
Juan C. Heinrich
Chung-Chyi Yu

Aerospace and Mechanical Enaineerina Department
University of Arizona
Tucson, Arizona 85721
USA

Presentamos un metodo de elementos finitos basado en una formulaci6n de Petrov-
Galerkin para la ecuaci6n de convecciOn y difusiOn con dependencia de tiempo. EI
esquemase basa en funciOlles de base bilineales en espacio y tiempo Y en funciones de
peso no-con formes cuadraticas en tiempo y lineales en el espacio. Obtenemosesquemas
de segundo orden en el tiempo y tercer orden de exactitud en el espacio. Iibres de
efectos de difusiOn y dispersiOn n~rica. Presentamos resultados n~ricos que
demuestran que el esquemaposee exelentes propiedades de aproximaciOn.

A Petrov-Galerkin finite element method is presented for the time-dependent
convection-diffusion equation. The scheme is based on bilinear time-space trial and
quadratic in time-linear in space test functions, the latter being non-conforming.
Secondorder in time and third order in space accuracy is obtained, and the schemesare
free of nLmerical diffusion and dispersion effects. Numerical results are presented
which show excellent approximation properties.



The use of the finite element method via Petrov-Galerkin formulations of various
forms has been extremely effective in the nlmerical solution of convection-dominated
problems. Initially, the methods were developed for steady-state equations with no time
dependence (1, 2). Later, by means of rather ad-hoc extensions, they were applied to
time-dependent equations (3, 4); however, these extensions were mostly justified by
means of numerical experimentation, and a formal analysis is lacking. Moreover, a local
analysis technique used in (5) showed that the direct extension of the futrov-Galerkin
method to time-dependent convection-dominated problems can generate algorithms that
introduce excessive numerical damping and are incapable of describing the time
evolution of the solution with adequate accuracy.

In this work, we present a possible extension of the Petrov-Galcrkin method for
steady-state equations introduced in (&, 7) to time-dependent problems. This is done by
means of time-space elements, so the algorithms are by necessity implicit. We only
consider one-step algoritlvns, i.e., we aSSlme the solution is known at time t = tn and
we calculate an approximation for time tn+1 •• tn + lot. A local analysis, such as the one
used in (51. allows us to determine two parameters introduced in the algorithm in an
element-by-element fashion SO as to optimize the approximation properties.

For the case of a constant coefficient equation on a uniform mesh, we can construct
algorithms that are second-order accurate in time and third-order accurate in space.
\"e can also identify, in certain cases, values of the parameters for which
superconvergence occurs. The analysis shows that to obtain optimal convergence rates
in this class of algorithms, we must compromise the stability and we can only find
optimal schemes that are conditionally stable.

The n!merical examples show that the algorithm is extremely accurate, and the
simplicity of its formulation makes it attractive to use in more complex engineering
problems.

Let us consider the time-dependent convection-diffusion equation in the interval a <
x < b

2!i. + u!! ••K!.:t + Q
at ax ax2

A.<b, t) + liii<b, t) • C

where • is the transported quantit'l'. For simplicity, we assume that the convective
velocity u and the diffusion coefficient K are positive constants, Q represents sources
and sinks, and, initially, Q • O.

We consider bilinear space-time trial functions <Figure 1) given in isoparamctric
coordinates -1 < t < 1, -1 < " < 1 by
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Figure 1. Nodal nlmbering for four-noded space-time elements in isoparametric
coordinates.

1 1N (~, ,,) -.(1 - ~)(1 - ,,) (4a)

2 1N (~, ,,) '" .(1 •.~)(1- ,,) (41))

N3(~, ,,) _ i(1 •. ~)(1 •. ") (4«:)

<4 1
N (~. ,,) ,".(1 - ~)(1" ,,) (4d)

Only two test functions are needed to define the algorithm on each element; these will
be of the form

3 1 2
M (~,,,) •• 1(1 •. ~ )( 1 -" )

<4 1 2
M (~,,,) "1(1 - ~)(1 -" )

where v is a function Quadratic in time and p is a perturbation function discontinuous at
the nodal points.
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From here we find that the tuler-Lagrange equations are equation (1) restricted to the
element interiors, ~uation (Jb) if Ii _ U, and the continuity conditions

To uetermine the parameters II and II, we perform a local analysis on the difference
equations generated by this alJ&orithm;the latter is, for a typical node i
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where h is the uniform mesh size. Expanding in Taylor series and using the original
diftcr~ntial equ<ltion to rewrite the hillhtH order derivatives in thl! expansion, we can
write the total truncation error t in the form
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The subindices t and x denote partial differentiation with respect to time and space, and
HUTstands for hi~her order terms.

a •• coth 1. - 1.
2 y

Notice that this is the same value obtained previously for the steady-state case 11, lJ.
The parameter a can then be found as a function of a so as to make'the st:cond term in
(14) vanish. This gives

The stability of the present Petrov-Galerkin scheme can be studied using standard
methods and shows that the s~hemeis unconditionally stablt: if a •• u for any value of a.
If II t. U, however, the scheme is only conditionally stable with a stability limit givt:n by
(; < 1. It appears that it is not possible to improve on this condition within the
framework of the present algorithm'S architecture; however, numerical experimentation
with II •• U when tht: algorithm is unconditionally stable indicates that tht: ~ondition C <
1 is necessary for accurate tracking of the time evolution of solution.

