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This work applies the method of parameter differentiation (KPD) to
nonlinear ordinary and partial differential equations of fluid mechanics.
It is shown that the differentiation parameter does not need to be a
physical parameter of the problem, because it can be arbitrarily
selected and placed in any nonlinear term of the differential equation,
with the constraint that it takes the value one at the end of the
integration procedure.

Emphasis is placed in two numerical aspects:
a) A nonlinear ordinary differential equation with boundary conditions

can be transformed into a simpler problem, which consists of linear
ordinary differential equations with initial conditions. The solution
is then noniterative.

b) The solution of the steady stream function-vorticity scheme through
finite differences with the overall iterative procedure (Gupta, 1980,
p. 170) can be simplified because inner iterations are eliminated,
and initialization functions are solutions of the problem at each
previous outer parameter iteration.

Este trabajo aplica el metodo de diferenciacion parametrica (MPD)
a ecuaciones diferenciales ordinarias y a derivadas parciales no linea-
les de la mecanica de fluidos. Se muestra que el parametro de diferen-
ciacion no necesita ser un parametro fisico del problema, porque puede
ser seleccionado arbitrariamente y colocado en el termino no lineal de
la ecuacion diferencial, con la restriccion que tome el valor uno al fi
nal del procedimiento de integracion. -

Se pone enfasis en dos aspectos numericos:
a) Una ecuacion diferencial ordinaria no lineal con condiciones de con-

torno puede ser transformada en un problema .as simple, que consiste
en una ecuacion diferencial ordinaria lineal con condiciones inicia-
les. La solucion es entonces no iterativa.

b) La solucion del esquema funcion linea de corriente-vorticidad en es-
tado estacionario a traves de diferencias finitas con el procedimie~
to iterativo global (Gupta, 1980, p. 170) puede ger simplificado pOI
que las iteraciones internas son eliminadas y las funciones de inici~
lizacion son soluciones del problema en cada iteracion parametrica
externa previa.



Many mathematical models generated in all branches of engineering
and science involve linear ordinary and partial differential equations
that can be solved either analytically (see, for example, Ince, 1956;
Courant and Hilbert, 1962) or numerically through methods which are
probed to be convergent, consistent and stable (see, for example, Noye,
1978; Smith, 1978). However, this is not necessarily the case of non-
linear differential equations which, in general, require special
treatments and approximations to find a solution, depending these upon
the nature of the nonlinear terms involved.

The method of parameter differentiation (MPD) also known in the
applied mathematical literature as the method of· continuation, (see,
for example, Wacker, 1978), has been probed to be a great potential
tool for solving nonlinear algebraic equations and nonlinear ordinary
differential equations of engineering (see, Na, 1979, p. 233). In fact,
nonlinear mathematical models involving a physical parameter that
appears either in the differential equation or in the boundary
conditions, can be solved by integrating the rate of change of the
corresponding solution with respect to this parameter. Therefore, to
proceed in this way, the starting point is a known solution of the
problem for a specified value (zero value) of the physical parameter,
i.e., the differentiation parameter.

The MPD can be carried out because the formulation of the
mathematical problem has to satisfy the requirement of parameter
continuity of the obtained solution. Thus, from a wider mathematical
point of view, the differential equation with its boundary conditions
must satisfy (see, for example, Street, 1973),
- Existence: at least one solution exists
- Uni~ueness: there exists at most one solution

Continuity: the solution varies continuously in all given data,
including parameters.

so that, the formulated problem is well posed.

The main advantage of the MPD applied to two boundary values
problems of nonlinear ordinary differential equations is: A systematic
procedure for linearization is used. Furthermore, the resulting linear
problem with two point bo~ndary conditions can be transformed into an
initial value problem, alSo in a systematic way through the method of
superposition, and solved in its turn by noniterative methods such as
the Runge-Kutta methods.

This work presents a brief overview of the MPD and its particular
case designated here as the method of parameter iteration (MPI).
Although it is not done in a generalized procedure, we will show for
particular cases the relation between a solution obtained by the MPD
and the one obtained through a regular perturbation expansion when the
final value to be reached by the differentiation parameter is small.
Furthermore, Na (1979, p. 234) has shown that in the application of



the MPD to a nonlinear algebraic equation. it is always possible to
introduce arbitrarily in any tera of this equation. a non physical
parameter which has to take the value one at the end of the integration
procedure 80 that· the original physical and mathematical problem is
recovered. Therefore. we will use this important concept to solve a
nonlinear ordinary differential equation. of which a solution to start
the MPD is not available neither analytically nor without complex
numerical evaluations. To illustrate this aspect of the MPD. we will
solve the third order nonlinear ordinary differential equation
corresponding to the boundary layer theory applied to a plate (see.
Schlichting. 1960. p. 116) which is a particular case of the Falkner-
Skan problem when the physical parameter 8 involving the angle of a
wadge is zero.

