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llESUMPl
Se resuelve nUlSirlcamente por diferencias finitas 1. ec:uac:i6n diferea-

cial a derivad.s p.rciales no linesl que describe el flujo unidimenaiooal de
fluidos aiscibles. traves de un media poroso con diapersi6n., adsorci6n del
tipo Langmuir.

Se deterain. el error local de truncaaieoto ., se aplica el anilisis
de estabilidad de Van Neumann. A fin de eliminar la dispersi6n numerica a
la inestabilidad, Be ajustan convenientemente los parimetros ponderados
y 105 incrementos de distancia y tiempo.

Las soluciones numericas son verificadas con la soluci6n exacta para
e.l caso de adsorc!On lineal.. Se presentan y discutea los resultados obte-
nidos para diferentes condiciones de borde.

Las soluciones nUlSiricas son coaparadas con los resultados experimen
tales de un barrido con pollmeros publicados pol' Szabo(1). Las diferencias
entre resultados experimentales y numericos son minimizadas aplicando tec-
~icas de optimizacion para obtener los parametros f!sicos .as adec:usdos.

ABSTRACT
The partial differential nonlinear equation which describes the one-

dimensional flow of miscible fluids through porous aedia with dispersion
and Langmuir equilibriua adsorption is nuaerically solved by finite
dif ferences.

Local truncation error is determined and von Neumann stability
analysis is applied. In order to eliminate either numerical dispersion or
unstability, weighting parameters and distance and time increments are
conveniently adjusted.

Finite differences results are verified with the exact solution for
the linear adsorption case. They are obtained for different boundary
conditions, whose influence is discussed.

Numerical solutions are matched with experimental results from Szabds
(1) polymer flooding tests. Differences between numerical and experimental
results are minimized applying optimization techniques to obtain the most
suitable physical parameters.



Hulticomponent single-phase flow through porous media is found in
••ny technological proble-s of petroleum engineering, chemical engineer
ing and hydrology, such as: oil recovery miscible displace.ent -
processes, ion exchange columns, fixed-bed chemical reactors, soil
physics and ground-water flow. In these problems the mixture of solute
and solvent is ruled by a diffusion type equation in which molecular
diffusivity is replaced by an axial dispersion coefficient. When
adsorption of solute onto porous media surface occurs, a source term
8USt be added to this equation. The source tera is considered here to
be ruled by the Langmuir equilibrium isothera.

Nu.erical solutions of the one-d1aena1onal convection/dispersion/
Langmuir equilibrium adsorption equation haye been previously presented
Gupta andCreenkorn (2] and Ra.trez et al (3] solved the equation using
the Crank-Nicolson finite differences scheme. The first authors
considered a semi-infinite porous media. Ramirez et al [3J assumed a
finite-length model with a Neumann boundary condition at the outlet
face. With the last boundary condition Satter et al (4] solved the same
equation applying the Barakat-Clark [5] technique.

The convection/dispersion/Langmuir type adsorption equation is
solved here with a more general finite differences .ethod. The method,
which is an extension of Peaceman's [6J proposal, employs distance-
weighting and time-weighting parameters. Truncation error is determined
and stability is analyzed by applying von Neumann criterion. The most
appropiate nu.erical para.eters are found, so as to avoid numerical
dispersion and oscillations.

Numerical solutions are obtained for every possible coabination of
realistic boundary conditions. Consequently, the procedure followed in
this paper is entirely general. Particular cases of this method are
solutions [2,3,6] previously published.

The influence of numerical parameters in the solution (distance-
and time-weighting parameters and distance and time increments) is
analyzed. Furthermore, the dependence of the solution on the different
boundary conditions is discussed.

In order to verify the numerical solutions, they are compared with
the exact solution for the linear adsorption case and with experimental
results.

Analytical solutions for linear adsorption have been presented by
Lapidus and Amundson (7]. They have been reviewed by Coats and Smith
[8J for different boundary conditions. Our numerical solutions agree
satisfactorily with analytical solutions for linear adsorption.

