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RESUMEN

Se resuelve numéricamente por diferencias finitas la ecuacidén diferen-
cial aderivadas parciales no lineal que describe el flujounidimensional de
fluidos miscibles a través de un medio poroso con dispersidn y adsorcisSn del
tipo Langmuir.

Se determina el error local de truncamiento y se aplica el anilisis
de estabilidad de Von Neumann. A fin de eliminar la dispersién numérica o
la inestabilidad, se ajustan convenientemente los parimetros ponderados
y los incrementos de distancia y tiempo.

Las soluciones numéricas son verificadas con la solucién exacta para
el caso de adsorcidn lineal. Se presentan y discutem los resultados obte-
nidos para diferentes condiciones de borde.

Las soluciones numéricas son comparadas con los resultados experimen
tales de un barrido con polimeros publicados por Szabo{l]. Las diferencias
entre resultados experimentales y numéricos son minimizadas aplicando téc-
nicas de optimizacién para obtener los parimetros fisicos mids adecuados.

ABSTRACT

The partial differential nonlinear equation which describes the one-
dimensional flow of miscible fluids through porous media with dispersion
and Langmuir equilibrium adsorption is numerically solved by finite
differences. ’

Local truncation error is determined and von Neumann stability
analysis is applied. In order to eliminate either numerical dispersiom or
unstability, weighting parameters and distance and time increments are
conveniently adjusted.

Finite differences results are verified with the exact solution for
the linear adsorption case. They are obtained for different boundary
conditions, whose influence is discussed.

Numerical solutions are matched with experimental results from Szabo's
{1} polymer flooding tests. Differences between numerical and experimental
results are minimized applying optimization techniques to obtain the most
suitable physical parameters.
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INTRODUCTION

Multicomponent single-phase flow through porous wedia is found in
many technological problems of petroleum engineering, chemical engineer
ing and hydrology, such as: oil recovery miscible displacement
processes, ion exchange columns, fixed-bed chemical reactors, soil
physics and ground-water flow. In these problems the aixture of solute
and solvent is ruled by a diffusion type equation in which molecular
diffusivity is replaced by an axial dispersion coefficient. When
adsorption of solute onto porous media surface occurs, a source term
must be added to this equation. The source term is considered here to
be ruled by the Langmuir equilibrium isotherm.

Numerical solutions of the one-dimensional convection/dispersion/
Langmuir equilibrium adsorption equation have been previously presented
Gupta and Greenkorn {2] and Ramirez et al [3] solved the equation using
the Crank-Nicolson finite differences scheme. The first authors
considered a semi-infinite porous media. Ramirez et al [3] assumed a
finite-length model with a Neumann boundary condition at the outlet
face. With the last boundary condition Satter et al [4] solved the same
equation applying the Barakat-Clark [5] technigue.

The convection/dispersion/Langmuir type adsorption equation is
solved here with a more general finite differences method. The method,
which is an extension of Peaceman's [6] proposal, employs distance-
weighting and time-weighting parameters. Truncation error is determined
and stability is analyzed by applying von Neumann criterion. The most
appropiate numerical parameters are found, so as to avoid nuwerical
dispersion and oscillations.

Numerical solutions are obtained for every possible cowbination of
realistic boundary conditions. Comsequently, the procedure followed in
this paper is entirely general. Particular cases of this method are
solutions [2,3,6] previously published.

The influence of numerical parameters in the solution (distance-
and time-weighting parameters and distance and time increments) is
analyzed. Furthermore, the dependence of the solution on the different
boundary conditions is discussed.

In order to verify the numerical solutions, they are compared with
the exact solutiom for the linear adsorption case and with experimental
results.

Analytical solutions for linear adsorption have been presented by
Lapidus and Amundson (7). They have been reviewed by Coats and Smith
[8] for different boundary conditions. Our numerical solutions agree
satisfactorily with analytical solutions for linear adsorption.

Szabo [1} has presented experimental results of polymer adsorption
obtained by static and dynamic tests. Static measuyrements are adequate-
ly simulated by Langmuir equilibrium isotherm. From them, Langmuir
adsorption parameters can be determined.

