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Este trabajo present a la descripciOn y loa resultadoa na.ericos ~
tenidos con un nuevo metodo de elementos fini tos mixtos del tipo ten-
sien-desplaZUliento-presion. £1 metodo esta particularllente adapt ado p!.
ra ser usado en conjunto con 1a fOI"lllulaciende .edios viscoelasticos in
=-presib1es en deforaaciones planas con los coeficientes fi.icos dep~
dientes del ti_po. Diferenci.indose de 1a lIayor parte de 10s JDetocloa~
nocidos, la condiciOn de OOIIIpatibilidad entre los espacios de elemento;
finitos es _tisfecha tOlaandoel lDiSlllOtipo de aproxi_ciOn para la pr~
siOn y e1 tensor desviador de tensiones.

This work presents a description and mnerical results obtained
vi th a nev mixed finite element method of the stresa-displacement-
pressure type. The method is particularly adapted to be used in
connection vi th an algori thlllic fOrJllulation for the n\8erical treat.ent
of inOOlllpressible viscoelastic media in plane strains vi th physical
coefficients dependina on tilDe. Differently fre. most of the known
methods, the cc.patibility condition between the three finite element
spaces is satisfied, takina the same type of approxiJaation for the prea-
sure and the stress deviator tensor.



Let a viscoelastic
boundary r having a
mechanical behavior of

••edit_ occupy a boWlded open set.JL of II' ,wi th
fixed portion ~ • We ass\.IIIe that in A , the
the medhn at time t, t ~ 0 is described by:
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W
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is the velocity (rate of displacement)
is the stress deviator tensor, 2 x 2 symetric with s:; + ~ ,. 0
is the plane strain tensor given by:

E ..(v) __ 1_ (Chi + ()v,)
., - 2 () ltj C> Xi

The viscoelastic coefficients ex ,~ and W l are positive depending
on ! and t, and F is a bi jection of R:~ in Il;"ym , whose Frechet deri v-
ative is bounded over every bounded set, with F11 + FU = O. V:;:is the
space of symetri c tensors Nx N, having each component bel anging to the
same vector space V.

1) 1)>.-t )
For example, if ex • 2G, ft· 0 and F (6) • 15 I 6', where).. is

real parameter greater or equal to 1, wehave a Maxwell-Norton material,
G being the shear relaxation modulus. Considering F" 0 with CI • 2G+ 2 ~
and (3- 2)4 ,jL being the cinematic viscosity, then we have a Kelvin -Voigt
material, with G independent of time. (See [lJ and [2J).

where: G"• 0>+ pI, P being the hydrostatic pressure, and I denoting the
3x 3 identity tensor.

Given body forces f and surface forces i' acting on r, with r = lj'Urcl'
the equilibri..- equations are the following:



D ~¥. - di"G» + gradp •• f_ in A
Jo gl -

G'.!! ••~on'i
where 10ia the density of the lledil., assUllled to be constant and n is
the unit nOl"Blalvector external to r, • Moreover lie aSS\De that at time
t •• 0, we have ! ••Q and () •• O.

As usual, we calculate G:, Pn and In , approximations of f5 , p and
! by d time n A t by discretization in time of (1) - (2) - (3) with the
following implicit scheme:

6;])- ~ F (6'~) .. a"f(~") + 13" Eb;") - t (Vn-1)7'l .1 +
At w•• LH

div !" .. 0

f) !n -!n-1 - div un]) + gr~ Pn- !n.ot

n •• 1,2, ••• N, with !o .. !o, eo-G"~ M is such that MAt - T where T
is an a priori fixed tilDe.

Considering that 01 , p., and W are time dependent, wedo not eliminate
o:frOlll the system (5) - (6) - (7) - (B), and we solve the problem by an
iterative algorithm like the one of the augmented Lagrangean type [3J
described as follows:

Let t''''_J' 2m,", and qm.l be approximations of 5:, In andpn respectively
with~2~.j, 2o· !n-I and qo - Pn-1 n~l. For .-l,2,3 ••• vecalculate
the new approximations t:...., ,2m and Pm for these three v"lriables at time
n At by:

't",-7:o + F(~",) =ac(u _\+ D. £(llm-l)-e(»o) (9)
bt u,>" _m-l')J At

, Z
«!!nv!f) ~ •• «J0!m.4,!!)~ - s"H(""qm'~'!!mt !!.i,!) V! € [V] (10)

where V •• H~ (A) •• tv Iv £ H'(t1.),,, •• 0 in ~} and H is defined by

R (g-,q,!!,!,!!,!,,). (~,e(!:»+(~iv ~, div 1i)~(lJ;"!"JJ,) - (1"K) - jl'.!! ds

~



(r, div !m) - 0 ¥r€Lf. (4) (11)

.I ••• ~
(».1) i. the usual iJmer product of (r; (iL» , and «», .!)It is given by

«\I,x»s - 1£(11). £(x) d! + f4f lp·! et.I +-.1 db! db ! ~

where1t is a positif real par_ter ,~» 1 and C is a constant depending
on the aaxi..u. nlue of the f\D'lctionthat re1ates'l:.,.to E. (!m-I) in (9),
for 0' n' M. 8n is a par_eter to be det~ned at each tu.e step in
order to ensure the convergenceof the algoritla.