It is interesting to point out here that Rubbert and Landahl (1967)
solved the Falkner-Skan problem through the MPD by starting the
procedure with a known numerical solution for 8·0. i.e .• the
solution of the boundary layer theory for a plate (Blasius equation).
This starting solution was numerical because the Blasius equation is
also a nonlinear problem and in addition. it has not any physical
parameter available for application of the MPD. These authors also
solved the Blasius equation by the MPD through the definition of still
a physical parameter. Therefore. it is in this mathematical aspect that
our solution of the Blasius equation by the use of an unphysical
parameter. will show a qualitative advantage and generalization of the
MPD.

After the analysis of the above mentioned examples. our main
target is to try the application of the MPD. to the solution of partial
differential equations involving Newtonian fluid flows as a substitut:io1l
of the classical iteratives methods such as the method of succesive
over-relaxation (SOR) (see. for example. Greenspan. 1974. p. 12. 208;
Gupta, 1980. p. 148). In fact. it will be shown that the solution of
the steady stream function-vorticity scheme through finite differences
with the overall iterative procedure (Gupta. 1980. p. 174) can be
greatly simplified in two aspects: a) Inner iterations can be avoided
since the method of Gauss-Seidel converges in one step if the increment
of the differentiation parameter chosen is sufficiently small; b) outer
iterations are substituted for a sequence of numerical solutions in
which two consecutive solutions differ themselves in a small increment
of the differentiation parameter.

Consider a second order nonlinear ordinary differential operator
N • a scalar function ~ and a physical parameter £ (Reynolds
n~mber. geometrical ratio. etc.) defining the following physical
problem.



The procedure to apply the MPD is the following:
- Differentiate equation8 {I} to {3} with respect to £ to obtain,

3b 3ha a - 0 {5}--a£+~g x-a

3~ 3~
- 0 x-b {6}--a£+~g

g _ M {7}3£

where L£ is a linear ordinary differential operator applied to g
because x~ and its differentiations are considered as known variable
coefficients in equation {4}.

- Find the starting solution go for £-0

0 ( ll)Lx[80'~o'O) - 0

ah 3ha a • 0 £-0 4>- 4>0 (12)a£+~80 x-a

3hb 3~
- 0 x=b £=0 ¢·4>0 (l3)a£+~80

- Find 4>1 for £ -1I£ «1 as follows,

4>1{x,lI£} - 4>o(x,O} • go(x,O} 1I£ + O{1I£2} (13)

- Using equation (4) to (7) find at £ - n lI£

t 0 (15)L [g , ~ , n liE) -x n n

3h 3ba a - 0 £-n!i£, ¢ - 4>n (l6)--a£+-Wlu x-a



Therefore when n· II the solution ~R(X.Rll£). ~(x.£*) is found.

It should be observed that equations (8) to (10) can frequently be
solved analytically and that equations (11) to (13) and (15) to (17)
can be transformed to an initial value problem which solutions are
directly found through noniterative methods like the Runge-Kutta or
Euler methods (see. Ra. 1979. p. 13).

In particular. if equations (8) to (10) cannot be solved anslyti-
cally. we can introduce a nonphysical parameter A in any nonlinear
tera. provided A - a ••••A. ....).«1. III - 1.2 ... K and K ••••>. • 1 •
Therefore, the application of the HPD yields.

ah). ah).
a + a f • 0ar- a~O •

ah~ ~
-;;'T"" + - f. - 0a" a~o
.O.a+l(x.(a+l)••••).)- ~O••(x••••••A) • f.(X••••••A)••••).+ 0(••••).2) (30)

ohb[.o 0.0.0] - 0
o'

a~and for f-aT"
ALx[fm'~o•••a ••••A] • 0

x· a A-" ••••A

(27)

(28)



and that A has to be placed into N so that
operator of easy ana~ytical solution.x NO is a differential

x

The method of parameter iteration (MPI) is a particular case of
the MPD and it can be formulated as follows:

where L is again a linear ordinary differential operator and NA
x .xis the remaining nonlinear part of Nx' Therefore, equation (1) 1S now

expressed,

where A can also be taken as equal to the physical parameter E if
the nature of the nonlinear problem is appropriate, i.e., sometimes it
is possible to make A· E and obtain,

- Solve equation (37) for A· 0 with its boundary conditions (equations
(2) and (3».