The convection/dispersion/Langmuir equilibrium adsorption equation
has three physical parameters: two adsorption parameters and the
dispersion coefficient (or its equivalent, Péclet number). In order to
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compare numerical solutions with experimental results obtained from
dynauic tests, the three parameters are used. The two adsorption
parameters are estimated from static adsorption tests as it was
mentioned above. The remaining parameter, Péclet number, is obtained
by minimizing the differences between experimental and numerical
results. This is accomplished by applying the Fibonacci [9])
optimization technique.

Gupta and Greenkorn [10] have already determined dispersion
coefficients from dynamic tests using nitrate and phosphate anions,
with a similar procedure. However, they have applied a differemt
optimization technique.

Numerical solutions obtained here have also been compared with
rtesults from other experimental data. They are: displacement tests
done by Bae and Petrick [11] to estimate adsorption of petroleua
sulfonates in Berea cores and our own process [12] which employs radio
isotopes to measure concentration at several points inside a porous
media. However, for space reasons, comparison with these experiments
will be presented in a different paper.

MATHEMATICAL MODEL

The transport equation characterizing comvection, dispersion and
adsorption of a soluté flowing through a porous medimmcan be written as,

2
pll X _ X, Lp
X ax 3 K

1)

The most important assumptions in eq.(1) are:

1. The porous medium is homogeneous with constant cross section and
porosity.

2. Flow is isothermal and one-dimensional.

3. Intersticial velocity, v -obtained dividing Darcy velocity by
porosity~, is constant.

4, Dispersion of the solute occurs in the longitudinal directiomn.
Diffusion is negligible compared with dispersiom. Dispersion
coefficient, D, is independent of concentration and it is constant
at a fixed velocity and porous media.

5. There is no chemical reaction between the injected solution and the
rock or the fluid in-situ,

The last term in eq.(l) refers to the adsorption of solute onto
the rock. It is considered to be ruled by Langmuir equilibrium
adsorption:

.af )
QT w
a - (1;¢) o @' 3

where a is dimensionless, a' and b could be measured by static
adsorption experiments.

By differentiating eq.(2) and introducing it into eq.(l),
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where g{C) is,

glcy = 1 +.___.—I“
(1 + bC)

Considering a semi-infinite ﬁorous media, boundary conditjons to
solve eq.(4) are,

clo,z) =€, , o0
(5
Clx,2} —» 0 as x—w =, 0

wvhere injection concentration C is kept constant at inlet. A second
set of boundary conditions arises by the requirement that there should
be no loss of solute from the bed through the inlet plane,

aC
Ww( s yC « D = , at l’o, bo
[ X (6)

Cix,t) —»0 a8 x —» =, 0

Eqs.(5) and (6) are adequate as long as solutions are insensitive
to the core length.

On the other hand, for a finite porous media, boundary conditions
are imposed by the conservation of mass flux of solute at inlet and
outlet,

. € .
v = v - Do Lat xe0, B0

" €))
VC'DE=VC

s ,at x=L, &0

where exit concentration CA could vary with time, C6= clt).

Several authors [4,13,14] consider that eq.(7) may be simplified
as

W, - -v-gg L at x=0, >0
"

xl t 3
S0, atxsl, &0

A last possible combination of boundary conditions is,

c(o,2) - Co , DO
(8)

Initial condition is always,

Cix,0! = 0 9
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Defining dimensionless variables

y = % T = g% (10)
vhere 1 is the number of porous volumes injected, and Péclet number is
vl
PC = —v (ll)
eq.(2) is rewritten as,
N gicy X (12)
Peu? o at

The boundary conditions (5), (6), (7') and (8) are transformed
into dimensionless form, by introducing eqs.(10) and (11).

ANALYTICAL SOLUTIONS

Transport equation (12), without adsorption -g{Cl=1-, is called
here the convection/dispersion equation. Its complete analytical
solutions -C(y,1)~ for boundary conditions (5) and (6) have been review
ed by Coats and Smith [8]. The solution Clt] at y=! for boundary
condition (7') appears in the same paper.