Szabo [lJ has presented eXperimental results of poly.er adsorption
obtained by static and dynamic tests. Static meas~rements are adequate-
ly Itlullted by Laftl.uir equilibrium ilothera. From them, Langmuir
adsorption parameters can be determined.

The convection/dispersion/Langmuir equilibrium adsorption equation
has three physical parameters: two adsorption parameters and the
dispersion coefficient (or its equivalent, Peclet number). In order to



c~are numerical solutions with experimental results obtained frea
dynaYic tests, the three parameters are used. The two adsorption
parameters are estimated from static adsorption tests as it was
mentioned above. The remaining parameter, Peclet number, is obtained
by miniaizing the differences between experimental and numerical
results. Tnis is accomplished by applying the Fibonacci (9)
optimization technique.

Cupta and Greenkorn (10) have already detenained diapersiOil
coefficients from dynaaic tests using nitrate and phosphate aniona.
with a similar procedure. However, they have applied a different
optiaization technique.

Numerical solutions obtained here have also been ca.pared with
results from other experimental data. They are: displacement tests
done by Bae and Petrick [11) to estimate adsorption of petroleua
sulfonates in Berea cores and our own process (12) which employs radio
isotopes to measure concentration at several points inside a porous -
media. However, for space reasons, comparison with these experiments
will be presented in a different paper.

The transport equation characterizing convection, dispersion and
adsorption of a solut~ flowing through a porous medhmcan be written ~

The IDOst important assUlllptions in eq. (1) are:
1. The porous medium is homogeneous with constant cross section and

porosity.
2. Flow is isothermal and one-dimensional.
3. Intersticial velocity, v -obtained dividing Darcy velocity by

porosity-, is constant.
4. Dispersion of the-solute occurs in the longitudinal direction.

Diffusion is negligible compared with dispersion. Dispersion
coefficient, V, is independent of concentration and it is constant
at a fixed velocity and porous media.

5. There is no chemical reaction between the injected solution and the
rock or the fluid in-situ.

The last term in eq.(I) refers to the adsorption of solute onto
the rock. It is considered to be ruled by Langmuir equilibrium
adsorption:

where a is dimensionless, 4' and b could be measured by static
adsorption experiments.
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Considering a aemi-infinite porous media, boundary eonditions to
solve eq.(4) are,

CIO,.t1 - Co

C(x,.tl _ 0

where injection concentration Co is kept constant at inlet. A second
set of boundary conditions arises by the requirement that there should
be no loss of solute from the bed through the inlet plane,

IICo = IIC - V deax

Eqs.(5) and (6) are adequate as long as solutions are insensitive
to the core length.

On the other hand, for a finite porous media, boundary conditions
are imposed by the conservation of mass flux of solute at inlet and
outlet,

vC =vC_VilC ,a.t x-O, bO
0 ax (7)

vC-Vde=vC ,a.t x·L, bOax .\

where exit concentration C.\ could vary with time, C.\= Cl.t).
Several authors [4,13,14] consider that eq.(7) may be simplified

vC
o

= vC - V atax

C (0 ,.tl • Co • bO

aC = D a.t x=L, bDax •
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eq.(2) is rewritten as,
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The boundary conditions (5), (6), (7') and (8) are transformed
into dimensionless form, by introducing eqs.(10) and (11).

Transport equation (12), without adsorption -gIC)al-, is called
here the convection/dispersion equation. Its complete analytical
solutions -Cllf,TI- for boundary conditions (5) and (6) have been review
ed by Coats and Smith [8]. The solution CITI at val for boundary
condition (7') appears in the same paper.

