shear stressés have opposite signs. Then, to be consistent, one
has to assume that stiffness and failure limits are the same for
positive and negative shear; it's a limitation of this model.

So, the extreme stresses (g and qu ) gives bounds of a trust
interval centered on the mean strisses (g } ; the stresses ¢ can
also be obtained by a classical model of orthotropic ply shos'?n;
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fibers at a constant angle a =a, ; indeed, the corresponding equivalent
Hooke matrix is calculated with angle Oy He can remark that extreme stress
es evaluated by mean stresses rotatxon. are not referred to orthotrop1c
axis system and thus, cannot be used in failure orthotropic criteria.

3. Description of Material Behaviour [3]
a) Behaviour before matrix degradation

~ linear elastic material which is an Hookean model;

- nonlinear material; when, for a given stress state, the matrix plays
an important role, the behaviour of composite becomes nonlinear
(often, experimental transversal and shear stress-strain relatioms
are nonlinear); here, an incremental model due to Sandhu is adopted
which takes into account the multiaxial strain state;

- material with different moduli in tension and compression; uniaxial
stress-strain relations are approximated by a bilinear representation
and the choice of stress-strain matrix components differs when stress
components are in tension or in compression.

b) Failure criteria

Failure criteria are introduced to model the nonlinear behaviour
due to partial degradation (i.e., matrix degradation) and to represenmt
ply-by-ply progressive failure in composite materials. The average
stress components are used to check whether criterion is verified or not.

- Tsai-Rill criterion states that the matrix degradation is reached in
the orthotropic directions of a layer when

2 2 2 2 2
£(0) "“2"’3) + G(o:,-al) + “"1‘“2) +2L 1 12 = 1

vhere F,G,H,L,M,N are formedwith ply's tensile and shear strengths.

2
3 + 2M 131 + 2N 1

~ Tsai-Wu criterion which takes into account the different ‘stress
limits in tension and in compression

f(o) = Fi o, + ’ij o oj -1 i,j=1,...,6
vhere F. , F;. are respectively vector and tensor components formed
by tensxie, co&pressive and shear strengths.

- Sandhu criterion, based on the concept that strain energies under
longitudinal, tranverse and shear loadings are independent parameters,
can be written as

[(! i dEID/X, ] (3.1

1§l le € J o )
11 ‘

vhere ¢€; ¢ are the equivalent strains taking into account the multi-

axial strixu state and K;j; are the failure principal strain energies

under uniaxial tension and compressionm.

c) Post-degradation behaviour

After matrix degradation of a layer, transverse and shear stiffness
decrease to a small value; only the elastic modulus in the filament di-
rection is preserved. However, in wound cowposite materials, the de-
graded elastic and shear moduli are mot negligible. We retain two




possibilities for our case:

- the tranverse and shear stresses in a degraded ply are assumed to be
maintained at their value; that means

o-c*+ﬂd(e-c*) where N = d
~ = 2d '~ <

L
[-Y
(1]

G
d
i o

where 0% and ¢* are the stresses and strains at degradation,
with E)) , elastic modulus in the fiber direction, Eq , Eg ,
tranverse and shear moduli after degradationm;

- the tranverse and shear stresses in the degraded ply decrease linear-
ly from the failure value to zero in such a way that the failure
principal strain energies (Kij) keep the same value (Fig. 9).
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Fig. 9: Post-degradation model
d) Failure criteria for total degradatiom
When the longitudinal stress reaches a critical value, the fibers

break; all stresses are relaxed and are carried out by the neighbouring
layers. The value is

- for Tsai-mill, ©,,xp? =1 (3.2)
. 2 . ]
- for Tsai-Wu, Foo,+ F“ Y 1 v (3.3)
1 1
vich NTFCE P Tt
1M 1 4

vhere x: . X‘i are longitudinal tensile and compressive strengths;
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- for Sandhu, e:“ = ef (3.4)

vith c: » the failure strain in & uniaxial longitudinal test,
4. Effect of Variation of Angle on Degradation Process