Analytical solutions can also be deduced for the convection/
dispersion/adsorption equation, when adsorption is linear,

b=0 glC} =1 +a
since, with the following replacement of variables,
g« 21 ¢ al Pt - P*g . a3y
eq.(12) is transformed into the convection/dispersion equation
1 oafe | ax (14)
el ' m

NUMERICAL SOLUTIONS

Transport equation (12) is numerically solved by finite
differences using distance-weighting and time-weighting parameters. For
the convection/dispersion equation (14), local truncation error is
determined and stability is analyzed by applying von Neumann criterion
Peaceman's [6] guidelines have been followed with some modifications
which will be mentioned below. The convection/dispersion/Langmuir type
adsorption equation (12) is nonlinear. Therefore an iterative schenme
has been applied.

Convection/dispersion equation

The difference form of first derivative with respect to dimension
less distance is
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where distance-weighting parameter 9=0, (.50r 1. corresponds to down-
stream, midpoint and upstream differences, respectively.

The second derivative is approximated by its second-difference
quotient,

2 .n n n 2 n
TG TP G G (16)
" sy’ sy

The first derivative with respect to dimensionless time is,

m n+l n m
/I S BT an
T

.29 AT

nw

with m = (1-0)n + ©(n+1}). The dimensionless time-weighting parameter
0=0, 0.5 or 1.0 corresponds to explicit, centered and implicit schemes
respectively.

By introducing egqs.(15), (16) and (17) into the dimensionless
convection/dispersion equation, and time-weighting parameters into the
first and second differences with respect to distance, the convection/
dispersion equation can be expressed as

7 ! 2 . n+1 n n
Lmyci' (l-e_)Ay Y -GAyCi + (1-0) AyCL ’ATC‘; (18)
Pc Ayz Ay L

where €= 0, 0.5 or 1.0 is the time-weighting parameter for the second
difference. The introduction of this parameter, €, is a modification
of Peaceman's [6] origimal proposal.

Local truncatiom error has been deduced in Appendix A. And it is
Wc 2 2
e, ={ay (w-4) - a2 (8-4))— + Olay") + 0lazt") , (19)
Yy
the factor which multiplies the second derivative is called numerical

dispersion, [6]

Dm = Ay (w-3) +A2 {e-§) (20)

Ih eq.(19) the parameter ¢ does not appear because the derivatives
of order greater than two are neglected.

Unconditional stability has been deduced according to von Neumann
criterion in Appendix 5. It is obtained with every possible combination
of w, © and ¢ taking values 0.5 or 1.0.
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Convection/dispersion/Langmuir type adsorption equation

The complete eq.(12), vhich is nonlinear, can be approximated by a
difference linear fora similar to eq.(18). Iteratively it is solved as,

1 cag Cz"'h" + (1-¢) Aé Cﬁ oAy Cﬁ"'k” + (1-8} Ay C:

P, . 53 Ay
n+l b+l
. gk € - < (1)
)
vhere,
P g(ec:""‘ + 11-8)C%) ' (22)

and k is the iteration parameter.

Numerical solutions for the various boundary conditions (5), (6),
(7') and (8) are found with this method. They have also beemn obtained
and analyzed for different combinations of weighting parameters, and
time and space increments.

RESULTS AND DISCUSSION
Comparison between analytical and numerical solutions

For the convection/dispersion equation and boundary conditions
given by eq.(5), comparison between numerical and analytical solutions
has been analyzed by Peaceman [6].

For the convection/dispersion/adsorption equation considering
linear adsorption, numerical solutiors of eq.(21) for different sets of
boundary conditions are compared with analytical solutions of eq.(14).

In order to have solutions without numerical dispersion, weighting
parameters are chosen as: W= 0 = ¢ = 0.5. These values minimize the
truncation error. Distance and time increments &y = At = 0.0] are
selected to avoid oscillations of dimensionless concentration curves.

Results, C{7)/C , at different points inside the porous media,
appear in Figs. 1A, Yh, 1C, for P_ = 90., and different values of a.
The case & = 0. corresponds to thé comvection/dispersion equation.