- Find the sequence of solution
equation,



Consequently '.(X,It,A,E) •• (X,E) ia the approximate ..,lution of
equatioaa (1) to (3).

Bext, we present four eXlllllplesto illustrate tbe use of the MPD
and MPI. The fourtb ODe ia a nonli.Dearordinary 4ifferential equatiGa
involving the boundary layer theory of fluid f1~.

Consider the simple case of a first order linear differential
equatiOil.

(43)

(44)

In additiOil. if E«1 , a regular perturbatiOil solutiOil (RPS)of
equations (43) and (44) is equivalent to the series expanaiOllof equation
(45) aad it caa be written.

y~S • 1 _ EX + (£X)2/2~_ (EX)3/3:
The MPIimpli•• ,

gn(O) • 0

yn+1 - Yn • S. 6c. + O(t,E2)

It is then readily probed that YO· 1 and 80· -x , which are the
starting solutioDl of the MPD. However, it is not neceasary to start
froa 80 since gl can be obtained without difficulty usiJII yo and
without 80' Wecaa find directly gl as foll~.



The following results for E"O.S and _x-O.S fre interesting to
compare: vEX•. yT'D_O. 7788 • yrS - 0.7812 and y~ - 0.7703 .

It is here appropriate to place emphasis on that the KPDcan also
be applied by starting with ~ - -x to obtain.

Yl •. 1 - 6£ x

2 -t.e:xgl = x - A£ (e - 1)
~EX

£x
y;u'D - 1 + 2 (e- T- 1)

Although this example is- very simple. it can easily show the
relationship between yMPD and yRPS in a clear procedure. To place
emphasis on the relation between yMPD and yKPI. Table I shows
numerical solutions of equations (43) and (44) obtained through the
KPD and KPI in 1000 and 10000 steps respectively. for £ •• 1 and
Ax" 1/2000

EX 1
" T+ii



E - 1 1 6£ __ I_
• 6x - 2000 . 1000

EX yKPD KPIx y y

OOסס0.0 1.00000 OO0סס.1 ooסס1.0
0.10000 0.90484 0.90472 0.90473
0.20000 0.81873 0.81851 0 •.81853
0.30000 0.74082 0.74050 0.74054
OOסס0.4 0.67032 0.66992 0.66999
0.50000 0.60653 0.60606 0.60616
0.60000 0.54881 0.54828 0.54841
OOסס0.7 0.49659 0.49599 0.49616
0.80000 0.44933 0.44869 0.44889
OOסס0.9 0.40657 0.40588 0.40612
1.00000 0.36788 0.36715 0.36743

1 1 1£ • . !J.x • 2000 . 6£ • 10000

EX MPD MPIx y y y

0.00000 OO0סס.1 1.00000 1.00000
0.10000 0.90484 0.90482 0.90481
0.20000 0.81873 0.81870 0.81868
0.30000 0.74082 0.74079 0.74076
0.40000 0.67032 0.67030 0.67025
0.50000 0.60653 0.60648 0.60645
0.60000 0.54881 0.54879 0.54872
0.70000 0.49659 0.49652 0.49649
0.80000 0.44933 0.44930 0.44923
0.90000 0.40657 0.40651 0.40647
1.00000 0.36788 0.36782 0.36778



The last solution y~D has been obtained by dropping terms of
O(6c2 to avoid heavy algebraic manipulations in the determination of
gl .

For c· 0.1 and x· 1 , it is interesting to co~are the following
results,

RPS • 0.9100Y2

MPD • 0.9048 f>c • 0.05Y2

MPI • 0.9000 6c = 0.1y 1

MPI • 0.9049 t,£ • 0.05Y2

KPI • 0.9065 !:J.c• 0.0333 •..Y3

MPI = 0.9073 !:J.c• 0.025y 4

KPITherefore, it is observed how the y approximates to the
yRPS by increasing the number of steps used to reach the final value
£·0.1 .

Table II shows numerical solutions of equations (63) and (64)
obtained through the MPD and MPI for different values of 6c when
C. 1 . Solut ions yMPD and yMPI coincide in four digits when
!:J.c• 1/1000 for a1180st all values of x.