TakinCIl••.o- !~ and q",;o- qm-lfor knownvalues !!m.•••and qm.•-1 ' w.
calCl.l1ateY"'.sand qm••for s ,. 1, 2, ••• by:

«!:lm,. ,]f) ~ • «9m-1 ,J!'»t - a.,. H(~q", .••• ,i", ..•>!!o '!'!,,)¥!€ [vi (12)

. q",.•- q",.a-l - tdiv Em.. (13)

Letting b be a constant satisfying relation (lS)belowif onereplaces
Ph and Vhby L.t ~ and V respectively, then Dm,s- !:Inin [H' (.£l.).l]
and P _ Pn in L.l (4), if O<e<2R/b~ [41.Moreoverit is possible to

m,s [' ]iI'.,.. .. ~ [J .,z'"
prove that J!m-.In in H (n) ,bm-Un in L (o')J andqm- Pn
in L.l ~, if the value of C i. conveniently fixed in ten.s of ~t and for
sn sufficiently _all. For exampleif F(5]) ,. (3':1), Le. for a linear
Maxwellaodel, taking:

a:;n~At " n
C,. aax the algori tla converges if 0 < s"< UJ + OtG

~~M ul'+Ot en G"uJ" b t

In order to discretize the probl_s (9) - (12) - (13) in space, we
first partition the dClllain.o.into finite e1-.nts, and then we define a
space VhC Vfor each velocity CClIIponent,a subspacer.hof L1 (Ll) for
each stre_ on,J) anda subspacePh of I!(0.) for the pressure. Thesethree
spaces are associated with a given partition t'h of 11. into triangles or
quadrilaterals with aaxiJalDdiaaeter h.

The so generated approxi.ate version of (9) _ (13) allows us to solve
the probl_ (12) in velocity with a fixed matrix assOciated to the inner
product «.'.»1l for a great nu.ber of time steps, while we only solve
local el_t by el_t probl_s for the stress and pressure, i. e.
equations (9) and (13).



Clearly, it is necessary to satisfy the canpatibility condition
between the spaces Vh ' Eh, and Ph , that is to sar, the inf-.up condi-
tion for the lllixed methods [5].

~ ,1k1
(j E: [l:h!sym

t.~C(!h)d~

liS: 110IIIh I1J

II !h 11.111 Philo
1 J

and II • IIJare the usual nOl"lllsof L (4) and H (4) respectively.

If we take I:.h = Ph' which is phisically natural and an optimal
choice from the numerical point of view, conditions (14) - (15) turn out
to be contradictory.

The following choice giv_ a very simple alternative to
(14) - (15), while work.ing with stress and pressure discretized
same way and without introducing any particular restriction to
numerical solution. Weobserve that this el_ent is similar to the
studied in [6] for another class of probl_s.

satisfy
in the

the

Weconsider that ~h is a partition of the dOlllainA into convex
quadrilaterals, each one of these being subdivided into two triangles by
means of an arbitrarily chosen diagonal. Vh is defined as the space of
continuous functions that vanish on G , whose restriction over each
triangle is quadratic, the trace of which over each edge of the
quadrilaterals being a linear function. The degrees of freedom of this
space are the functional values at the nodes indicated in Figure 1. The
space Ph (orl:h) is a subspace of the space of functions which are
constant over each one of; the four triangles obtained by joining the
mid-point of the chosen diagonal to the vertices of the quadrilateral
not belonging to it. In Figure 2 we illustrate the condition defining
such a subspace, namely: for each pair of triangles that do not have a
COImIonedge the sum of the constants are equal.

The numerical results given below obtained for a linear Maxwell
model confil"lll the efficiency of the method.



Figure 1 - element of l:hand the
associate velocity

Figure 2 - element of ~and the
associate pressure

We consider a viscoelastic medilD with unity density {r.lCS system}
occupying a regionLl. shown in Figure 3 with the forces !=Qand.!={O.lO}
.easured in kN/mJ.

We take F {G} = (3' • a = 2 G, (3= 0 and u.>=,JI-IG, that is. a linear Maxvell
lIOdel. where G and,)Lare given in Figure 4.
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For the discretization of the problem we take Ii t •• IlL where .e is
an integer parilllleter describing the .esh {see Figure 5}. Considering the
syanetry of the problelll we take only one quarter of the domain in the
cOll\putations.



The results obtained for the displaceaent show a good convergence
of the finite element _thod. In Table I we illustrate this fact by
giving the ..ooulus of the displacement in ••••at points PI' P , P3 shownin
Figure 3, for tiaes 5 and 10 minutes. 2

~

t • 5.0 t . 10.0

PI P2 P
3 PI P2 P3

1 0.1937 0.3202 0.4334 0.3771 0.6238 0.8441

2 0.1~5 0.3513 0.4642 0.3802 0.6728 0.8890

4 0.2079 0.3>55 0.4763 0.3940 0.69~ O.~

The convergence of the algori tt. is also very fast, as after the
first time st!'Ps only oneor twoiterations are neededto attain an accuracyof
10-<4and 10'S for the inner and outer loop respectively.
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