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En esta comunicaci6n resuatmos brevemente nuestras investigacio-
nes sobre foraulaci6D de elementos de 1~m1ll& no-lineales.

EmpezalllOS definiendo los requerillientos que nos helllOsfijado pa-
ra desarrollar elementos de lim1ll& y presentando nuestro metodo para
satisfacer dichos requerimientos. Finalaente coaentamos sobre algu-
nos aspectos practicos de la impleaentaci6n de elementos de l~.ina.

In this communication we briefly review our research in the
field of general nonlinear shell elements formulation.

We begin by defining the requirements we have set upon our
development of shell elements, and presenting our approach to meet
those requirements. Finally we comment on some practical aspects of
the implementation of nonlinear shell elements.



The development of shell elements haa been a very active research
field for the last two decades (1). Many elements have been proposed,
and the advances have been impressive, but shell analysis is atill not
a field where. finite element code can be always used in a routine way.
In nonlinear analysis the need of expert use of the available shell
elements and the limitations of the available shell analysis capabili-
ties are even larger.

Therefore there is still need for research towards the develop -
ment of reliable analysis capabilities.

It is here important to point out that according to our experience
a very successful plate element can lead to an unsuccessful shell ele -
ment and in the same way a very successful linear shell element can lead
to an unsuccessful nonlinear shell element.

It is, therefore, of advantage to concentrate directly on the deve-
lopment of general nonlinear shell elements, which can afterwards be
specialized to obtain linear shell elements and plate elements.

The requirements we have set upon our development of shell elements
(2-7] are governed by our desire to render this elements widely applica-
ble in routine analyses (e.g. CAD situations). For this purpose an ele -
ment should ideally satisfy the following criteria (7):

Criterion 1: The element should be formulated as general as possible,
to be applicable in any plate/shell situation.

Criterion 2: The theoretical formulation of the element should be
strongly continuum mechanics based, with assumptions in the finite ele -
ment discretization that are mechanistically clear and well founded.

Criterion 3: The element should not contain any spurious zero energy
mode and should not lock under any condition. Also it should not contain
numerically adjusted factors.

Criterion 4: The element should be simple and inexpensive to use
with, for shell analyses, five or six engineering degrees of freedom
per node, and for plate analyses the three enginee~ing degrees of free-
dOli per node.

Condition 5: The predictive capability of the element should be
high and relatively insensitive to element distortions.

The criteria summarized above are the basis of a reliable and effec
tive shell element. We strongly believe that the reliability of an ele =
ment is of utmost concern and is, for example, much more important than
its cost/effectiveness.

To construct our new shell elements based on the mixed interpola -
tion of tensorial components (4-7), we have used our accumulated in-
5ight into the bebavior of elements. to satisfy the ele~ents require-
ments we stated above as closely as possible.



As • basic tool to test our developments we used Iron's patch
test [9] as a first filter, and afterwards we measured the order of
convergence of our ele.ents by solving some well-established problems.

For performing the patch tests. we subject the patch of elements
(see Figs. 4 and 9) to nodal point displacement constraints just su-
fficient to remove all physical rigid body modes. and to externally
applied boundary nodal point forces that correspond to constant boun-
dary stress conditions. The analysis yields the nodal point displace-
ments and the internal element stresses. The patch test is passed if
those predicted quantities correspond to the analytical solution.

For our 4-node element a variational formulation was proposed in
references [4-5], which corresponds to a particular application of the
Hu-Washizu variational principle [10]. Also a formal convergence study
was carried out for some specific cases in reference (11).

Related approaches are being investigated by Crisfield (13) and
Park and Stanley [14].

Perhaps the most general shell element now available is the degene
rate isoparametric shell element presented first for linear analysis -
by Ahmad. Irons and Zienkiewicz (15). Among others &aDD [16] and Bathe
and Bolourchi [3.11) developed tbe Ahmad element for nonlinear analysis.

This element presents the basic problem of shear locking [8,11]
and. in curved elements, also membrane locking [18].

To illustrate the locking phenomena ve viII consider beam elements
formulated by means of the Ahaad. Irons and Zienkievicz formulation
(Timoshenko beams) (17). It is important to point out that although the
beam examples can illustrate on the locking phenomena, the analysis of
locking in shell elements is much more involved. and also to formulate
shell elements that do not lock is much more involved than to formulate
beam elements that do not lock.

For the 2-node cantilever beam of Fig. I, the functional of the to
tal potential energy is:
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It is evident from (1) that 0{ -CO when J,/L-0 ,i.e.
when the beam element is very thin, the second term in the r.h.s. acts
as a penalty to impose the condition.