C(t}/C_ profiles are shown: in Fig.lA, at outlet Y= 1 for boundary
conditions given by eq.(8); in Fig.lh, at midpoint ¢ = 0.5, for
boundary conditions given by eq.(5); and in Fig.lC, at inlet y =0, for
boundary conditions given by eq.(6).

Numerical and analytical solutions agree satisfactorily.

Influence of boundary conditions

The influence of boundary conditions given by eqs.(5), (6), (7')
and (8) can be seen in Fig.2. The parameters, Pe, a and b correspond to
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Fig.2: Effect of boundary conditions. Dimensionless concentration as a function of

dimensionless distance:(A) and (B).Dimensionless concentratiom as s function
of porous volumes injected: (C)and (D) .At inlet and earlier times: (A) and (C).
At outlet and later times:(B) and (D). Pe=59.07; 2=0.515; b=7.92
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one run of Szabo's [1] experimental data which will be described later
on.

Figs. 2A and 2C show the effect of inlet boundary conditions. When
the solute mass flux is kept constant at inlet, injected comcentratiomn
C_ is not attained instantaneously (Fig. 2C). Therefore, dimensionless
concentration profiles as a function of distance, are delayed (Fig. 24).

Fig. 2 and 2D show the influence of the four boundary conditions
at outlet. The conservation of mass solute at inlet delays the
concentration profiles. This effect is partly compensated when consider
ing a finite porous media whose derivative of concentration with respect
to distance equals zero at outlet. Because of that, three curves
corresponding respectively to boundary conditions (8), (5) (which
coincides with (7')), and (6) appear in Fig. 2D. Eq.(8) gives the
concentration distribution which travels fastest and Eq.(6) gives the
slowest.

In order to represent the boundary condition at infinity, y = 5.0
was chosen.

1.0

t=0.8

a=1l,severalb

Dimensionless Concentration, C/Co

~—-~b=1,several a

0.0 "
0.0 0.5 1.0

Dimensionless Distance , y

Fig. 3. Effect of adsorption parameters 4 and b. Dimensionless
concentration as a function of dimensionless distance.
Pe = 100. , T = 0.8.

Influence of adsorption parameters

The influcnce of adsorption parameters is represented in Fig. 3.
Dimensionless concentration distributions as a function of distance from
inlet are delayed by adsorption. Consequently they go slower as the
parameter 4 increases and as the parameter b decreases.
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A and C show the influence of weighting paraneters (s, e)

and numerical dispersion.

B and Dshow the influence of distance and time increments (Ay,Az).
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Influence of numerical parameters

in the linear adsorption case, the lovest truncation error is
obtained with € = w = © = 0.5. Furthermore, concentration profiles do
not show oscillations with time and space increments Ay =271 '= 0.01.
Thus, this combination of parameters is considered to give the best
numerical solution for the convection/dispersion/Langmuir type
adsorption equatiom (12).

The effect of weighting parameters ¢, w and © has been analyzed.
The modification of ¢ = 0.5 or ¢ = 1.0 does not produce noteworthy
differences. Furthermore, zero values of either w, © or ¢ create

conditional stability. Therefore, every combination of w,9 takine values
0.5 or 1. has been studied.

Figs. 4A, 4B show dimensionless concentration profiles for (w,0) =
(0.5,0.5) and (w,0) = (1.0,1.0). The last combination gives the highest
numerical dispersion in the linear adsorption case: Dpum = 0.01.

w,9) = (0.5,1.0) and (w,0) = (1.0,0.5) are not drawn because they lie
between the two profiles already shown. For these combinations 0 =
0.005 in the linear adsorption case. However, (w,0) = (1.0,0.5) p'xygguces
lesser smearing than the other, consequently it lies closer to the
(w,0) = (0.5,0.5) curve.

The effect already described can be shown in Fig. 4A for C/CO vs.
¥, at 0.5 porous volumes injected. It can also be seen in Fig. & for
C/Co vs. 1, at dimensionless distance corresponding to inlet, midpoint
and outlet. At inlet, all the solutions agree.

Moreover, the influence of time and space increments @Gy,51) has
been studied. Again the combination ¢ = © = w = 0.5 and81 = b4y = 0.01
is taken as the best solutijon.