Consider the case of a second order nonlinear differential equation
with two points boundary conditions,

y(O) •

y' (1) • 1

(68)

(69)



TABLE II

2y' + £ Y - 0 y(O) •
l:!.x· 1/100 £-1

KPD KPIx y y

ooסס0.0 1.00000 1.00000
0.10000 0.90737 0.90745
OOסס0.2 0.83036 0.83065
0.30000 0.76531 0.76587

1 0.40000 0.70962 0.71050
l:!.£- 10 0.50000 0.66139 0.66261

0.60000 0.61921 0.62080
0.70000 0.58201 0.58396
0.80000 0.54893 0.55126
0.90000 0.51934 0.52203
OOסס1.0 0.49270 0.49576

ooסס0.0 1.00000 1.00000
0.10000 0.90820 0.90821
OOסס0.2 0.83188 0.83191
0.30000 0.76743 0.76748

1 0.40000 0.71226 0.71235
l:!.£ - 100 0.50000 0.66450 0.66463

O.bOOOO 0.62276 0.62292
0.70000 0.58595 0.58615
0.80000 0.55325 0.55348
0.90000 0.52401 0.52428
1.00000 0.49770 0.49801

0.00000 1.00000 1.00000
0.10000 0.90829 0.90829
0.20000 0.83204 0.83205
0.30000 0.76765 0.76766

1 0.40000 0.71254 0.71254
l:!.£ -TOOO 0.50000 0.66484 0.66484

0.60000 0.62314 0.62314
0.70000 0.58637 0.58637
0.80000 0.55372 0.55371
0.90000 0.52451 0.52450
1.00000 0.49824 0.49823



Y~S l+x+e:Af3x/2-x2/2-x3/6J +

+ e:2.([sx/6 - 3i /4 - x3/3 + x4/6 + x5/30J + 0(6e:3) (71)

RPS MPD MPI
Y1 ·Yl ·Y2

RPS
Y

The next step in'this example is to reduce this nonlinear problem
with boundary conditions to a linear problem with initial conditions,
through the combination of the MPD and the method of superposition.

Differentiation of equations (68) to (70) with respect to e: and
application of the MPD yields,

g~ (1) • 0

Clv
- n

gn • aE

The method of superposition (see Na, 1979, p. 13) can then be
applied. Define,

where Iln is a CODstant.

Combining equations (75) and (81) we obtain,

F" + n lie: A Yn y' + n lie: A Y~ Yn A Yn Y~ (82)
n n

eft + Il A£ A y G' + II.At A,' G • 0 (83)
n n n n n

since equatioo (76) has to be satisfied,



It is also possible to choose arbitrarily an additional initial
conditiOD for Fn and Gn as follows.

because equatiOD (77), the remaining boundary conditiOD, is used only
to evaluate lln. Thus,

Once equations (82) to (85) have been solved through the Runge-
Kutta or Euler methods at each step l1f:. , equations (87), (81) and (78)
are used to find &u and yn+l until n· II and NilE· E* •

Table. III
equations (75)
The two runs
refin_nts ill

shows numerical results of equations (68) to (70) when
to (87) are applied for two different step sizes lie
are coincident in the three first digits, hence further

LIE and lIx are considered unnecessary

The experience gained in Example 3 is now applied systematically
to solve the boundary layer flow problem for a plate. (Blasius problem).
The corresponding equations are. (see Schlichting, 1960, p. 117)

(88)

(89)

(90)

where A is an unphysical parameter such that for A· 1 the physical
problem involving the boundary layer theory is recovered (see also
equation (37).

To solve this problem through the MPD the starting solution fa
is necessary; then for A· 0 ,

However, the solution fo thus formulated does not exist. the MPD cannot
be applied. This difficulty is overcame by adding nonh~geneous terms
to equation (88) which are multiplied by (I-A) so that they are zero



x yMPD

0.00000 ooסס1.0
0.05000 1.05849
0.10000 1.11667
0.15000 1.17453
0.20000 1.23205
0.25000 1.28922
0.30000 1.34603
0.35000 1.40245
0.40000 1. 45848

1 0.45000 1.51410
!:J.E

• 1000 0.50000 1.56930
0.55000 1.62408
0.60000 1. 67841
0.65000 1.73229
0.70000 1. 78570
0.75000 1.83864
0.80000 1.89110
0.85000 1.94306
0.90000 1. 99452
0.95000 2.04548
1.00000 2.09548