Analytical solutions can also be deduced for the convection/
dispersion/adsorption equation, when adsorption is linear,

since, with the following
, xl I + a}

If a L

replacement of variables,
pp' _ e

e - 17 + a]

Transport equation (12) is numerically solved by finite
differences using distance-weighting and time-weighting parameters. For
the convection/dispersion equation (14), local truncation error is
determined and stability is analyzed by applying von Neumann criterion
Peaceman's [6] guidelines have been followed with some modifications
which will be men~ioned below. The convection/dispersion/Langmuir type
adsorption equation (12) is nonlinear. Therefore an iterative scheme
has been applied.

The difference form of first derivative with respect to dimensio~
less distance is



-w C1_1 + (2w-l) C1 + (J4#) c1+1;;----------------!:dJ

where distance-weighting parameter 0000.. u.5 or 1. corresponds to down-
stream, midpoint and u?stream differences, respectively.

The second derivative is approximated by its second-difference
quotient,

with m s (l-eln + e(n+ll. The diMensionless time-weighting parameter
ElzO, 0.5 or 1.0 corres?onds to explicit, centered and implicit scheQes
respectively.

By introducing eqs.(15), (16) and (17) into the dimensionless
convection/dispersion equatio~ and time-weighting parameters into the
first and second differences with respect to distance, the convection/
dispersion equation can be expressed as

2 n+/
£A C.+(I-d!I A-

tp~ t:. fj

El 6. C~+ I + (1-13) 6. C~!I A- Y .(.
6.1J

where E- 0, 0.5 or 1.0 is the time-weighting parameter for the second
difference. The introduction of this parameter, E, is a modification
of Peaceman's [6] original proposal.

the factor which multiplies the second derivative is called numerical
dispersion, (6)

Ib eq.(19) the paraaeter E does not appear because the derivatives
of order greater than two are neglected.

unconditional Itability has been deduced accord1ng to yon Neu••nn
criterion in Appendix 8. It is obtained with every possible combination
of w, e ADd E taking values 0.5 or 1.0.



The cOlaplete eq. (12), which is Don linear , can be approxt.ated by a
difference linear fora si.ilar to eq.(18). Iteratively it is solved as,

gm,R a 9Iec~+I,R + II-el~1
.(. "

and R is the iteration para.eter.

Nu.erical solutions for the various boundary conditions (5), (6),
(7') and (8) are found with this aethod. They have also been obtained
and analyzed for different combinations of weighting para.eters, and
time and space increments.

For the convection/dispersion equation and boundary conditions
given by eq.(5), comparison between numerical and analytical solutions
has been analyzed by Peaceman 16].

For the" convection/dispersion/adsorption equation considering
linear adsorption, numerlcal solutiomof eq.(21) for different sets of
boundary conditions are compared with analytical solutions of eq.(14).

In order to have solutions without numerical dispersion, weighting
parameters are chosen as: W - e - £ • 0.5. These values minimi&e the
truncation error. Distance and time increments ~y - 6t - 0.01 are
selected to avoid oscillations of dimensionless con~entration curves.

Results, C(t)/C , at different points inside the porous .edia,
appear in Figs. lA, ~h, Ie, for p~ • 90., and different values of ~.
The case 4 • O. corresponds to the convection/dispersion equation.

C(tl/Co profiles are shown: in Fig.lA, at outlety- 1 for boundary
conditions given by eq.(8); in Fig.lb, at midpoint y - 0.5, for
boundary conditions given by eq.(5); and in Fig.le, at inlet y - 0, for
boundary conditions given by eq.(6).

The influence of boundary conditions given by eqs.(5), (6), (7')
and (8) can be seen in Fig.2. The paraaeters, p~, ~ and b correspond to
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one run of Szabo's [1) experimental data which will be described later
on.

Figs. 2A and 2C show the effect of inlet boundary conditions. When
the solute .ass flux is kept constant at inlet, injected concentration
Co is not attained instantaneously (Fig. 2C). Therefore, dimensionless
concentration profiles as a function of dist~nce, are delayed (Fig. 2~

Fig. 2S and 2n show the influence of the four boundary conditions
at outlet. The conservation of mass solute at inlet delays the
concentration profiles. This effect is partly compensated when consider
inga finite porous media whose derivative of concentration with respect
to distance equals zero at outlet. Because of that, three curves
corresponding respectively to boundary conditions (8), (5) (which
coincides with (7'», and (6) appear in Fig. 2D. Eq.(8) gives the
concentration distribution which travels fastest and Eq.(6) gives the
slowest.