If we impose the rotations corresponding to a constant curvature
of the beam, the satisfaction of Eqn. (2) at the 2 Gauss integration
points on the beam axis, leads to,

The only way Eqs. ().a) can be satisfied is if
(locking) •

e.a
EM

filtH. Gj
(U~)--

(
whIch shows that for very thin elements,
~ /8',,(0)- 0 .

The locking problem appears because Y:l: 0 cannot be represe!!.
ted by the trial functions that span the finite element solution space.

For a circular cantilever beam, under a constant bending moment.
the functional of the total potential energy is:
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Figure 2.b Analysis of curved cantilever model
(Note that the figure is not to scale)



where L
the 4-
is normal

is the length of the circular beam measured along its axis,
direction is tangential to its axis and the" 'I"l- direction
to its axis.

Since 0( ••• /1. / It and
dent that when the beam becomes very
grals in the r.h.s. act as a penalty

0<.. ~ l!6k / " ; it is evi -
thin, the second and third inte
to impose the conditions

AJ In the 3-node iso-beam of Fig. 2, let us prescribe the rotations
o (i· 1,2,3) corresponding to the analytical solution and from

imposing Eqs. (5 ••) and (5.b) at the 3 Gauss integration points we
obtain a system of 6 equations with 4 unknowns .at; kc~3 j J.. /.~, 3
which cannot be solved, demonstrating the combined shear/membrane lock
ing.

It the shear locking is removed, by interpolating the transverse
shear strain through two points, we still have 5 equations and 4 00-

knowns, which cannot be solved, demonstrating the membrane locking.

In Fig.2.bwe show some results corresponding to the analysis of
a curved cantilever using the Ahmad shell element where the locking
effect is displayed [4,8].

It has been observed that when the finite element matrices are
calculated using either uniform reduced numerical integration or se-
lective reduced numerical integration [191, the locking problem is
removed, but most of the times spurious zero energy modes are intro-
duced at the element level (in shell elements).

This spurious zero energy modes 'are a not desirable characteris-
tic specially in nonlinear analysis [4].

Therefore, another way of overcoming the locking problem is ne-
cessary, a more controlled approach that does not introduce undesira-
ble features in the element.

3. OUR FOUR NODE ELEMENT BASED ON KIXED INTERPOLATION OF TENSORlAL
COMPONENTS

The element reviewed in this section has been preaented in detail
in references (4-7).



Our 4-node ele-ent is based on the Ahmad degenerate element, the
bending and membrane strains are calculated as usual from the displa-
cement interpolations, while the transverse shear strains are interp~
lated differently.

Related approaches were used by MacNeal
duyar [21) to develop linear plate elements
to develop a shell element. Figure J shows a
shell element and the nodal point degrees of
the transverse shear strain interpolations.

[20)and Hughes and Tez-
and Wempner et al [22)
schematic view of the
freedom, it also shows

In (6), to allow for non-flat elements we interpolate the cov.a-
riant components of the strain tensor, measured in the convected coor-
dinate systea of the ele.ent._ 1»1

In (6), the variables C(l A.B.C,» are the strain components at
points A. B. C. D directly eva~uated from the displacements interpola-
tions. In our notation the superscript :1)% always signifies "direct
interpolation from nodal point displacements and rotations". Therefore
these v.ariables are eliminated from Eq. (6). by expressing them in terms
of the nodal point degrees of freedom.

Using the convected coordinate system. the governing finite ele -
ment equations for time (load level) t + ~ are derived using the pri~
ciple of virtual work (171.

t+At 5 Ii
•

( hAt c..
d ,C."l

hAt 5ilwhere the ~ are the contravarll::~omponents of the 2nd.
Piola-Kirchhoff stress tensor and the _ ~i are the covariant
components of the Green-Lagrange strain tensor. the 1ntegrati~.~i2-
performed over the original volume. ·V • of the element and ,
is the total external virtual work •

• The presented element is a general nonlinear shell element (the
total lagrangian formulation [17) was used in its implementation).
with the only reAtrietion of small strains. Linear shell elements and
plate elements can be obtained as particular cases.
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• The element does not lock, does not contain spurious zero ener-
gy modes and is quite insensitive to elements distortions •

• Causs integration is used to evaluate the element matrices,
2 x 2 integration is used in the .id-surface of the element, for linear
elastic material 2 points are also used through the thickness, in plate
elements the integration through the thickness is analytically perform-
ed (6).

For nonlinear material IIOdels accuracy considerations may lead to
the use of IIOre integration points.

As we stated in section I, the first step in the verification of an
element is to show that the element satisfies the different patch tests
(membrane patch tests, bending patch tests, etc.).