0.00000 1.00000
0.05000 1.05856
0.10000 1.11682
0.15000 1.17475
OOסס0.2 1.23234
0.25000 1. 28958
0.30000 1.34644
0.35000 1.40292
0.40000 1.45900

1
0.45000 1. 51468

!:J.E • 100 0.50000 1.56993
0.55000 1.62474
0.60000 1. 67911
0.65000 1. 73303
0.70000 1. 78647
0.75000 1.83944
0.80000 1.89192
0.85000 1.94390
0.90000 1. 99538
0.95000 2.04634
1.00000 2.09634



where the nonhOlllOgeneoustera is an obvious choice if the boundary
conditions at 11" CD has to be satisfied. For A· 1 , equation (94)
reduces to the expected physical problea.

Now, the starting aolutioll call be found by placing A.O, ill
equation (94) to obtaill,

f'" • -e-n (95)o

where G" (0) and H~(0) are arbitrarily imposed. Therefore, it is
clear that,

Un can be obtained at each value of n with solutions
which are in their turns evaluated from equations (102)
through a noniterative method as in Example 3. Once ~
is a result of equation (101). n

C and R
t~ (105) n
is known, gn



The integration procedure is performed in M steps such that
N l!.J.. • 1 ; also l!.J.. ••. 0 as N .•. -

which is designated as the missing second derivative in the classical
shootting method that have been used to solve the Blasius prob1ea
(White, 1974, p. 261).

Table IV shows our results for l!.J... 10-4 and MI· 0.2 and they
are compared with those obtained by Howard (Schlichting, 1960, p. 121).

n f f' f" f"(Howard)

0.00000 ooסס0.0 OOסס0.0 0.33199 0.33206
0.20000 0.00661 0.06637 0.33190 0.33199
0.40000 0.02655 0.13275 0.33125 0.33147
0.60000 0.05971 0.19900 0.32850 0.33008
0.80000 0.10615 0.26470 0.32335 0.32739
1.00000 0.16559 0.32937 0.32015 0.32301
1.20000 0.23790 0.39340 0.31335 0.31659
1.40000 0.32295 0.45607 0.30150 0.30787
1.60000 0.42033 0.51637 0.28875 0.29667
1.80000 0.52950 0.57412 0.27675 0.28293
2.00000 0.64998 0.62947 0.25740 0.26675
2.20000 0.78129 0.68095 0.23625 0.24835
2.40000 0.92236 0.72820 0.21655 0.22809 I

2.60000 1.07257 0.77151 0.19600 0.20646
2.80000 1.23096 0.81071 0.17420 0.18401
3.00000 1.39685 0.84555 0.14810 0.16136
3.20000 1.56918 0.87517 0.12841 0.13913
OOסס3.4 1.74692 0.90085 0.11035 0.11788
3.60000 1.92952 0.92292 0.08765 0.09809
3.80000 2.11609 0.94045 0.07260 0.08013
4.00000 2.30570 0.95497 0.05841 0.06424
OOסס4.2 2.49808 0.96665 0.04335 0.05052
4.40000 2.69236 0.97532 0.03590 0.03897
4.60000 2.88821 0.98250 0.02485 0.02948
4.80000 3.08536 0.98747 0.01925 0.02187
5.00000 3.28320 0.99132 0.01399 0.01591
5.20000 3.48189 0.99412 0.00940 0.01134
5.40000 3.68085 0.99600 0.00855 0.00793
5.60000 3.88029 0.99771 0.00541 0.00543
5.80000 4.07989 0.99939 0.00304 0.00365
6.00000 4.27960 1.00000 0.00000 0.00240

I 6.20000 4.47948 1.00000 0.00000 0.00155



1D this section. the MPD is used to generate a procedure that
solves the steady Navier-Stokes equation applied to two directional
fluid flows. This equation can be written in di-ensionless fora ia
teras of the streaa function ~ as follows (see. for example. the
review work of Gupta. 1980. p. 163).

Ble [~y (~YYX + B
2

'XXX) - 'X (l/Iyyy + B
2

l/Ixxy)] •

- B4 .xxxx + 2 B2 .XXYY + l/Iyyyy
where Ie is the Reynolds nUlllber.Since X· x/a and y. ylb • aDd
(a,b) are the cbaracteristic lengths of the di.ensional coordiaateB
(x,y) ,it is cl_r that B-b/a Osxsl and Osysl.