In order to represent the boundary condition at infinity, y • 5.0
was chosen.
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Fig. 3. Effect of adsorption parameters a and b. Dimensionless
concentration as a function of dimensionless distance.
Pe. - 100. , t • 0.8.

Influence of adsorption parameters

The influence of adsorption parameters is represented in Fig. J.
Dimensionless concentration distributions as a function of distance from
inlet are delayed by adsorption. Consequently they go slower as the
parameter a increases and as the parameter b decreases.
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Influence of numerical parameters

In the linear adsorption case, the lowest truncation error is
obtained witb £ • W • e • 0.5. Furthermore, concentration profiles do
not show oscillations with time and space increments Ay • AT"· 0.01.
Thus, this combination of parameters is considered to give the best
numerical solution for the convection/dispersion/Lang.uir type
adsorption equation (12).

The effect of weighting parameters £, wand e has been analyzed.
The ~ification of £ • 0.5 or £ • 1.0 does not produce noteworthy
differences. Furthermore, zero values of either W, e or t create
conditional stability. Therefore, every combination of w,e takin~ values
0.5 or 1. has beeu studied.

Figs. 4.\., 48 show dimensionless concentration profiles for (w,9) •
(0.5,0.5) and (w,G) • (1.0,1.0). The last combination gives the highest
numerical dispersion in the linear adsorption case: Vnum • 0.01.
(w,e) • (0.5,1.0) and (w,e) • (1.0,0.5) are not drawn because they lie
between the two profiles already shown. For these combinations V •
0.005 in the linear adsorption case. Howeve~ (W,e) • (1.0,0.5) p~uces
lesser smearing than the other, consequently it lies closer to the
(w,G) • (0.5,0.5) curve.

The effect already described can be shown in Fig. 4A for C/Co vs.
y, at 0.5 porous volumes injected. It can also be seen in Fig. 4B for
C/Co vs. T, at dimensionless distance corresponding to inlet, midpoint
and outlet. At inlet, all the solutions agree.

Moreover, the influence of time and space increments C/I!J ,AT) has
been studied. Again the combination t • e • w • 0.5 and AT· Ay • 0.01
is taken as the best solution.

Dimensionless concentration profiles as a function of dimension-
less distance for 0.5 porous volumes injected are presented in Fig. 4C
The combination (t>!I~T) • (0.1,0.1) shows oscillations, witb overshoot
occurring behind the moving front. The oscillations are similar to
those found by Peaceman [6] for the convection/dispersion case.

n,e combinations (t>tj ~ T) • (0.1,0.01) and (Atj,A T) • (0.01,0 .1)
also produce numerical solutions with some oscillations. The first one
creates smaller oscillations than the last one. This effect can also be
seen in Fig. 4D, ~lere C/Co vs. T has been dra~~ for inlet, midpoint
and outlet. At inlet, the pair (Atj/i T) • (0.01,0.1) shows noticeable
oscillations, similar to those produced by (Atj,AT) • (0.1,0.1).
However, the combination (AY~T) • (0.1,0.01) has better behaviour.

One might expect tbat if AT tends to zero, it should produce
numerical solutions without oscillations. However, oscillations appear
ed with the pair C/l1J,AT} • (O.l,O.OOl). Consequently, both distance and
time increments should be carefully chosen.

Szabo (11 performed single flow experiments in unconsolidated
sands using C14-tagged partially hydrolyzed polyacrylamide and a



commercial product. Calgon Polywer 454. The experi.ents have been
carried out using sandpacks co.pletelly saturated with brine. at a
constant flow rate (6 ft/day). Produced and adsorbed polymer were
measured using radioactivity.

