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En est_ trabajo se expone la formulaciOn de 105 "*todos de
ContinuaciOn para luego introducir una modificaci6n al
••todo de plano normal constante, la cual mejora la
robustez y propiedades de convergencia del algoritmo. Se
presenta _I algoritmo final que fue instalado en el modulo
no lineal estatieo del sistema ~EF. Finalmente s.
presentan algunos ejemplos para mostrar las capacidades
del progr_a.

In this work we review the for~lation of Continuation
"-thods. Next, we introduce a modification to the
constant-normal-plane method and show how it improves the
reliability and convergence characteristics of the
algorithm. After that, we present the final algorithm,
Mhieh was installed in the static, noninear module of the
system 8A"CEF. Finally, we include some selected examples
in order to highlight the capabilities of the program.



The Structural Finite Element -adelization taking into
account g~trical and -.terial non-linearities l.ads to
non-linear systems aSI

with total displacement vector U, external loads vector P
;and stiffn_ss .;atrixB.

For proportional loading, the loads aay be expressed by
one load f;actor A and;a vector of reference loads P;
thus, in this case, eq el) may be written as:

In continuation •••thods the load par_ter e),.)is treated
as an unknown in addition to the structural displace ••nts;
then, a constraint equ~on is introduced to define the
problem completely. In this way, a proble. having N d.o.f.
is replaced by one accounting N+l unknowns. Eq (2)
becomes:

Without loss of generality the constraint equation (3b)
may be written [1] as:

where "Y'\ is the path para_ter and the function g
determines the •••thod to be used, ie. load control,
displacement control, etc.

Notation of reference [2] has also been used here esee fig
1):
- total values for any configur;ation are indicated by a
left superscript.
- values referred to the beginning of current increment
(last equilibrium point) are denoted by a right
superscript indicating the iteration number.
- incremental values for one iter;ation are preceded by the
symbol ~.

With the continuation for~lation, the non-linear problem
lS stepwise linearized and the linearization error is
corrected by additional equilibr"ium iterations. On
assuming that the equilibrium configuration m
(corresponding to incre.ent m) has already been
determined, a predictor sc~ is used to advance t~lard
the m+l increment, that is:



equilibriUM configuration M+l. that is•
.•u • o.U - [o.J]-o. (ii. (0)

where j-i+l is the current iteration. J is the Jacobian
.atrix and S is the residue taken frOM eq (2).

Fig 1. The Constant-NorMal-Plane Method for one
d.o.f. sist_

If one neglects variation. of the loads due to geometrical
change.. the Jacobian matrix is the same as the tangent
.tiffnes••• trix. usually available in general-purpose,
non-linear finite ele.ent codes. that i.:

as a
au au

then using eq (2),
U" • internal fore••
into account that
iterations. we have:

introducing incremental displacements
o.F and external loads o.P; and taking
the load level may change during



where the 5uper5crip~· indicates that updating of the
stiffness matrix may be made at some previous iteration as
in the modified Newton-Raphson technique. Now, introducing
out-of-balance forces R& •• &P - &F and taking into account
that for proportional loading p.J = AA.J P, we h.ve:

In the displace.ent control •• thod [3], a single
displaceMent, -g. ~, is chosen to control the stepwise
advance on the solution. The path param.ter ~ in eq (~)
is equated to ~ and then, the constraint eq (3b) become.
"'\ •• U •••

In the former versions of the •• thod the system (10) was
partitioned isolating the k_~ equation, corresponding to
the controlled displacement U.. , thus removing the
singularity at critical paint. Later it was noted [~] that
it is not very likely co obtain exactly the singular
point; therefore, it was proposed to use the whole tangent
stiffness matrix in eq (10) without partitioning it.

and then both solutions are added to form the displacement
increment:

and taking into account that ~ does not change during
iterations, we have:

The eq (13a,b) is used in the predictor scheme (j-l) to
find the first incremental load parameter, and assuming
perfect convergence at the last increment, we have:

U•.
A).& = -------

U& a ••

Finally eq (13a,b) is again used to find the change in
load parameter durinv corrector iterations a. follows;



For the constant-norMal-pl~ ••~hod [5,0] the constraint
eq (3b) is:

where "\is, as in eq (4), the path parameter. In this ••••y,
the new equilibriuM configuration (m+l) •••ill be at the
intersection of the solution path •••ith the plane defined
by eq (15a) , which is normal to the tangent at point m
(see fig 1) and it is located at a distance ~ fro. this
point.

As in the displ.c.ment control method, eqs (11a,b) are
used to find Au"z and Au·HZ and eq (12) is used to formAU~. Next, eq (12) is inserted in eq (15a); then,
aSSUMing a~in perfect convergence at the last increment,
•••e have:

A"· .. ------------~--------------- for j-l
( 1 + [A U. Z]T. [A U. Z] )"2

Eqs (14a,b) and therefore eq (15a,b) are formed •••ith
displacements and the load parameter, which have different
dimensions. This f.ct introduces. dependence of the
algorithm on the aagnitudes used in the formulation of the
problem.

