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Se presenta un algoritmo para calcular la solucion de problemas
no lineales haciendo uso de un conocimiento previamente adquirido acer
ca de un subespacio en el que se encuentra principalmente contenida la
solucion. Esta informacion es usada para hacer una modificacionparcial
de la matriz de iteracion, modificacion que se realiza en cada paso del
cicIo iterativo en las direcciones de base del subespacio. El metodoes
aqui aplicado para calcular la respuesta transitoria en problemas noli
neales de conduccion de calor. -

. An algorithm to compute the solution of nonlinear problems is
presented. It makes use of a previously acquired knowledge about a
subspace in which the solution is supposed to be mainly contained. This
information is used in order to make a partial modification of the
iteration matrix. The modification is made at some steps of the
iterative cycle, and it updates the matrix in the directions which are
basis of the subspace. The method is here tested by computing the
transient nonlinear response in thermal conduction problems.



Reduction methods have proved to be an efficient tool to reduce
the computational costs when numerically solving nonlinear statics and
dynamics problemS. Some recent publications report applications of
them to structural and thermal problems [1-7]. These methods are based
on seeking the solution in a subspace of the original discretization
space, and since they reduce the order of the system to be solved, the
computer cost to get the solution is highly reduced. The base of the
subspace is computed from the original discretization and so, the
advantageous property of easily handling complex geometries and/or
boundary conditions, is here retained. There are different proposals
for basis vectors, which are chosen by considering the problem to be
studied.

The approximate solution is computed by nullifying the projection
of the residue onto the subspace. Those components that lie in normal
directions to this space, can not be eliminated since the method does
not see them. Normally these components have a negligible magnitude
and so, the obtained solution approaches with high accuracy the true
solution. When their magnitudes reach important valueo, the search su~
space is changed in order to eliminate them.

Numerical trials have shown that a problem-independent bound to
the latter components that points when the basis vectors should be
changed can not be established [5-7]. This measure changes consider-
ably with the problem under consideration. Also, a great value for
this tolerance does not indicate if the true solution is well approxi-
mated or not. So, for these reasons, the method loses reliability.

We are now proposing a new method which eliminates this inconven-
ience and also makes use of the information given by the basis vectors.
This method is based on making a reduced rank modification of the tan-
gent matrix. The proposed method of modification changes the iteration
matrix so that at each iteration it updates all components belonging
to the subspace, as the true tangent matrix does. The other components
of the unknown vector are updated as if a previous tangent matrix is
employed. That is, the new iteration matrix is modified only in the
directions pointed out by the basis vectors, where the most important
changes in the response are developed. The computational cost of this
method is shown to be of the same order as that of a reduction method.

In this paper the method is tested by solving nonstationary non-
linear thermal conductio~problems. Comparisons are made with the sol-
ution obtained by a reduction method and-with the solution obtained by
solving the full system of equations by Newton's method.

Let us consider a body n enclosed by a surface r
normal n which is subdivided into a prescribed T-surface
prescribed flux surface rq• The governing equations are:

with unit
rT and a
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q.n • q~ on r (1)q
T T in rl at t=O
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where T = temperature ; s = source per unit volume ; q = heat flux ;
p = density ; c = specific heat ; and a superposed dot designates the
time (t) derivative.

Performing the finite element discretization process and applying
the standard weighted residuals Galerkin procedure, equations (1-2)
can be recast into the following discrete system of equations:
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The term T represents the vector of nodal temperatures; Ni are
the element shape functions; £ is the global heat capacity matrix;
F is the global "loads" vector and Q is the g],obal internal loads
~ector which, for linear heat conduction, can be written as

The system of nonlinear ordinary differential equations (3) needs
to be time-integrated. This integration is performed numerically by
appealing to the generalized trapezoidal rule.

By assuming a linear variation of the temperature
crete time interval ~t ,i.e. from time t to time
imposing that (3) be satisfied at time tn+an~t (tn+a)

field in a dis-
tn+1 ,and by
, we have

Solving (6) for Tn+a' the temperature at time tn+1 is given by
the following expression: \



-nT+1 ~ 1 T + (1 - 1) T (7)ex-n+a " ex-n

This scheme is unconditionally stable for ex:> ~ 0.5 , for both
linear and nonlinear cases [8].

Reduction methods are based on generating a set of vectors that
forms the basis of a subspace. The system response is assumed to be
completely contained in "this subspace. Also, eq. (3) is projected onto
this subspace in order to get a reduced system of ordinary differential
equations that afterwards is numerically time-integrated to computethe
response.

After projecting the nonlinear system of differential equations
onto the subspace spanned by the basis vectors, the following reduced
system of equations is obtained:

Q =!T Q

:£ ~!Tf,!