Equation (108) is a difficult DODlinear partial differential
equation to solve and hence it can be linearized systematically throucb
the MPD using for example B as the differentiation para.eter. The
resulting linear partial differential equation for £(X.Y) defined as
f - ~ ' with variable coefficients that depend on tjI(X. Y) , is still
very complex and. therefore, this linearization procedure is DOt
recommended (see also co..ents of Gupta. 1980. p. 163. on coaputing
directly equation (108) through finite difference .ethods). Instead,
it is possible to introduce the definition of the vorticity ° in
order to reduce equation (108) to two coupled linear partial differen-
tial equatiOll8 as follows,

o - B
2

'XX + lIIyy

BRe(lIIy Ox - 'X Oy) • 82 flxx + nyy

Following Gupta (1980. p. 171) (see also Greenspan. 19~. Chapter
VII) equations (109) and (110) can De solved throUib finite differences
with the overall iterative procedure (outer-inner iterations) described
in the following steps:
a) Start with so-e initial approximations for ~O and flo

b) Solve the discrete fora of equation (104) to obtain 'I
implies inner iterations if a direct .etbod is not used
equation (104).

This
to solve

c) Obtain the boUDdary values of 01 using WI
d) Solve the discrete fora of equation (105) to obtain nl . This

implies inner iteration as in (b).
e) Repeat steps (b), (c) aDd (d) with new values of $n and On for

n· 1,2 •...

The outer iterations (steps (b) to (e» are teraiaated when.
f) ('n,On) and (tjln+l'0ntl) are close to a given nora; say:

Iwij _ tjlij I I Il/Iijl < 6
n D-l 'n 1



where 1.J indicates a mesh point and 61 and 62 are the allowed
tolerances to the nor-.

g) The outer or inner iteration procedures diverges.
h) The pre-assigned maxi_ value of COlIputing tiae is exceeded.

The use of the MPD can improve the above procedure in two important
numerical aspects; first, at each step. the numerical problea is
initialized with a numerical solution of the previous step instead of
iterative trial numbers; second, inner iterations can be avoided since
the method of Gauss-Seidel converses in one step, if the increaent of
the differentiation para-eter is chosen sufficiently ••• 11 and if
diaSOnal doainance of the coefficient matrix is assured (see UpwiDd
discretization, Gupta 1980, p. 154). It should be also observed that
direct methods to solve the discrete partial differential equations of
, and n are .are difficult to ~lement than the simple Gauss-Seidel
method.

which are easy to solve. Then, differentiation of equations (l09) and
(110) with respect to B yields,

2
- (n f:. B) gnXX + 'on + 2n f:. B llnXX



It should be observed that boundary conditions for , and Q
have also to be differentiated with respect to B. Therefore, it is
also expected that this boundary parameter differentiation has a
damping effect upon the over and under estimates of vorticity at the
boundary (see Gupta, 1980, pp. 172 and references) frequently found at
step c) in the overall iterative procedure described above.

Although we do not present here an example involving the applica-
tion of the MPD to the solution of partial differential equations, the
reader is referred to the proceeding of ME COM , 85 where the authors have
evaluated the thermal efficiency of a hot water geothermal reservoir
through the MPD.

Finally, the MPI is still easier to apply to the solution of
equation (109) and (110). Thus, the following equations are readily
obtained,

Qn • nf.B 'nXX + WnTY

2n f. BRe (ljInYDuX - 'nX Qny) • (n f. B) nnXX + nnn

which have as starting solution those obtained from equation (Ill) and
(112) •

Along the previous applications of the MPD to nonlinear problems
of fluid .echanics, we conclude the following remarkable aspects:
- The MPD offers a systematic procedure for linearization of ordinary

and partial differential equations.
- The MPD allows to initialize with analytical solutions the numerical

procedure for solving differential equations.
- The differentiation parameter does not need to be a physical parameter

of the problem, because it can be arbitrarily selected and placed in
any nonlinear term of the differential equation, with the constraint
that it takes the value one at the end of the integration procedure.

- The solution of the steady stream function-vorticity scheme through
finite differences with the overall iterative procedure can be
simplified because inner iterations are eliminated and initialization
functions are solutions of the probl •• at each previous outer
parameter iterations. Although the MPD has also been applied to stream
function-vorticity in this work, we believe that the MPD still
requires an intensive research to better understand its application
to partial differential equations.
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