The Newton-Raphson method is used to solve the nonlinear problem.
When implementing this algorithm, the correct integration of the
constitutive equations (4.1) in the presence of multimodulus material
or during the matrix degradation is performed [3]:

Ao, = I c de (4.1)
k Ask (o,€)

for iteration k of an increment.
a) in N-linear problea

If the matrix degradation is reached in any point of the structure,
the stress incrememt is vwritten,

]
Ao = izl c,(0,,€,) e,

wvhere N is the number of stress~strain relation changes during an
iteration of Newton~Raphson algorithm. To evaluate Ae. , a factor r,
is calculated at each step so that T, At (= Ac.) is the part necessary
to reach a discontinuity point as degradatiom.

In fact, r. is the factor by which one has to multiply the in-
crement of stresses (A0) to reach degradation (i.e., to verify failure
criteria), see (4.2), i

F(o* + L Ag) = 1 (4.2)

where O* is the stress state at precedent iteration and F is the
function of Tsai-Hill or Tsai~Wu.

In 2 composite structure wound by wide plies, we have informations
about strains and stresses in mean filament and extreme fibers di-
rections of a layer. Calling r_ , r 1+ Fa2 the degradation factors
evaluated respectively with A0, , Asul » 804y (80,, and Aoy, as in
formula 2.4), we use a factor r; function of rgp , ry) and r to
decree matrix degradation of a ply; indeed, only alone degradatioﬂ de-
cision can be taken by ply (to take three independent decisions, three
different orthotropic layers should have to be used). Taking into
account that stresses in extreme directions give bounds on stresses
existing in the layer, we propose three different choices to decree
matrix degradation:

- %Tg 3 like that, the behaviour of a ply is governed by the behav~
iour in the mean direction; if, for example, failure criteriomn is
verified in direction a, , local degradation is met but, with this
choice, the stiffness maérix is unchanged because there is still
strength in o, direction; ’
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- ri=Arg) + Brgy, + Cray this combined factor takes into account the
variation of angle along the width of a ply; Fig. 10 gives a graphical
interpretation of choice for those constants A, B and C; we assume
that those influence curves are formed with parabolic fumctions so
that A=C=0.125 and B=0.75 ; the hatching area in Fig. 10 repre-
sents region of dominant effect of L H

4

-y
4

e

»

w—wagy ’-‘
-

xy e oy
Fig. 10. Influence curves of degradation factors.

- ry=min (rap,r,1,Ta2) ; like that, we have the best security with
respect to the degradation onset; when stresses, in one of the three
directions, verify failure criterion, one decrees degradation and
changes stiffness matrix.

After matrix degradation of a layer, fibers have to support the
most important part of load until longitudinal stress component reaches
failure limit. As for the case of matrix degradatiomn, we define para-
meters Ky , Kq3 , K, evaluated respectively with 05,11 , Oyj 11 and
Oy2 11 (see relations 3.2 and 3.3). To decree filaments break or total
degradation of a ply, three choices can still be made:

-K =K
n

-K-AK. +BK-+CK‘2 (4.3)

1

- K = max (K- . Kal . KaZ)

b) Nonlinear material problems

In this case, total strain increment is subdivided into msufficient
ly small parts and the total stress increment is evaluated by Euler's
explicit integration. So, it's easy to verify when matrix degradation
occurs [3]. Here, stresses in the extreme fibers directions (a, and
a,) are obtained, from stress-strain uniaxial curves, by rotating
equivalent strain tensor of the Sandhu wodel (e::) . Matrix degradation
factors can be determined with criterion (3.1); the total layer dggra—
dation is governed by criterion (3.4) based on failure strains gy 11
€4 11 and €a 11 ; after matrix degradation, as deformation modes are
inéependent, €€9 equals to the real strain € . The three choices
for decreing matrix degradation or filaments break are the same that in
N-linear problenm.