Let us exa.ine eq (lOb) for a system with one d.o.f.,
hence all variables involved are scalars,

which is the s.me as eq <14b); thus, the algorithm becomes
the displacement control one. This is a severe drawback
because the displacement is not really controlled since eq
(14.) is no~ used, and the algorithm tries to maintain the
displacement calculated at the first iteration
<predictor), which may not correspond to any neighboring
equilibri~ point.



Besid_. if A>.& » t AU&].tAUH]

also /),).& » [AU&]. [ AU'" aa]

and then A>t.. 0
In this way, the algorithM becOMeS the load control •• thad
and it loses all utility neAr liMit points.

It was proposed in [7,8) to negl-et the incre.ent of load
parameter AA,& in eq (15). This reduces by one the nu.-ber
of variables used to define the surface on which probleM
solution is •• arched. For ane d.o.f. systems eq (160) is
reduced to eq (18) which is the same as eq (14b) leading
again to displacelllent control •• thod.

In this work, a scaling factor alpha is
a way that the load paraMeter has the
typical displacement ~UI/N; tnat is,
alpha is defined as:

introduced in such
sa.. _i ght as a
for increMent M+l,

where' • indicate. usual Euclidean norM over the N d.o.f.
Now, constraint eqs (15a,b) are rewrittwn as:

AA& • --------------~---------------
(Cl(la + [AU&I]T.[AUII) )&,,.

One has to note that, for syst ••• with .any d.o.f. for
which [AU&)T.[Au .•l) »4,\1, the RlOdified algorithm tends
to that proposed in [7,8). But, on any other cases,
scaling factor helps to solve scaling problems. In this
way, users need not be aware of considerations about
dimensions to formulate probleMS and magnitudes for
reference loads.

The algorithm may trace solution paths autOMatically when
the step (path parameter) is specified for each increment
in an automatic way. The step size for any increment is
scaled to the step size of the previous incr ••• nt on



relating the number of iterations in the last inC:rement
<i) to • user defined number (.i). The most usual scheme
iSI

~ is also limited by the user input 6 t1Ind.,.so that:

£< _:~- < t
alf\

Tangent stiffness matrix reevaluation is controlled by
three parameters ia, i2, i3, so that reevaluation occurs
for iterations ia, i2, and i2 + n is, for all n until a
ma>:imum iteration numbIPr i--" is reached. Introduction of
the last paraaeter is to prevent failed convergence
difficult points. The user ••y overcome such difficult
points on restarting with a prescribed path parameter or
using a displacement control step.

Free combinations of load, displacement, and global
(constant-normal-plane) control stIPPS are allowed. The
reference load P is defined at the first increment (load
control) and may be redefined at any increment on
specifying .-other load control step; this allo_
flexibility far loading.

Convergence is accepted after a norm for residue C9l is
bellow a user defined parameter ea; tangent stiffness
matrix is discontinued when the norm is bellow another
para_tIPr e2.

Unloading is initiated whenever a
during frontal solution for the
increment. When stiffening
automatically initiated since
becomes again definite positive.

negative pivot is found
first iteration of eac:h
occurs, reloading is

tangent stiffn.. matrix



01 var reeval ,ICNlld-cont:rol,displac..-nt-control,
global-control , logical;

begin
Ill: -0; "\: -1; P: -<>P;
while m<_.-_M do be9in

i: -0; Ill: -.+1;
K&;=--&K; R&I=~-&R;
set _thod for curr«lt incre-.nt;
if load-control then p,.-p; (see text)
while.i<-i-.x And e>.. do begin (start iterations)

j:-i+l; (i,last iteration, j:current iteration)
reeval:-«j-i.) or (j-iz) or (j-i.+n i~» and (It>_.);
if' reeval then update K&;
if (reeval and not load-control)

or (load-control and j-l)
then solve K'. AlJ..II a • p
else copy AlJ..IIa •• AU,a;

sol ve K&. A lJ..IIa a •• - It"';
if load-control theq if
if displace.ent-con1:rol

j-1 then A.A..':-1 else
thenU•.

A).~'.------- else 4)..l : - -
lJ..IIa ••

20 if global-control then
21 if j-l then b~in
22 ()t : .~ ••••; ( •• t scaling factor for current incr.)