In references [4-6) we presented numerical examples 5howing that
our element satisfies the patch tests shown in Fig. 4, being the mem-
brane patch tests obviously satisfied.

In reference [7) we presented an analytical proof that the bending
patch test is passed. The derivation of that analytical proof apart
from reinforcing our understanding of the element, a180 yields insight
on how to construct higher order elements that satisfy the patch test.

In references (4-6) we presented an organized numerical investiga-
tion of the element, showing that,

1. The element does not have spurious zero energy modes and passes
the patch test (the element is consistent (23).

II. The element can approximate the Kirchhoff-Love hypothesis for
thin shells (no locking).

III. The element has good convergence in the ususl benchmark problems,
and is quite insensitive to elements distortions.

V. The element has good predictive capabilities in some complicated
nonlinear problems.

In this communication we will only show a few results to illustrate
on the behavior of our element, HITC4 (for mixed interpolation of tenso-
rial ~omponents with i nodes) • . - - -

In f1g. ~ we present the analys1s of a s1mply supported c1rcular
plate (radius/thickness. 10), subjected to a constant temperature gra
dient through the thickness (linear analysis). The results of the MITC4
element are compared with the result. of the original degenerate element.
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In the figure €t represents the relation between the maximum
absolute value of principal stress predicted by the model and (eoc e)
(being 8 the temperature at the point and 0{ the thermal
expansion coefficient). In the analytical solution Et.O

This problem can be regarded as another way of presenting the
bending patch test.

In Fig. 6 we show the analysis of a plate with a hole in twisting.
the finite element solution is compared with the analytical solution
presented in [24].

In Fig. 7 we consider the large displacement elastoplastic collaR
se response of a shell. The loading on the shell is uniform vertical
pressure loading per unit of projected area on the horizontal plane.
The solution is compared with the response predicted by Kr!keland [25].
who solved for the response up to Wa. US. . To obtain the solution
we used the automatic load incrementation algorithm of ref. [26].

4. OUll EIGHT NODE. ELEMENT BASED ON THE KIXED INTERPOLATION OF
TENSOIlIAL COMPONENTS

The element reviewed in this section has been presented in detail
in ref. [7].

The concept used to develop the 4-node element opens various possi
bilities to develop effective higher-order curved shell elements. which
we expect to present better convergence behavior in the displacements
and stresses.

In studying various possible interpolations analytically and nume-
rically we identified that the 8-node element described below offers
IDUch promise. see Fig. 8. At each nodal point. the same kinematic des-
cription using director vectors and 5 degrees of freedom per node. as
for the Ahmad element [17J and the KITC4 element. is used. Hence. the
displacements are interpolated as usual [17}.

To avoid shear and membrane locking we interpolate the in-layer
strains and transverse shear strains independently - with appropriately
selected interpolations - ant tie the coefficients in these interpola-
tions to the strain components evaluated directly from the displacement
field. The i~layer strain interpolation yields the membrane and bending
action of the element. and the transverse shear strains interpolation
gives the transverse shear action. To formulate the general shell element
we interpolate the strain tensor expressed in terms of ~ovariant tensor
COlllponents liS and contravariant base vectors l' measured in
the convected system of the element.

In the following discussion we consider the element strain tensor
at any time during the response history. However, for the incremental
formulation we refer to [4.5. 17J and here we do not include the left
superscript denoting time (e.g. ~1 ! t~, ). Also. we use the nota-
tion it' al· j t.. 1.. ;, tt- I!J -
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It must be taken into account that the hypothesis of constant
thickness along the djrector vectors, on which the element is cons-
tructed, implies ett • 0 [4.5]_

The appropiate interpolation of the in-layer strains and of the
transverse shear strains to satisfy our shell element requireaents
as closely as possible is the key aspect of our formulation.

To have no spurious zero energy modes. pass the patch test and
avoid locking we use the following interpolations:

where the
lation functions
the variable T
ch ''is

,a._
~ are obtained fra. the usual serendipitic interpo-

of the 8-node element' [17. Fig. 5.5]. by replacing
with or/., and the variable .4 with A/a

£1 ..... r r rz. - cr~q"(bl - ( ,. • Q.'l,.)r~~
- i. = c.".r! l k + C.•h Q g, l.i +Cr", ~1+P! \.i- (lO)
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)].i ]1J1:1

+[lr'l~~~ + ~I~~]'~'] (jrr+3'Jr)I:1
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tensor COllPOnentSsuch that the bending patch test is passed (no shear
loeltitla); without itltroducitll spurious zero energy IIOdes•

• The presented el ••• nt is a aeneral nonlinear shell element (the
total laaranaian fo~lation (17) was used itl its ap1ementation). with
the only restriction of small strains. Linear shell elements and plate
el_nu can be obtaitled as particular ca_s •

•The el •••• t does DOt loclt, does not contain spurious zero energy
80des aDeiis quit. itl•••• itive to elements distortions.



