Eleccion y adaptacion al Sistema SAMCEF
de un Método de Continuaciodn para la resolucién
de sistemas estadticos no lineales

Ever Barbero
Alberto Cardona
Sergio Idelsohn
Grupo de Tecnologia Mecanica
Instituto de Desarrollo Tecnolédgico para la
Industria Quimica
C.C. 91, 3000 Santa Feé, Argentina

RESUMEN

En este trabajo se expone la formulacion de los Métodos de
Continuacidn para 1luego introducir una modificacidn al
método de plano normal constante, la cual mejora 1la
robustez y propiedades de convergencia del algoritmo. Se
presenta el algoritmo final que fue instalado en el modulo
no lineal estatico del sistema SAMCEF. Finalmente se
presentan algunos ejemplos para mostrar las capacidades
del programa.

ABSTRACT

In this work we review the formulation of Continuation
Methods. Next , we introduce a modification to the
constant-normal-plane method and show how it improves the
reliability and convergence characteristics of the
algorithm. After that, we present the final algorithm,
which was installed in the static, noninear module of the
system SAMCEF. Finally, we include some selected examples
in order to highlight the capabilities of the program.
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1. CONTINUATION METHODS

The Structural Finite Element modelization taking into
account geometrical and material non-linearities leads to
non-linear systems ass

6 =8 . uU-P=oO - 1)

with total displacement vector U, external loads vector P
and stiffnesss matrix S.

For proportional loading, the loads may be expressed by
one load factor A and a vector of reference loads P;
thus, in this case, eq (1) may be written as:

G =S . U- AP =0 (2)

In continuation methods the load parameter (A) is treated
as an unknown in addition to the structural displacements;
then, a constraint equation is introduced to define the
problem completely. In this way, a problem having N d.o.f.
is replaced by one accounting N+1 unknowns. Eq (2)
becomes:

B.(U, A) = 0 i= 1..N (3a)
Bres (U, A) = 0 3)

Without 1loss of genarality the constraint equation (3b)
may be written [1] as:

GNox‘U,A)*G(U'A)-“-O (4)

where 7 is the path parameter and the function g
determines the wmethod to be used, ie. load control,
displacement control, etc.

Notation of reference [2] has also been used here (see fig
1):

- total values for any configuration are indicated by a
left superscript.

~ values referred to the beginning of current increment
(last equilibrium point) are denoted by a right
superscript indicating the iteration number .

- incremental values for one iteration are preceded by the
symbal A.

With the continuation formulation, the non-linear problem
15 stepwise linearized and the linearization error is

corrected by additional equilibrium iterations. On
assuming that the equilibrium configuration n
(corresponding to increment ) has already been

determined, a predictor scheme is used to advance toward
the m+! increment, that is:

U =™ + [™J]-* AP (S5)

and then, a corrector scheme is used to search the
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equilibrium configuration a+1, that is:

Y = Yy - (1J3-s GF (&)

where j=i+]l is the current iteration, J is the Jacobian
matrix and 6 is the residue taken from eq (2).
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Fig 1. The Constant—-Normal-Plane Method for one
d.o.f. sistem

1f one neglects variations of the loads due to geometrical

changes, the Jacobian matrix is the same as the

stiffness matrix, usually available in

non-linear finite element codes, that is:

tangent
general -purpose,

96 d
J= === 8 (W) .U-AP]I=K (&4
ou au

therefore eq (6) may be written as:

AK (4U - sUY) = - @t (8)
then using eq (2), introducing incremental displacements
U+, internal forces *F and external loads *P; and taking

into account ¢that the load level may change during
iterations, we have:

K= .AUS =APs + sP - *F (9
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where the superscript * indicates that updating of the
stiffness matrix may be made at some previous iteration as
in the modified Newton—Raphson technique. Now, introducing
out-of-balance forces Rt = *P - *F and taking into account
that for proportional loading Pt = AN P, we have:

K AU = AN P + R* (10}

2. DISPLACEMENT CONTROL METHOD
In the displacement control method [3), a single
displacement, eg. Uw, is chosen to control the stepwise
advance on the solution. The path parameter W in eq (4)
is equated to U and then, the constraint eq (3b) becomes
M= U,

In the former versions of the method the system (10) was
partitioned isolating the ke~ equation, corresponding to
the controlled displacement U. , thus removing the
singularity at critical point. Later it was noted [4] that
it is not very likely to obtain exactly the singular
point; therefore, it was proposed to use the whole tangent
stiffness matrix in eq (10) without partitioning it.
Next, eq (10) is sclved in two steps:
K* . Auyst = pr (11a)
K= . Ays*ts = Rs (11b)

and then both solutions are added to form the displ acement
increment:

AU = Ak’ Auss « AUs1s (12)
This vector includes also the prescribed component:

AUy = AN Ausr, + AUsT, _(13a)

and taking into account that U. does not change during
iterations, we have:

W = Un S, (13b)

The eq (13a,b) is used in the predictor scheme (j=1) to
find the first incremental load parameter, and assuming
perfect convergence at the last increment, we have:

PP L R —— for j = 1 (14a)

Finally eq (13a,b) is again used to find the change in
load parameter during corrector iterations as follows:

AN = ———o for 53 > 1% (14h)
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3. CONSTANT-NORMAL -PLANE METHQD

For the constant—normal-plane sethod {5,461 the constraint
eq (3b) is:

LAULIY CAU] + ( AN = = "= for j = 1 (135a)

CAUIT™ TAU*Y + AN, AN =0 for i > 1 {15b)

where !\is. as in eq (4), the path parameter. In this way,
the new equilibrium configuration (m+1) will be at the
intersection of the solution path with the plane defined
by eq (15a), which is normal to the tangent at point m
(see fig 1) and it is located at a distance 1‘\ from this
point.

As in the displacement control method, eqs (11a,b) are
used to find AU’* and AU*'? and eq (12) is used to form
AU, Next, eq (12) is inserted in eq (15a); then,
assuming again perfect convergence at the last increment,
we have:

AN = A for j=p (16a)

(1 + CAUTIT. LAUrE]Y (rr=

and from eq (15b), we have:

LAU*IT.[AUY+38]
AN = - : for §>1  (16b)
CAA + [AUTTIT. [AUs?)

4. SCALING EACTOR

Eqs {14a,b) and therefore eq (135a,b) are formed with
displ acements and the load parameter, which have different
dimensions. This fact introduces a dependence of the
algorithe on the magnitudes used in the formulation of the
problem.

Let us examine eq (16b) for a system with one d.o.f.,
hence all variables involved are scalars,

I+ AN << [AUI. LAVY) 17)
Hysr

then ® - ———— (18)
Ax AU""

which is the same as eq (14b); thus, the algorithm becomes
the displacement control one. This is a severe drawback
because the displacement is not really controlled since eq
{(14a) ie not used, and the algorithm tries to maintain the
displacement calculated at the first iteration
(predictor), which may not correspond to any neighboring
equilibrium point,
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Besides, if A\ >> (AU*).LAWIT) (19a)
also AN > [AUtl.LAWsEX) (190)
and then Ak‘ == O (20)

In this way, the algorithm becomes the load control method
and it loses all utility near limit points.

It was proposed in [7,8]) to neglect the increment of load
parameter AA* in eq (15). This reduces by one the number
of variables used to define the surface on which problem
solution is searched. For one d.o.f. systems eq (16b) is
reduced to eq (18) which is the same as eq (14b) leading
again to displacement control aethod.