1. The present algorithm is only one of several that have been Studied in detail. It is
also the most accurate one, Other possible algorithms and their analyses will be
reported in future publications.

2. The weighting functions ddined in (5) and (6) are not unique. There are many
ways to construct weighting functions that lead to equivalent algorithms. In our
opinion, this representation is tho:easiest to use.



3. If Cl and 8 are calculated according to (17) and (18) and we choose C to be a real
root of

~3 + .!.C2•• .!. + .!. _ ..!...
12 3y 6y 12 y2

then the third term in the expression for the truncation error (14) vanishes and a
fourth-order scheme is obtained. It can be easily shown that (19) always has a
root such that 0 < C < 1 and such that C • 0 as y • 0 and C + 1 as y + -.

4. If Cl •• 8 •• 0, the scheme reduces to a Crank-Nicolson Galerkin method using
linear space elements. Also, when y • 0, the pure diffusion case, expression (17)
gives Cl •• 0 and equation (13) is independent of 8 so that the scheme
automatically reduces to the Crank-Nicolson Galerkin form for the pure diffusion
equation, as expected.

5. In the limit where y + ., we get Cl • 1 and 8 • C/3. This algorithm retains the
third-order accura~y and is fourth-order accurate when C •• 1.

6. The scheme exhibits no numerical damping when C •• 1. For C < 1, very little
damping is introduced, stemming mainly from the inability of the mesh to capture
the peaks.

7. The algorithm can be invnediately extended to variable coefficients, Q ~ 0, and
non-uniform meshes by local evaluation of the parameters in an element-wise
fashion.

The performance of the proposed algorithm is illustrated by means of two numerical
examples. The first example involves the transport and diffusion of a Gaussian wave
form of unit initial amplitude centered at x •• 0.25. The exact solution is given by

.(x-u(t+l »2
1 4K(t+l)

t(x, t) •• -_.- et',.-;t

and we set the function equal to zero when It' < 10-10• Equation (1) is solved in the
interval 10, 2J, and the solution is followed over two full wavelengths. In Figure 2, we
show the solution obtained Ol.rnerically for C •• 0.9 and y •• 20. The left peak is the
initial condition, the middle one is the solution after t •• 2.07 seconds, and the third
after t •• 4.05 seconds. The exact and numerical solutions have been superimposed on
Figure 2 and practically no difference can be observed. The same problem was solved
for five different meshes, keeping the Courant number constant at C •• 0.9. The
maximum relative errors, at time t •• 2.07 seconds, referred to the maximum magnitude
of the exact solution are shown in Table 1.

In Figure 3, we have plotted the' maximum relative error against the mesh size in a
log-log curve. It shows the expected linear relation with slope 2.7. This is the actual
c.onvergence rate and is in excellent agreement with the theoretical value of 3.

The second example involves variable coefficients and a variable source term.
Equation (1) now takes the form



Figure 2. Nwnerical and analytical solution to the first example at times t = 0, 2.07,
and 4.05 seconds.
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Expression (22) represents a wave that translates without changing its shape or
amplitude. In Figure 4, we show ",merical solutions at times t - 0, t •• 2.0, and t •• 4.0
seconds obtained using (a) CI •• II •• 0, (b) CI # 0 and II •• 0, and (c) CI # 0 and II * O. The
parameters used in this calculation are

a" 0.00359
u •• 0.3
c •• 0.9

The parameter y varies between 10 < y < 580. The first two cases represent algorithms
that are unconditionally stable; however, they show significant numerical dispersion,
especially case (a) which is the Crank-Nicolson Galerkin algorithm. Both of these
solutions also show a significant phase lag. Case (b) is equivalent to a direct extension
to the time-dependent case of the Petrov-Galerkin methods developed in [1, 2J for
steady-state equations by combining the weighted residuals formulation in space with a
Crank-Nicolson scheme in time. It shows less numerical dispersion than (a), but it
suffers from stronger damping and is out of phase.

The results of our proposed algorithm, shown in (c), show no dispersion or phase
errors. A small amount of numerical damping is, however, evident. This is unavoidable
when the mesh does not always agree with the location of the maximum and minimum
peaks. We should point out that if C •• 1 is used, tile exact solution is obtained to two
significant digits.

We have presented a new Petrov-Galerkin finite element method for the time-
dependent convection-diffusion equation. The method has been fully analyzed locally,
although not so in the energy norms, and shows second order in time and third order in
space convergence rates. The numerical examples show excellent approximation
properties. The scheme shows virtually no phase error and very little numerical damping
when tracking the time evolution of the solutions.

Extensions to this work are being pursued for both multidimensional and nonlinear
situations and will be reported in the near future.

Thia work hil been performed with $UllIlOrt fran the American Chemical Society,
Petroleum Research Fund under Grant PKFl5533-ACS.
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Figure 4. Nt.nerical solutions to the second example at times t • 0, 2.03, and 4.0
seconds:

(a) II •••• 0
(b) II # 0.' .0
(c) II '# O•• # 0
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