Dimensionless concentration profiles as a function of dimension-
less distance for 0.5 porous volumes injected are presented in Fig. 4cC
The combination (ByAT) = (0.1,0.1) shows oscillations, with overshoot
occurring behind the moving front. The oscillations are similar to
those found by Peaceman [6] for the convection/dispersion case.

The combinations (AyAT) = (0.1,0.01) and Qy,A1) = (0.01,0.1)
also produce numerical solutions with some oscillations. The first one
creates smaller oscillations than the last one. This effect can also be
seen in Fig. 4D, where C/Co vs. 1 has been drawn for inlet, midpoint
and outlet. At inlet, the pair (Ay A1) = (0.01,0.1) shows noticeable
oscillations, similar to those produced by Qy,At) = (0.1,0.1).
However, the combination (AyA1t) = (0.1,0.01) has better behaviour.

One might expect that if A1 tends to zero, it should produce
numerical solutions without oscillations. However, oscillations appear
ed with the pair Qy,At1) = (0.1,0.001). Consequently, both distance and
time increments should be carefully chosen.

EXPERIMENTAL VERIFICATION

Polymer flooding

Szabo [1] performed single flow experiments in unconsolidated
sands using C''-tagged partially hydrolyzed polyacrylamide and a
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commercial product, Calgon Polymer 454. The experiments have been
carried out using sandpacks completelly saturated with brine, at a
constant flow rate (6 ft/day). Produced and adsorbed polymer were
measured using radioactivity.

The same author also performed static adsorption tests. Results
of polymer adsorption in & silica sand as a function of equilibrium
polymer concentration are shown in Fig.(2) of his paper [1]. The static
adsorption isotherm corresponding to brine is well described by
Langmuir's equation (3). We have obtained

a = 0.515 . b = 0.0132 (ppm) ! (23)

by handling eq.(3), with CR and C expressed in ppm of polymer in brine

1.0 §- 49’,__9h__ﬁ? °
/0

experimental values

o K ¢ Co
(md) (X)) (ppm)

+ 1200 43.8 600
A 1200 43.8 300
Q@ 173 45.9 300

v= 6 ft/day
a= 0.515 b= 0.0132

¢

— numerical solution
0.6 I Pe= 93,14

Dimensionless Concentration, C/Co

0.6 1.0 1.4 1.8
Porous Volumes Injected,t

Fig. 5. Comparison between numerical solution and
experimental results from Szabo {1]. Effluent
polymer concentration as a function of the number of
porous volumes injected for three different rums.

Fig. 5 reproduces Szabo's results of effluent polymer
concentrations during polymer flow through sandpacks previously
saturated with 100-percent brine, for three runs, all of them at
approximately the sawe intersticial velocity. The first and the second
have been performed on the highest permeability (1200 md) sand. The
first at Co = 600 ppm and the second at Co = 300 ppm. The third has
been carried out in a lower permeability sand (173 wmd) at C, = 300 ppm

1f the three runs were represented in terms of dimensionless
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concentration, C/Co, the measured values should coincide. This is
because polymer concentration in effluent ought not to depend on
permeability. In fact, their differences are not greater than
experimental errors. Notice that the effluent concentration should not
be higher than the injected concentration. Therefore, C/Co values
higher than ome could be caused either by a reversible hydrodynamic
retention, or by measurement errors. Anyway, they cannot be simulated
by this model.

Experimental results are simulated by eq.(12) and boundary
conditions are given by eq.( 6) using the adsorption parameters written
above. Numerical solution can be seen in Fig. 5. Péclet number was
obtained by Fibonacci [9] optimization technique for the purpose of
minimizing differences between the experimental measurements (from the
three runs) and the numerical solution. A good match is obtained.

CONCLUSIONS

Numerical solutions of the partial differential nonlinear equation
representing one-dimensional flow of miscible fluids through porous
media with dispersion and Langmuir equilibrium adsorption are obtained.
The procedure is entirely general. It is based on a finite-differences
scheme which uses time-weighting and distance-weighting parameters.