This system of ordinary differential equations should be time-
integrated to compute the response. We employ the trapezoidal rule for
this purpose, and to solve the resulting system of nonlinear algebraic
equations, we use Newton's method.

There exists many proposals to compute the basis vectors. Clearly,
the success of the method depends strongly on the choice of the set of
vectors. In the following, we will resume an algorithm for generating
a set of basis vectors to solve nonstationary nonlinear thermal prob-
lems presented in [7].

The basis vectors are computed by using a modification of the
Lanczos' sequence of vectors [3,4,9]. The algorithm for computing them
is implemented by employing an equivalent tangent stiffness matrix:

K .. = J~VNJ.'k . VN. dflJ.J •• equJ.v J

Note that this matrix is obtained by ommiting the nonsymmetrical compo-
nent of the true tangent stiffness matrix. An equivalent capacity ma-
trix is computed as:



! ~+1 = .£-'4
T -ui = ~i .£ ~i+l

= ~+1 - ui ~ - Si ~-1
=;'l: = 1/2

= (~+1 .£ ~+1)

This simple form of the Lanczos' algorithm is subjected to a
rapid loss of orthogonality with respect to the first computed vectors.
In order to prevent this error, a full reorthogonalization is perform-
ed periodically. Various algorithms exist that indicate when this cor-
rection should be performed [3].

In order to solve thermal transient problems, we propose to
employ as a first vector an approximation to the increment of nodal
temperatures computed at time u ~t ,that is, the vector computed by
solving

This vector is afterwards C-normalized and introduced into the
algorithm (12) to yield a set of vectors. After that, we take a unit
constant vector, which is C-orthonormalized and added to this set to
form the basis. Note that,-for msny cases, the latter vector represents
the temperature status at t=OO ; then, especially for these cases, a
large participation factor can be expected for it. \~en computing the
first basis vector we take as equivalent properties kequiv and
Cequiv the mean material properties in the range of temperatures we
are working. Then, the other basis vectors are computed by using the
material properties given by the temperature distribution at time
u ~t •

-The system response is now expanded as:

R
T = T + 2 -'4 Yi = T +!z. (14)." i-I ."

Whenever the nonlinear terms play an important role, the basis
cannot express the temper~ture increment for a long period of time.
The system properties change with the temperature status and 50 the
basis vectors should change accordingly. We can rewrite (14) giving:

\



RL ljJ.(z.)z.
i=l""""1. ~ ~

We now assume that the temperature increments can be developed in
a Taylor series as follows:

T=T + a!. I
- -0 aZi 0

2a T I z. z.z. + ----- ---2.-1. +
~ az. az. 0 2

~ J

where repeated indexes imply summation from 1 to R. From (15), the
derivatives of the nodal temperatures at 10 are:

Then, we express the temperature increments as the linear combina
tion of the Lanczos' vectors and their derivatives, both evaluated at -
10:

aljJ. a1JJ.(....:3:. + ....:::J..)

az. az.
J ~

Note that the entire process can be seen as a generalized Taylor
series with "free" coefficients y.

The derivatives of the basis vectors can be obtained after differ-
entiating equation (12-a) and £-orthonormalizing. This procedure leads
to. the following expression, in which an approximation to the deriva-
tives is computed:

a~ a!.
K-= --ljJ.
- az. az. -~

J J

Approximate derivatives of the tangent stiffness matrix are com-
puted by employing material properties obtained with a linear fit model
of the temperature-dependent actual material laws. This approximation
gives better results than the differentiation of the true material laws
because the linear fit eliminates small localized variations of the
material laws that affect the behaviour predicted by the basis vector
derivatives.

When projecting the system of equations (6) onto the subspace
spanned by the basis vectors, a small error is introduced. Due to this
error, we have no means to determine, after convergence, if the method



has given a good enough approximation to the true solution. Moreover,
bounds for the error norm have proved to the highly problem dependent.

We are now proposing an iterative method that seeks the solution
in the whole space of discretization, but at the same time makes use
of the information offered by the basis vectors. Since the solution is
looked for in the full space, we will be able in theory to find a sol-
ution for which the error norm reaches a desired small value.

In order to compute the response, we should solve eq. (6). We will
rewrite this equation as forming an N-dimensional system of nonlinear
equations:

A general iterative method to find a root for this system may be
written as [10]:

In Newton's method, the iteration matrix ~ is chosen to be the
Gateaux-derivative of ~ at xk:

~mny other choices of Ak are also available leading to differ-
ent methods; however, Newton's is the only one for which, under certain
conditions on ~ ,an estimate of the form

holds, provided xk is sufficiently closed to a solution x*. This
property of "quadratic convergence" is not obtained by other methods
and so, for this reason, Newton's method becomes particularly attract-
ive. However, its use in practice is expensive because at each step it
requires the solution of a linear system which, especially in problems
arising from partial differential equations, can reach several thou-
sands of equations and unknowns.