23 A~ •• -------------~--------------; end
(II( z + [AU. a IT. [Au·· l ) ,"'••

[ A U· aIT • [ A U.l• • l
else ~.l •• - ---------------------------;

(.-.AA. + [AU··lT.[AU.lal

Au" = AA~.AlJ..IIa
u.•: aU'+ AU";
.lU:"'U+ AU~;
0(,,:- U.l/N/~;
"P:"'P+ A."" P;
find out-of-balance forces
evaluate nor. of residue;

+ AU·Ha; (form disp. vec1:or)
(upda1:e disp. for current incr.)

(update total displacements)
(update scaling factor)

(update loads)
Rot;

(convergence par..-ter)
i:sj;
end while;

'\: ='\. sqrt (.i Ii);
check for condition eq (25);
end whi Ie;

end.

NOTE: this algorithlll is written in PASCAL lil(e notation
but readers only have to be awarded of use of semicolon to
end each statement and use of words begin end to refer a
group of statements as a one.



These exa~les have been analyz.d on a VAX 11/780 computer
using the Finite Ele.ent Code SAMCEF [10J. The geometrical
non-linearity is based on the Total Lagrangian
Formulation. Shell structures are idealized by special
three-dimensional elements developed in [111. Full Newton
iterations were used throughout the examples, although
use of the modified Newton Raphson technique is possible.

Figur. 2 shows a typical snap through characteristic. The
.echanical 1II0deiwas analyzed in reference [121. Table I
shows the performance obtained with both the original
scheme (0(-1) and the sch.me proposed here. A first load
control step of 0.3 KN is is imposed and further
increments are performed wi th the global control' _thod.
The step size is chosen autOlllaticallywith eq (24).

EXACT SOLUTIO. [IIJ
ex .. I

PROPOSED ttETHOO

e:; 5-
k:. 8340 k.#J/'l1'It

•••..
o
'0.00 0012 001. 0.20

01 SPlACEI1ENT .5_10-1

Fig 2. Load vs Displac ••••nt diagram showing
snap through charact.ristic

It can b~ .~en from table I that without &calinQ,
convergence fail.d for the third increment and the
auta.atic solution procedure is no longer possible. The



step size (~) have to be fixed at a very low value by
user input. Several trials and previous knowledge of the
solution are necessary to select this input. Otherwise, a
very little step have to be .-ploy~ with the consequent
high solution cost.

Oi. 1. proposed o<? 1-----------------------------------------~ ~ £t._!!_ ~ ~~e.!:._
1.41 8 1.41 8

2 1.:58 10 1.58 3
3 0.:5 10 2.88 4
•• 0.2 10 4.:56 ••
5 0.2 7 7.21 4
0 0.2 6 11.40 4

Fig 3. 1/8 of a cylinder with
axial load and lateral sea-
wave i~act. Deformed shape at
critical load (axial>

Sometimes, it is possible to avoid this type of
difficulties making carefully studied choices of both the
reference load and the units system used to describe the
model. In this particular case if one choo •• Millimeters
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and a first load increment of 0.21 KN. the scaling factor
is approximately one, giving a well conditioned constraint
equation for the first increment. However, as the
deformation of the structure proceeds. variables involved
in the constraint equation change, and its initial well
conditioning may vanish.

When the scaling factor is used. the solution is ob~ained
in an aut~atic way with a minimum of incre •• nts and few
iterations per increment.

One has to note the difference between the number
iterations employed for the first incre •• nt and
corresponding number employed for the second one.
suggest us to replace the first load control step
global control one, with excellent results.

of
the

This
by a

A cylindrical shell under a sea wave impact was analyZed
in order to assess the algorithm with a large system.

----- AYERAQE DISPLACEMENT
- -- DISPLACEMENT POUlT A

-----------
1.~5 1.10 2.25

AXIAl DISPLACE~NTS

FiQ 4. Load vc D.fl.etion di.or~m ~Or the end
shortening of a cylinder with axial load and
lateral perturbation



Fig 5. Contour plots for the radial displacements up
to the critical lOAd



The structure is siMply supported at both ends. The
nonlinear behavior under axial load is investigated. The
axial load is nor.ali~ed to the linear buckling value. A
perturbation, representing the initial pressure
distribution of a sea wave impact [133, is .pplied as
energetically equivalent loads. They are applied later.lly
to the shell, before the axial loading be initiated.

One quarter of the shell is idealized by 96
shell elements. The first load-control
introduces the lateral perturbation, and the
defines the reference load p-O.35, but in
variations of the load during iterations is
order to iMprove the convergence.

quadratic
incr~t

.econd one
this case

.llo ••••d in

Figure 3 shows the deformation of one quarter of the
shell, near the li.it point. The buckling MOde has one
half wave in the axial direction and six circumferenci.l
waves. Contour plots in figure 5 show the development of
the buckling modes up to the critical load (p-O.868) and
figure 4 shows the load deflection diagram for the average
end shortening of the shell. The entire .01 uti on wa.
obtained with 30 steps.
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