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We will be concerned with the problem of solving a general non-
linear system of algebraic equations. Consider a function f: Rn + Rn
and the problem

Methods for solvin~ (l.A.) are usually iterative. They generate a se-
quence {~}, {~} (R ,which if the method converges satisfies

Iim ~ = x*
It--

f(x*) • 0

If we use the notation' F' (x) , for the Jacobian matrix of the function
f evaluated at x, it was observed that if f is a linear function
the solution X. can be found as

N -1P • - F' (x) f (x)

provided F'(x)-l is well defined.

If f is not a linear function but
x* • we can expect that defining

The iteration process (1.6.) is the Newton method and thua
ed the Newton step.

This method has been the basis for many successful methods developed in
the past.

The computation of F'(x) is often very expensive or even impossible,
therefore methods have been devised for avoiding it.
Instead of F'(~) an approximation ~ to it has been used, giving
then instead of {1.5.) and (1.6.)

-1
Plt • - ~ f(~)

~+1 • ~ + P'k

(l.8.)

(1.9.)

We can divide the methods for solving (1. 1.) into two classes according
to the vay in which the approximation ~ is obtained. The first class



comprises those in which B is obtained by a finite difference
approximation to the real ~cobian F' (~) We can mention in this
class the discrete Newton's method (Ortega and Rheinboldt (1970».
Brown's (1966) method and Brent's (1973) method. The second class
comprises methods in which ~ is updated each iteration using a for-
JaUla

and the matrix ~ is deteI'lllinedby the method. Me'thods have been
proposed using an updating matrix ~ of rank one (Broyden (1965).
Barnes (1965). Paloschi and Perkins tI982» and also with rank greater
than one (Schubert (1970».
Numerical results obtained by Hiebert (1980). in testing general codes
for solving (1.1.). show that the behaviour of the different codes is
very dependent on the scale being used for solving the problem.
Consider the general change of scale

An iterative method of the fora (1.9.) will be said to be scale inva-
riant if for a change of scale of the form (1.11.) it satisfies

From all the methods available. only Newton's method and the methods
presented by Paloschi and Perkins (1982) are scale invariant. However.
due to the fact that finite precision will be used for real calcula-
tions. all methods. regardless of their theoretical properties. will be
scale dependent (see the numerical results presented in Paloschi and
Perkins (1982».
This problem is directly related to the numerical conditioning of the
methods. We will discuss here the relation between the numerical
conditioning and the methods and propose a way for improving it.
We will first introduce the concept of condition number for systems of
nonlinear algebraic equations, discuss its relation with methods of the
form (1.8.) and (1.9.), and then propose a procedure for improving the
numerical conditioning. Finally, we will test our proposals on a
standard set of mathematical examples.

The condition number has been introduced as a measure of the
numerical conditioning for general matrices.

For a non-singular matrix A ~ L(Rn) the condition number k(A) is
defined as

for a given matrix norm /I /I.
If A define5 a 5Y5tem of linear equations in an
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it is a well known result (Ortega Rheinboldt (1970» that if B £ L(Rn)
is close to A in the sense that

then B
(2.2.)

i. also non-singular, and for b; 0
and y. of

k(A)

1-k(A) II B-AII /11 All [
IIB - All + IIb - ell]

II All II hll
As an example of the use of this number let us assume that in solving
numerically the equation (2.2.) we have found an approximation y. to
x. (the exact solution).

If k(A)
that y. "-

is a large number then the fact that Ay. = b does not mean
is close to x. we can deduce this using (2.5.) to obtain

IIx. - y. II IIb - Ay. II
2. k(A) -----

II x.1I " bll
In general we can say that the smaller k(A) , the better the result
obtained in solving numerically (2.2.).

This important result has led to finding ways for transforming (2.2.)
into an equivalent linear system having the same solution but smaller
condition number.

This concept of condition numbe~ for linear systems has been general-
ized to systems of non-linear equations by Rheinbolt (1976) as follows:

For a given function f: D c Rn ~ an , closed set C c D and point
z £ C define

II f(x)-Hz)" ~ t "x-zll
II {(xl-Hz) 112. t II x-z"

"fx £ C}
(2.6.)