5. Numerical Results
a) Axisymmetrical cylinder

To compare classical multilayer element to elewent developed here,




a simple composite cylinder, submitted to a radial load at the end, was
examined.

The structure is modeled by three elements in axial and radial di-
rections (Fig. 11). We used two models:

- each element contains three classical layers having fibers directions
at constant angles of 75°, 82.5° and 90° with respect to axial di-
rection (curve 1 in Fig. 12);

~ each element is formed with a ply presenting a variation of angle
Aa = 15° with extreme filaments directions a, and a, equal to 75°
and 90°; the three choices of degradation fac%ors of séction 4. are
used, i.e., mean factor (curve 2 in Fig. 12), combined factor (curve
3 in Fig. 12) and minimum factor (curve 4 in Fig. 12).

The mechanical properties of layers in wound glass-epoxy composite
material before degradation are (the material behaviour is assumed to
be linear before degradation):

El = 5810 hb. , 52 = 53 = 1687 hb.

G12 = 613 - 623 = 787 hb.

vlz - v‘3 = v23 = 0,278

The Tsai-Wu failure criterion is used; strengths are

in the fiber direction : X = 105 hb;
in tranversal directions : Y = Z = 7 hb;

1

- for shear R=S =T = 5 hb;
- for shear at 45° of fiber : U= V=W = 7,5 hb.

After matrix failure of a layer, transversal and shear stresses
are assumed to be maintained at their values of degradation; tranversal
and shear moduli are reduced to

Ed = 100 hb Gd = 175 hd

The radial load applied at the end of the cylinder was incremented
by five steps of 2891 kgf. The maximal radial displacement (point 1)
for the different choices of degradation factors is given in Fig. 12.
It can be seen that, for the first increment, no degradation is reached
for any models; for the next increment, in all cases, half of layers
are degraded. After the first degradations, cases 2, J and 4 are stiffer
than 1 because of difference in thicknesses of layers. It can be noted
that case 4 (minimum degradation factor) presents a behaviour similar
to multilayer element case (1) and that, for a total number of plies
three times less! For all cases, spatial evolution of layer's degrada-
tion is the same. At the last increment, filaments are broken only in
case 1, due to thinner geometry of plies. The curve (5) shows the linear
elastic solution. Thus, if loading doesn't cause total degradation, one
can reduce the number of layers (i.e., the resolution time) om using
plies showing variation of angle along width.
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b) Wound spherical tank

On a wound spherical tank which is a motor case of missile, we
compare results given by classical element and our new model. The
structure is subjected to successive incremental intermal pressure upto
failure. Nonlinear geometrical behaviour and material nonlinearities
are combined to take into account the rotations of sections.

The structure's radius equals 230 wm. The composite tank is wound
by wide plies (width = 10 mm.),

- from equatorial plane (8 =0°) with a thickness of 6 mm. and winding
angle varying between 8° at interior radius and 83° at exterior
radius,

- to polar zone (0 =83°) with a thickness of 7 =m.

At the interior radius, the winding angle changes from 8° to 90°
between equatorial plane (8 =0°) to polar region (0 = 83°).

An axisymmetrical discretization of the structure is presented in
Fig. 13. The first model is formed with classical monolayer elements;
the second one contains classical monolayer elements between equatorial
plane (8=0°) and 6=60° and monolayer elements with variation of
angle between 6 = 60° to polar zone. Indeed, as shown on Fig. 4, it
can be noted that, for © < 60° , variation of angle is less or equal
to 5°: we have neglected this little variation. Structure's discret-
ization contains 163 elements and 1121 degrees of freedom.