The best combination of these parameters is (0.5,0.5,0.5) as it
provides a well-behaved solution without oscillations, it is un-
conditionally stable, without numerical dispersion for the linear
adsorption case, and it shows the best agreement with experimental
results. This combination of parameters corresponds to the Crank-
Nicolson method.

Four boundary conditions have been studied. The differences among
them are noteworthy only at narrow ranges of time and space: at inlet
for very early times and at outlet when the number of porous volumes
injected is around 1.0 + 0.4; and it increases if the adsorption
becomes greater. In most cases their differences are within the range
of experimental errors.

The proposed numerical solution shows excellent agreement with
the exact solution for the linear adsorption case. It also coincides
satisfactorily with experimental resultsobtained from different runs of
polymer flooding tests.

A further application of the numerical solution is to determine
the dispersion coefficient from displacement laboratory experiments
when there is adsorption. The most representative dispersion parameter
of a porous medium is obtained, when adsorption parameters are known, by
minimizing the differences between experimental and numerical results
applying the Fibonacci optimization method.

NOMENCLATURE !
a, a', b : parameters for Langmuir agsorption model,
C : solute concentration {m/L’}.
Co : inlet concentration of solute {m/L3).
CR : amount of solute adsorbed/volume of fluid [m/L3).
C4 : exit concentration of solute [m/L”]. 2
0" : longitudinal dispersion coefficient (L /el




(1]

(2]

(3}

[4]

15]

(6]
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Dnum : numerical dispersion [Lzlt].

¢¢ : local truncation error.

'] : derivative of the adsorption with respect to

L : length of porous mediuam [L}.

P; : dimensionless dispersion coefficient, defined by eq.(l1l).

Pe : dimensionless dispersion coefficient, defined by eq.(13).
: time [t} .

v : average intersticial velocity [L/t].

X : distance (L}.

Y : dimensionless distance, defined by eq.(10).

Y : dimensionless distance, defined by eq.(13).

Greek letters

At : increment of T -

Ay : increment of ¥ .

: time-weighting parameter.

: time-weighting parameter.

g. ¢ rock demsity [m/L>).

: dimensionless time.

: porosity, X .

: distance~weighting parameter.

EeADONM

Subscripts and superscripts

4 : index in y-direction.

R : iteration count.

L] : fractional index in T-direction, =(1-0)n+3(n+l).
n : index in T-direction.
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APPENDIX A

Truncation Error Anaiysis

In order to analyze the truncation error associated with the

linear difference eq.(18), we can expand Clytay,t) and Cly,t+a1} in
Taylor series,

" n 4; a 2'c] A_ﬁascz 4 (A.1)
Ciar =€t 2y %T*ea—s—""“’
3 Z.m
X" < 3°C
CEH -cz ° “+%—A12—7¢olm) (A.2)
n
where m = [1-8]n + oln+1)
g = -8, 1-0
©r 0., 0.5, 1.
Ci = Cly,t,)
yé'LAy,();i.:I

1. s rAT ; n0

3

From (A.1) and (A.2) we obtain the expressions:
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2 n n " n 2.n
& C. C. - 2C, + C. 3cC. p
'y {i o 41 ; 441 ; ' O‘Ayz, (A.3)
Ay Ay
2
ach vloen e *c"
—__IA:' x -_—_LAT 4 = _% + (‘-Q]AT 3: + 0(A12) » (A'l‘)
2.n
a.c%  -w v (e-1)C" ¢ (1Ot " 2"
¥4, 4-1 4 4+ L, owz) + {-wlay __"f; (A.5)
Ay Ay ¥y
a8 a at]
et P 2" ,
: s : +0AT = L, OlAtz) " (A.6)
y 3y dy ot '
with o =1, 2

(8,8) = (n,-8), (n+1,1-9)

Details to deduce (A.3), (A.4), (A.5) and (A.6) can be seen in
Peaceman {6] (chapter §).

It should be pointed out that, if C ¢ Ck'L means that the
derivatives of C with respect to Y and 1 are continuous up to ord:r! k
and £ respectively, then in the present problem, we require C ¢ C4:Z in
order to define the truncation error.