In this work, a scaling factor alpha is introduced in such
a way that the load parameter has the same weight as a
typical displacement h&ullN; that is, for increment m+il,
alpha is defined as:

¥y
|nu - a—sul Ma\
= —-— r Y (21)
N n
where § § indicates usual Euclidean norm over the N d.o.¥f.
Now, constraint eqs (15a,b) are rewritten as:

CAUIT LAUN + A* . ( AAM )= = ;A= for j=¢ (22a)

CAU*IT LAU*] + K= AA*. AA* = 0 for iyt (22a)
which lead to:

Al = N for j=1 (23a)
(® + (AU IT [ AUrT] jarz

(AU 1T, LAUsT3]
AN = for j>1 (23b)
(= ¢5A* + LAURIT [AUsT)

One has to note that, for systems with many d.o.f. for
which TAU*IT.TAU**] > AA*, the modified algorithm tends
to that proposed in [7,8]. But, on any other cases,
scaling factor helps to solve scaling problems. In this
way, users need not be aware of considerations about
dimensions to formulate problems and magnitudes for
reference loads.

S. AUTOMATIC INCREMENTAL PROCEDURE

The algorithm may trace solution paths automatically when
the step (path parameter) is specified for each increment
in an automatic way. The step size for any increment is
scaled to the step size of the previous increment on
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relating the number of iterations in the last increment
(i) to a user defined number (#i). The most usual scheme
is:

-m = ~—im . SORT (Wi /i) (24)

d\ is also limited by the user input & and \‘ s0 that:

il

-~
§< ——-2- ¢ ¥ (25)

rm
Tangent stiffness matrix reevaluation is controlled by
three parameters i*, i2, i3, so that reevaluation occurs
for iterations i*, i*, and i® + n i®, for all n until a
maximum iteration number i™*~ is reached. Introduction of
the last parameter is to prevent failed convergence
difficult points. The user may overcome such difficult

points on restarting with a prescribed path parameter or
using a displacement control step.

Free combinations of load, displacement, and global
(constant-normal-plane) control steps are allowed. The
reference load P is defined at the first increment (load
control) and may be redefined at any increment on
specifying another load control step; this allows
flexibility for loading.

Convergence is accepted after a norm for residue (9] is
bellow a user defined parameter e.; tangent stiffness
matrix is discontinued when the norm is bellow another
paramater ex.

Unloading is initiated whenever a negative pivot is found
during frontal salution for the first iteration of each
increment. When stiffening oCCuUrs, reloading is
automatically initiated since tangent stiffnes matrix
becomnes again definite positive. '




6. ALGORITHM

01 var reeval,load-control dxsplacc-ent—control,
global—control t logicalg

02 begin :

03 m:=0; N\:=1; P:=°pP; {set reference load)

04 while m<=am*~ do begin

0S5 i:=03 m:=m+l;

06 Kt :=m=1K; Rt:=="1R;

07 set method for current increment;

08 if load~control then Pi==p; {see text}
09 while i<=imax and e>e; do begin {start iterations?
10 Ji=i+lg {itlast iteration, j:current iteration3
11 reeval :=((j=i,) or (j*iz) or (j=iz+n ix)) and (c)e,)-
12 if reeval then update Kt;
13 if (reeval and not load-cmtrol)
or (load-control and j=1)
14 then solve K*. AU = p
15 else copy AU = Ay+i;
16 solve K. AU = - Ry
17 if load-control then if j=i then AA?:=1 else AN 2 =03
18 if displacement-control then
[ Auysrz,
19 if i=1 then AA = ——cc—eee else AMl:im - ———eeeees
[TLR AU3 3,
20 if global-control then
21 if Jj=1 then begin
22 otztai.q; {set scaling factor for current incr.)
23 A = 4 ; end

(X « [AUL2]IY LAYrz] )ros=

CAOU**Iv.CAUYs*r)

24 else A\ = - H
(e AA* ¢« [AUL1IT [ AU*12]

25 AU = AAI _AUT + AT {form disp. vector)

26 Ui:=Ur+ AU2; {update disp. for current incr.)

27 SUs=+U+ AU, {update total displacements)

28 Xorx US/N/M g {update scaling factor)}

29 SP:=1P+ AAY P; {update loads)

30 find out-of-balance forces R*;

31 evaluate norm of residue; {convergence parameter)

32 is=jg

33 end while; {next iteration)

34 A:=N.sqrt(Hi/i);
3% check for condition eq (25);

36 end whilesg {next increment)
37 end.