• Gauss integration is used to evaluate the element ••trices.
3 x 3 integration is used in the aid-surface of the element. for
linear elastic •• terial 2 points are used through the thickness.
in plate elements the integration through the thickness can be ana
litically performed.

:For nonlinear ••terial models accuracy considerations aay
lead to the use of aore integration points.

As we did in our MITC4 element. we begin by verifying that our
8-node element pas••s the different patch tests.

However, relatively •••11 errors in displacements and stresses
arise vhen the eleaent sides are curved or vhen the aid-side nodes
are not centered.

In [7] we presented an organized numerical investigation of the
element, shoving that,

I. The element does not have spurious zero energy aodes and pa-
sses the patch test (UDder the above mentioned restrictions).

III. The element has sood convergence in the usual benc~rk pro-
blems, and is quite insensitive to element distortions.

In this communication ve viII only shov a few results to illustra-
te on the behavior of our element, KITC8 (for a!xed interpolation of
!oensorial~OJIIponentsvith ! noda). --

In Fig. 10 we show the analysia of a plate vith a hole in plane
stress to illustrate the difference in stress prediction between the
KITC8 element and the usual isoparaaetric plane stress ele.ent.

For the streas calculations no extrapolation or stress smoothin.
has been used.

The 8-node isopara•• tric elements yields s slightly aore accurate
solution; we aust reaelBber that this el.-ent passes the membrane patch
test for any geoaetricel configurat1oa.

In Fig. 11 we analyse again a curved cantilever. using non-distorted
Ind dlltorted MITe8 elements, shovine that vith our eleaent there 1s DO
locking present.
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In Fig. 12 we analyse the pinched cylinder problem (27) usiq
undistorted and distorted meshes.

The figure indicates the low sensitivity of the solution results
to some mesh distortions.

In Fig. 13 we analyse another benchmark problem, the Scordelis -
Lo shell (28).

Finally in Fig. 14 we analyse a cantilever in large deflections'
rotations.

We observe that when using only one element to .adel the cantile-
ver excellent results are obtained for up to about ninety degrees rota-
tions.

The standard Ahmad element with "full" integration (3 x 3 x 2),
which matches the ~act result in linear analysis, locks in the large
displacement solution.

In our formulation we use the five "natural" degrees of freedom
per node: three incremental displacements and two rotations of the node
director vector about two axis nor-al to it (3,17).

Many times, due to the intersection of shells at an angle, or the
intersection of beaas and shells (stiffened shells) it is necessary to
use six degrees of freedom at a node. We do that by transforming the
five original degrees of freedom into six, but without recurring to
the extended practice of adding on "artificial rotational spring" in
the direction of the rotation about the director vector.

We do not add the artificial spring because in nonlinear analysis,
according to our experience, it •• y result in artificial buckling loads
and may inhibit the effective use of an automatic load stepping algo -
ritblll.

This means that the computer program with the shell element should
allow a shell node to have either five or six degrees of freedom: the
five natural degrees of freedom are used when the shell .adel contains
only stiffness corresponding to these five degrees of freedom and no
globally aligned rotational boundary conditions are imposed; otherwise
the five degrees of freedom are transformed to the six global degrees
of freedom, so that the element can connect to other types of elements,
appropiate boundary conditions can be imposed and so on.

In this communication we began by stating our requirements for a
general nonlinear shell element to be a reliable tool for practical
engineering analysis.

Then we reviewed our approach to meet those requirements: ~
mixed interpolation of tensorial components, and we examined two ele
ments fomulated using this approach.
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The 4-node element (MITC4) i. effective and reliable and can be
used to analyse very complex sh411 situations.

The 8-node element (MITeS) ia also quite attractive. Further ana
lysis and testing of this element is still necessary. and some refi-
nements are desirable. specifically regarding the satisfaction of the
patch tests under any distorted configuration.

As _ stated above. _ constructed the KITCS element based OD

accumulated in.i~ht into element behavior and the patch test. It
would be very tvaluable to place the approach OIl more structured _-
thematical foundation.

~so analytical integration through the thickness should be stu-
died for general shell elements with linear elastic materials. to make
them more effective.

This researcn was carried out first at K.I.T. (Cambridge. Hass ••
U.S.A.) and afterwards at ADINA Engineering. Inc. (Watertown. Hass ••
U.S.A.). places where I experienced the joy of working with Prof. ~laus-
Jiirgen Bathe.
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