The Sll1leauthor also performed static adsorption tests. Results
of polymer adsorption in a silica sand as a function of equilibrium
polymer concentration are shown in Fig.(Vof his paper (1). The static
adsorption isotherm corresponding to brine is well described by
Langasir's equation (3). We have obtained

0
Co'.••..
Co' experimental values
c K • Co
0 (md) (%) (ppm)...•..• 0.8
1\I + 1200 43.8 600••..•

A 1200 43.8 300c•r.J 0 173 45.9 300c
0

Co' .,- 6 ft/day
••II a- 0.515 b- 0.0132•...•
c
0...• - numerical solutionIIc 0.6• Pe- 93.14s...•
Cl

Fig. 5. Co.parison between nu.erical solution and
experimental results from Szabo (1). Efflue~t
polymer concentration as a function of the number of
porous volumes injected for three different runs.

Fig. 5 reproduces Szabo's results of effluent ,>0lyme r
concentrations during polymer flow through sandpacks previously
saturated with lOO-percent brine. for three runs. all of them at
approx~matcly the s••• lnteratlcl.1 veloclty. The flrst and the second
have been performed on the highest permeability (1200 md) sand. The
first at Co - 600 ppa and the second at Co - 300 pp.. The third has
been carried out in a lower per.eability sand (173 md) at Co - 300 ppa

If the three runs were represented in terms of dimensionless



concentration, CICo' the measured values should coincide. This is
because polymer concentration in effluent ought not to depend on
permeability. In fact, their differences are not greater than
experimental errors. Notice that the effluent concentration should DOt
be higher than the injected concentration. Therefore, CICo values
higher than one could be caused either by a reversible hydrodynamic
retention. or by measurement errors. Anyway, they cannot be simulated
by this model.

Experimental results are si.ulated by eq.(12) and boundary
conditions are given by eq.( 6) using the adsorption parameters written
above. Numerical solution can be seen in Fig. 5. pfclet number was
obtained by Fibonacci [9] optimization technique for the purpose of
minimizing differences between the experimental measurements (from the
three runs) and the numerical solution. A good aatch is obtained.

Numerical solutions of the partial differential nonlinear equation
representing one-dimensional flow of miscible fluids through porous
media with dispersion and Langmuir equilibrium adsorption are obtained.
The procedure is entirely general. It is based on a finite-differences
scheme which uses time-weighting-and distance-weighting parameters.

The best combination of these parameters is (0.5.0.5.0.5) as it
provides a well-behaved solution without oscillations. it is un-
conditionally stable, without numerical dispersion for the linear
adsorption case, and it shows the best agreement with experimental
results. This combination of parameters corresponds to the Crank-
Nicolson method.

Four boundary conditions have been studied. The differences among
them are noteworthy only at narrow ranges of time and space: at inlet
for very early times and at outlet when the number of porous volumes
injected is around 1.0 + 0.4; and it increases if the adsorption
becomes greater. In most cases their differences are within the range
of experimental errors.

The proposed numerical solution shows excellent agreement with
the exact solution for the linear adsorption case. It also coincides
satisfactorily with experimental resultso~ained from different tuns of
polymer flooding tests.

A further application of the numerical solution is to determine
the dispersion coefficient from displacement laboratory experiments
when there is adsorption. The most representative dispersion parameter
of a porous medium is obtained,when adsorption parameters are known, by
minimizing the differences between experimental and numerical results
applying the Fibonacci optimization method.

parameters for Langmuir a~sorption model •
•olute concentration [ail 1.
inlet concentration of solute [a/L3] •
..aunt of solute adsorbed/volume ~f fluid [m/L3}.
exit concentration of solute [a/L}. 2
longitudinal dispersion coefficient [L It}.
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numerieal dispersion IL2/t].
loeal truneation error.
derivative of the adsorption with respect to C
length of porous medium IL].
dimensionless dispersion coefficient. defined by eq.(ll).
dimensionless dispersion coefficient. defined by eq.(13)·
time It] •
average intersticial velocity IL/t}.
distance IL].
dimensionless distance. defined by eq.(lO).
dimensionless distance, defined by eq.(13).