"fx £ C}

f \/(f, C, z)
< \J(f, C, z)

l GO

It can be shown that (2.7.) reduces to (2.5.) if f i. a linear
function.

Rheinboldt (1974) has shown that if f is a continuous function in D
and if the Jacobian ,'(x) of f is nonsingular in D then for any
£ > 0 there is a 6 > 0 such that if
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C • {x E: Rn • 1\ x - z /I < <5}c D (2.8. )

then

I"(f. C. z) - /I r' (z) II I ~ £ (2.9.)

h.l(f. C. z) - 1\ r'(z)-I\1-11 ~ £ (2.10.)

and then. asymptotically near
function f and its Jacobian

z • the conditioning of the non-linear
r'(z) are the same.

An equivalent fo~a to (2.5.) is obtained for the non-linear case and
then the condition number for systems of non-linear equations plays a
similar role as it does for linear systems.

As it is done for solving linear systems, in dealing numerically with
the problem (1.1.) one should try to solve a system for which its
condition number is small.

We are interested in methods of the form (1.8.) and (1.9.) for
solving the problem (1.1.). Those methods can be represented with the
following algorithm:

2 - Set

3 - If II f(~) II ~ £ then stop
4 - Pk a - Bkl f(~)

5 - ~+1 • ~ + Pk
6 - Obtain ~+1 (this
7 - k • HI

The numerical performance of Algorithm 1 is affected by the condition
number in two different ways.
a) The conditioning of the problem (1.1.) itself, as explained in

section 2.
b) The conditioning of ~ since step 4 of Algorithm 1 implies solving

the linear system.

We will show that it is possible to reduce the condition number of ~
by using an internal scaling procedure. In addition, if ~ is close
to the real Jacobian F'(~) (which is not necessarily true, even when
convergence is achieved. see Dennis and More (1977» then a discussion
of section 2 shows that in this case we will alao be improving the
condition number of the problem itself.



For a change of scale of the form (1.11.) define
-1PROPERTY S: Bk • Df Bk DX

If a method satisfies property S then it means that we can obtain the
approximation ~ for the Jacobian in the new scale just by multiply-
ing the approximation in the original scale with the scaling matrices.

It has been shown by Paloschi and Perkins (1982) that Property S is a
sufficient condition for a method being scale invariant for changes of
the form (1.11.).

For a method satisfying property S it will be very easy to apply a
change of scale of the form (1.11.) and since in general

In the following theorem due to Bauer (1963) we will find the theoretic
al basis for our choice of Df and Dx
THEOREM 3.1.: For a nonsingular matrix A £ L(Rn) and nonsingular
diagonal matrices D1 and ,DZ ' using the maximum norm for matrices,

lA-I, e • DZ e

(IAI means the original matrix with all its elements taken in absolute
value, while e is a vector of all ones).

We can then see that it is possible to mini=ize, in some sense, the
condition number of the approximation by scaling either the variables
or the function. Conditions for achieving the same by scaling
simultaneously the variables and the function could be obtained but
since it is required to evaluate eigen-values for determining Df and
D it becomes a very costly procedure (see Bauer (1963».

x
All we need for applying these results is being able to obtain Bk in
the new scale given it on the original one. If a method satisfies



property S then we can see that it is under the required conditions. In
fact, it is only required for a .ethod to satisfy property S with D
I for scaling t~ function or with Df• I for scaling the variablls.
In either case Bk is obtained by mul[iplying the scaling matrix
according to (3.2.).

Newton's method and the methods proposed by Paloschi and Perkins (1982)
satisfy property S for all k . This means that we can optiaize k (Bk)
at all iterations by using an internal scaling based on Theore. 3.1.
Broyden's (1965) method only satisfy property S if D & I (see
Malathronas and Perkins (1980» which means we can op~imize k (Bk) at
all iterations by using only function scaling. If the initial
approximation B is oqtained by finite differences and all the
components of XO are away from the origin then B satisfy property
S (see Palos chi ~1982». This means we can optimizeo k(Bo) for any
method in which B is obtained by finite differences by scaling the
variables or the fRnction.