Fig. 13: Axisymmetrical discretization of wound composite tank




The material behaviour is assumed to be linear before degradation.
The mechanical properties of layers follow:

!l = 16380 hd ; Ez - 53 = 300 hd

612 = 013 - 623 = 400 hb

vlz = vlJ - v23 = 0.28

The Tsai-Hill failure criterion is used; strengths are

- in the fiber direction ¢ X = 105 hb;
- in tranversal directions : Y = Z = 7 hb;
-~ for shear ) : R=S =T =5hb,

After matrix degradation, tranversal and shear stresses are
assumed to be maintained at their values of degradation; tranversal and
shear moduli are reduced to

E, =100 hb , G

4 = 175 hb.

d

This post~degradation behaviour and important values of degraded
moduli are convenient for describing wound composite structures; indeed,
as there are always twilled filaments, the strength is still high after
degradation. [5]

The degradation process being irrevergible, one has to follow
precisely strain evolution on applying little load increments. The
analysis indicates a quasi-linear behaviour until internal pressure of
180 bars. After, internal pressure is incremented by six steps of 1 bar
to represent the degradation evolutiom.

Four cases were examined:

(1) 1linear elastic mwodel of the tank submitted to internal pressure of
186 bars;

(2) geometrical and material nonlinear behaviour; the degradation
factor is evaluated in the mean fiber direction (see sectiom 4);

(3) as in (2) but the degradation factor is formed as a combination of
the factors in the mean and extreme filaments directions;

(4) as in (2) but the degradation factor is choosen as the minimum of
the three factors.

In case (1), internal pressure is applied in one time up to 186
bars. For the three last cases, load is incremented by successive steps.
Until 181 bars, those three cases have the same behaviour, very similar
to the linear one: there is only a matrix degradation in an element, At
182 bars, the fourth case indicates 19 degraded elements and 46 elements
with broken fibers; same instantaneous degradationm process occurs at
186 bars for case (3) and at 185 bars for case (2).

As fibers directions cover all the range between 0° and 90°, all
layers are well efficient until failure; the behaviour is quasi-linear
until failure which occurs by instantaneous evolution of degradation in
half structure.
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In Fig. 14, shapes of structure under load (before failure) are
presented for cases (1) and (4). Displacements are in the range of 1/10
tank thickness. Structure has a membrane behaviour in the most important
part, where the thickness is constant. However, in polar region, the
thickness increasing causes a local stiffening of the tank. The linear
analysis doesn't take into account geometrical stiffening; then, case
(1) indicates more important rotations in polar zone. Cases (2) and (3)
are similar to the case (4) which predicts failure under lower pressure.

Case (1)

Fig. 14: Shape of structure under load

initial structure
- structure under load
(1) linear analysis
(4) nonlinear geometrical and material analysis

On Fig. 15, we can see degraded elements before total failure for
the fourth cases; degraded elements are localized in polar region where
flexion moments are the most important (see Fig. 14). As there are few
degraded elements before total failure, behaviours are little dependent
of factor degradation choice.

In polar 2one, stresses in extreme filament directions give bounds
of a trust interval centered on stresses in mean fiber direction. In

this example, the quotient qal 11-au- 11 where oll is longitudinal

[+ 11
am
component, reaches 201 in some plies. Thus, the stresses given by

classical element having fibers in uniform a direction, have a
precision of 20%.
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Case (1): Int. pres. =186 b. Case (2): Int. pres. = 184 b,

L [

Case (3): Int. pres. =185 b. Case (4): Int. pres. = 181 b.

Fig. 15: Localization of degraded elements before total failure
6. Conclusions

The proposed element has been conceived in order to compare ex-
perimental and numerical results and to foresee, in numerical way,
failure of wound composite structures under internal pressure. As polar
zones of such revolution structures wound by wide plies are critical,
it's shown, on a real example, that variation of angle along the width
of a layer has to be taken into account to evaluate stresses (relative
difference between stresses in mean fiber and extreme filaments di-
rections can reach 20%!) and to decree intralaminar degradationm.

Finally, to decrease the resolution cost, it can be interesting,
as illustrated in the cylinder example, to consider an equivalent mono-
layer element with variation of fiber direction instead of classical
multilayer element formed with plies having fibers in wmiform direction.
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