NOTE: this algorithm is written in PASCAL like notation
but readers only have to be awarded of use of semicolon to
end each statement and use of words begin end to refer a
group of statements as a one.
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7. EXAMPLES

These examples have been analyzed on a VAX 11/780 computer
using the Finite Element Code SAMCEF [101. The Qeometrical
non-linearity is based on the Total Lagrangian
Formulation. Shell structures are idealized by special
three—-dimensional elements developed in [11]. Full Newton
iterations were used throughout the examples, although
use of the modified Newton Raphson technique is possible.

Figure 2 shows a typical snap through characteristic. The
mechanical model was analy:zed in reference [12). Table I
shows the performance obtained with both the original
scheme (X=1) and the scheme proposed here. A first load
control step of 0.3 KN is is imposed and further
increments are performed with the global control' method.
The step size is chosen automatically with eq (24),
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Fig 2, Load vs Displacement diagram showing
snap through characteristic

It can be seen from table I that without =caling,
convergence failed for the third increment and the
automatic solution procedure is no longer possible. The




-3 -

step size (1) have to be fixed at a very low value by
user input. Several trials and previous knowledge of the
solution are necessary to select this input. Otherwise, a
very little step have to be employed with the consequent
high solution cost.

JABLE ]. Iterative performsance for example 1 (figure 2)

e 4 proposed of ¥ 1
step ~ iter 2 iter
1 1.41 8 1.41 8
2 1.58 10 1.58 2
3 0.5 10 2.88 4
4 0.2 10 4.56 4
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"9 Fig 3. 1/8 of a cylinder with
- - 3 - axial load and lateral sea—
wave impact. Deformed shape at
critical load (axial)
Sometimes, it is possible to avoid this type of

difficulties making carefully studied choices of both the
reference load and the units system used to describe the
model. In this particular case if one choose millimeters
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and a first load increment of 0.21 KN, the scaling factor
is approximately one, giving a well conditioned constraint
equation for the first increment. However, as the
deformation of the structure proceeds, variables involved
in the constraint equation change, and its initial well
conditioning may vanish.

When the scaling factor is used, the sclution is obtained
in an automatic way with a minimum of increments and few
iterations per increment.

One has to note the difference between the number of
iterations employed for the first increment and the
corresponding number employed for the second one. This
suggest us to replace the first load control step by a
global control one, with excellent results.

A cylindrical shell under a sea wave impact was analy:zed
in order to assess the algorithm with a large system.
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Fig A. Load ve Deflection diagram for the end
shortening of a cylinder with axial load and
lateral perturbation
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CCC

Fig 5. Contour plots for the radial displacements up
to the critical load
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The structure is simply supported at both ends. The
nonlinear behavior under axial load is investigated. The
axial load is normalized to the linear buckling value. A
perturbation, representing the initial pressure
distribution of a sea wave impact (333, is applied as
energetically equivalent loads. They are applied laterally
to the shell, before the axial loading be initiated.

One gquarter of the shell is idealized by %% quadratic
shell elements. The first load-control increment
introduces the lateral perturbation, and the second one
defines the reference load p=0.35, but in this case
variations of the load during iterations is allowed in
order to improve the convergence.

Figure 3 shows the deformation of one quarter of the
shell, near the liait point. The buckling mode has one
half wave in the axial direction and six circumferencial
waves. Contour plots in figure S show the development of
the buckling modes up to the critical load (p=0.868) and
figure 4 shows the load deflection diagram for the average
end shortening of the shell. The entire solution was
obtained with 30 steps.
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