We will apply our results of section 3 to the method of Broyden
(1965) and the scale invariant methods proposed by Paloschi and Perkins
(1982). The implementation details used for the code can be found in
Paloschi (1982).

The set of examples which will be used is the proposed by More, Carbow
and Hillstrom (1978). This set was used by Hiebert (1980), Chen and
Stadtherr (1981) and Paloschi and Perkins (1982). It consists of a
general set of 54 mathematical problems and a set of 12 chemical
equilibrium problems. Both sets are described in Appendix A.

For the general set of mathe.atical problems a diagonal matrix Smn is
used for testing the behaviour of the codes under different scaling
conditions. The diagonal elements of the .atrix Sma are defined by

The original set of 54 examples is used in its original scale and also
with the problems modified as indicated by (4.2.) and (4.3.). This
gives a total of 162 problems.

We present in Table 4.1. all the scaling possibilities we could choose.
The entries in the table is the number we will uee to refer to the
corresponding scaling possibility.



Scaling the f1lllction
Never First Iteration Always

Scaling the variables
Never I 2 3

First iteration 4 5 6
Always 7 8 9

The scalings 7, 8 and 9 can not be applied to Broyden's method because
it does not satisfy property S for Df· I and Dx ~ 1 • With this
exception for Broyden's method we will try all the scaling possibilities
for all methods. When both scalings are used simultaneously, we will
present numerical results showing the two possibilities, i.e. first
scaling the variables, then the functions and viceversa.

We present our results, in terms of percentage of success, in Tables
4.2. and 4.3. for the mathematical problems and in Table 4.4. and 4.5.
for the chemical equilibrium problems.

Scaling possibilities
Method 2 3 4 5 6 7 8 9

Broyden 73 76 76 73 74 78
S12 73 80 81 73 83 84 74 81 54
S13 75 77 75 74 77 75 72 76 51
SI4 75 75 77 78 77 77 76 77 49

Table 4.2.: Percentage of success scaling first the variables and then
the functions (mathematical set of problems).

Scaling possibilities
Method 2 3 4 5 6 7 8 9

Broyden 73 76 76 73 76 78
SI2 73 80 81 73 82 81 74 80 59
SI3 75 77 75 74 77 77 72 75 52
S14 75 75 77 78 76 76 76 75 49

Table 4.3.: Percentage of success scaling first the functions and then
the variables (mathematical set of problems).
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Scaling possibilities

Method 1 2 3 4 5 6 7 8 9

Broyden 83 75 100 75 75 92
S12 67 SO 83 75 58 67 75 67 58
S13 67 75 83 75 83 92 67 75 75
S14 67 67 75 67 75 92 75 83 58

Table 4.4.: Percentage of success scaling first the varia bles and then
the functions (chemical equilibrium set of problems).

Scaling possibilities
Method 2 3 4 5 6 7 8 9

Broyden 83 75 100 75 75 92
S12 67 50 83 75 SO 67 75 SO 58
S13 67 75 83 75 75 83 67 75 67
SI4 67 67 75 67 58 83 75 67 58

Table 4.5. : Percentage of success scaling first the functions and then
the variables (chemical equilibrium set of problell!S).

The analysis of the numerical results shows that there is practically
not much difference with the order in which the scaling is performed.
For the chemical equilibrium set of problems the difference is
important but due to the small size of the set (12 problems> we can not
consider this difference significant.

Regarding the scaling policy to be chosen the numerical results show
that policies 5 and 6 are the best in general. In particular, policy 3
performs better for two methods in the chemical equilibrium set of
problems but again we should discard this as significant due to the
size of the set.

Regarding the amount of work involved in these scalings, it depends on
the implementation c~osen. We need to have available Bk for scaling
the functions and ~1 for scaling the variables. We will always have
available either Bk1 or a factorization of ~. In our i~lementation,
an LU factorization of Bk is available, thus for us O(n) operations
are needed for scaling the functions and 0(n3) for scaling the
variables.

We have presented internal scaling procedures which are simple to
implement and whose inclusion in an algorithm for solving systems of
algebraic non-linear equations produce a considerable improvement in
rob us tness.
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