The local truncation error, e¢,, can be defined by the difference
operator applied to the exact solu%ion of the partial differential
equation at the point (yi,tm). Then,

2.n+1 Z.n n+l n n
CtgeAyC“- + (l-c)ay CL_“yCL' + H-G)AHCL-AxC'L (a.7)
PcAy Ay At

By substituting eqs.(A.3), (A.4), (A.5) and (A.6) with appropriate
values of a, 3 and 8, we can write,

o Ar le-o) a2c™ oui) azcz aZC:.' 2 ’
1= —————— +aylw-§ —7* (e-!)m——,*om ) +0by°) (A.8)
Pc Y ot o T

Differentiation of eq.(14) with respect to t gives,

3 2 Im
LaC: aC:._' A"

Po wPae s aet

while differentiation with respect to y yields
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2 2
| e de i
e a? Wt wnm
so that,
3.m 3 m 2.m
’z"’z:’ A (A.10)
7l P alo Te w0 o

S 1 A S
e —1 3
7

¥y x e ¥ 3y

Thus, substitution of egs.(A.10) and (A.11) into eq.(A.8) gives the
final form for the local truncation error

4 3
At 7™ At P

e, = —— le-i}l—F + 5 [ li-e) + (i-0) —3
P, ¥ e[ ] w

(A.11)

: 2™ ., .,
daylw-1) + te-1lax _a;‘i i olagh) » o<y (A.12)

It is immediately obvious that we must choose w, ¢ and © equal to
0.5 in order to obtain the minimum local truncation error.

But, if the derivatives of third and fourth order are neglected,
€, does not depend on €, and the choice of ionvenien w, 0,4y and A1
gives a local truncation error that is Olay") + COla<”).

The factor of the derivative of second order is called Dnum'

LY {w-1) +a1 (6-§)

APPENDIX B
Stability

We proceed with a von Neumann stability analysis of eq.(18). We
assume that the homogeneous difference equation has a solution of the
form

n n 48§ .
Ei=po ¢ 1 B *POY ; L (B.1)

The von Neumanm criterion for stabflity states that the modulus of
the amplification factor must be less than or equal to one, that is

| -2 : | < (8.2)
" s 7 .
I o |
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AT At
Letting a = s b= —
AgZPc Ay (B.3)

and upon substituting eqs.(B.1) and (B.3) into eq.(18), we ﬁave,
a [cAy‘(o""e‘“)*(l—s)Ayz(p"e‘B’)] - b [eny(p""e“’)*(r-e)Ay(p"c“B’)]s

pn*leLBj _ p"z‘BJ

= (B.4)
After cancelling the common factor QLBI , and making use of the
identities
B g4 . Lsenta
PR -2Aen2a + 24 sena cosa; o = 8/
we can obtain the modulus of the amplification factor. The condition
(B.2) leads to
dal(1-2¢c)senta + b11-20)sen’alzw-112 + b2 (1-26)cos’a - bl2w-1) +
+ 4ab sen’al2w-1){1-0-¢) 5 2a (8.5)

So as to analyze (B.5) we must combine all the possible values of
weighting parameters (0., 0.5 and 1.). From the 27 possible cowbinatijons,
only 8 give unconditional stability.They are those which do not contain
w, O or £ equal to O.. .

Two examples will show how to analyze (B.5):
Example 1 : w = 0.5 0=1. ¢ = 0.5

62 eos?

(B.S5) results cosda s Z2a

since 4@ > 0, w, © and € do not influence on stability. Thus, we have
unconditional stability. But Dnum = Aat1/? , leads to

cp® Obyl) v Ok

that it is not the optimum local truncation error.

Example 2 : w = 0.5 e = 0.5 ‘e = 0.
(B.5) results 4 a2 Acnzu 5 2a
then a s 4
or A1 . Pe
il 7t
ghus, :e h:ve conditional stability. However, the weighting factors give
= 0 an

nuwn
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€ ® O(Ayzl + otmz)

The examples 1 and 2 suggest that the weighting factors w, © and
€ should be carefully selécted, in order to obtain unconditional
stability and the optimum local truncation error.