AT incre.ent of T .
A IJ incre.ent of IJ •
£ time-weighting parameter.
e time-weighting parameter.
PRo rock density ImlL3].
T dimensionless ti••
• porosity, % •
W distance-weighting paramete~

i. index in !(-direction.
R iteration coun~
II fractional index in T-direction •• (l-e)It~(It+l).
It index in T-direction.
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In order to analyze the truncation error associated with the
linear difference eq.(18), we can expand Cly~y,,) and ClY,T+6,) in
Taylor series.

"C.i..tl

where m (I-e)" + 01"+1)e " -e, 1-0
e " 0., 0.5, 1.

C: " ClY.i..,Tn)
y.oi.6y o:.i.~J

.(,

T" • It A T n~O
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a4~ a4+1~
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with a • 1. 2
(8.0') • (11.-6). (n+I.I-6)

Details to deduce (A.3). (A.4). (A.S) and (A.6) can be seen in
Peaceman [6] (chapter 4).

k lIt should be pointed out that. if C £ C· meaDS that the
derivatives of C with respect to IJ and t are continuous up to ord,r! k
and l respectively. then in the present problea. we require C £~. in
order to define the truncation error.

The local truncation error. £ • CaD be defined by the difference
operator applied to the exact solufion of the partial differential
equation at the point (lJi.Tm)' Then.

6A c'!+1+ (1-6IA C'!y.(. y.(.

(HJ

By substituting eqs.(A.3). (A.4), (A.S) and (A.6) with appropriate
values of Q. Band e. ve can write,

fC'"a ..(. +--;;

1 a3c"! lc"! lc"'..(. - --.(.. .(.

PI. ~'l3T ~:n --;;r
while differentiation with respect to IJ yields



J .rr;P: ·le"': a"'e"':
" " "~7- -::-I

ClrJ a,ClrJ

so that.

-}c"': 1 ·ic"! 1 a3c"! a'1.c~
" " .(.

"--;I = r --::T:" - ~7 -;;t ClrJ a,

Thus. substitution of eqs.(A.IO) and (A. II) into eq.(A.8) gives the
fiDal form for the local truncation error

It is immediately obvious that we must choose w, c and e equal to
0.5 in order to obtain the minimum local' truncation error.

Rut, if the derivatives of third and fourth order are neglected,
c~ does not depend on c, and the choice of ~onvenienf w, e, Ay and A,
g1ves a local truncation error that is O(t.y I + O(A, I.

We proceed with a von Neumann stability analysis of eq.(18). We
assume that the homogeneous difference equation has a solution of the
form

E~ s n .i.8j
J P e.

The von Neumann criterion for stability states that the modulus of
the amplification factor must be less than or equal to one, that is
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/1 [elli (plt+1i8j)+( l_dt:.,llplte.tBj) J -
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"p e -p •.

After cancelling the common factor e.tBj , and making use of the
identities

we can obtain the modulus of the amplification factor. The condition
(B.2) leads to

So as to analyze (B.5) we mus~ combine all the possible values of
weighting parameters (0., 0.5 and 1.). From the 27 possible combinations,
only 8 give unconditional stability. They are those which do not contain
1.1:, 0 or c equal to 0 •• "

since /1 > 0, W, 0 and c do not influence on stability. Thus, we have
unconditional stability. But O"um = ~r/2 , leads to

ct " O~/) + OlAr)

w • 0.5 e • 0.5 £ .O •
4 /12 ~r.n2a :ii 2/1

/1 ~ I
t:.r Pe
r:,7 ;0 %

Thus, we have conditional stability. However, the weighting factors give
V 0 and

ItWiI



The examples 1 and 2 suggest that the weighting factors w, e and
£ should be carefully selected, in order to obtain unconditional
stability and the optimum local truncation error.