Let us suppose we have formed and factorized the tangent matrix
~'(~O)= ~ for some given configuration ~o . Then, there is a
family of techniques that search the solution to (20) employing an
iteration matrix that is formed by modifying ~ (Quasi-Newton methods
belong to these kind of techniques) [10]. We will propose a method of
this type, in which a reduced rank actualization of the iteration ma-
trix ~ is made. That is, the difference ~ - ~ now is of rank R.
Any NxN matrix of rank R may be written in the form UVT ,where U
and V are NxR matrices of rank R: --

T
~ - ~ + ~-1 ~-1 (21)

Now, the hypothesis we are wbrking with is that the temperature
increment is mainly contained in the subs pace spanned by the basis
vectors !



being 11111 « II.! y.11 and where 1 is any vector .f.-orthogonal to
all elements of- the ~-subspace. Then, we will ask to the iteration
matrix !k to satisfy the following requirements:

k~ .!Y. = K' (~ ) .!Y.

A matrix of the form (24) that verifies these requirements can be
built as follows:

kt, ~ = I' (~) - ~

Note that, due to the C-orthogonality of the basis vectors f,
this matrix verifies eqs. (26). Also, its projection onto the subspace
spanned by the basis vectors coincides with the projection of the true
tangent iteration matrix:

To solve eq. (21), we need to compute the inverse of !k • This
can be done by using the Sherman-Morrison formula [10]:

In fact, this inverse is not computed explicitely; instead, the
following iterative algorithm is used to get the solution:

When computing and
factorizing Ao

~~ = t, ~.!

T -1
= n+ ~o ~~)

= 14<.!1 K(l)
o

=~~~

k• .!(~) - c
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vi) k+1 k -1
~ x - A .!.- -u

If II I.(~k+1) Ii < TOL 1 -> end of iterations
If Ii !.(.l+1) 11 < TOL 2 -> k k+1 GOTO Step (Hi) .

ELSE -> k k+1 GOTO Step (i) .

At each iteration, the costlier steps are (i) and (ii). The first
one involves the computation of the changes in the tangent iteration
matrix pas~ing by all finite elements. In the second step, the matrix
product .!Ao.!L'l Ak is performed. When the norm of the residue reaches
a value beneath a specified tolerance TOL2 , these steps are avoided
and the iterations proceed from steps (iii) to (vi) until the desired
tolerance TOLl is attained.

To test the method under consideration, the following example was
treated in which the transient nonlinear response of a bar submitted
to a suddenly applied flux was computed. The bar displayed in Fig. 1
was modeled by using 10 equally spaced linear finite elements giving
11 degrees of freedom. Its temperature dependent material properties
are displayed in Fig. 2.
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Fig. 2. Temperature-dependent
material property

The transient response of the bar was computed by three different
methods: (i) a full system solution with standard Newton's iteration;
(ii).a full system solution with a reduced rank iteration scheme;
(Hi) a reduced system solution. In all cases, a time step of 2.5 was
employed. Both the reduced rank and the reduced system solutions were
computed by using four basis vectors evaluated as indicated in (12-13),
and no derivatives were employed. Fig. 3 displays the responses evalua-
ted by the three methods at different times. The full system and the
reduced rank solutions are completely superposed, while the reduced
system solution gives a highly accurate approximation to them.
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Fig. 4 shows the evolution in time of the residual norm, for both
the reduction method and the reduced rank solutions. We can see that,
in spite of giving a quite well approximation to the true response,
the reduced system solution maintains a high residue indicating an un-
balance in flux between elements.

The reduced rank method eliminates the latter inconvenience of the
reduction method. However, the convergence of the iterative method was
affected in this case (a line-search procedure was implemented to im-
prove the convergence properties). Fig. 5 shows the number of iterations
per step for the three different solutions. We can see that with the
reduced rank method the number of iterations was appreciably increased.
When also the derivative of the first basis vector was included in the
basis, the number of iterations decreased. This fact confirms that the
convergence properties are now influenced by the quality of the basis.
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When dealing with more complex situations (i.e. 3-D cases) we
have encountered severe convergence problems but the method needs to
be tested more completely to give a final conclusion on its perform-
ance.

An algorithm to compute the solution of nonlinear problems was
presented. It makes use of a previously acquired knowledge about the
subspace in which the solution is supposed to be mainly contained. The
method is highly related with reduction methods, and it employs the
same procedures to compute the reduced subspace basis. Now, in this
new method, this information is used in order to make a partial modifi-
cation of the iteration matrix. The modification is made at some steps
of the iterative cycle, and it updates the matrix in the directions
which are basis of the subspace. So, an iterative cycle which searches
the solution in the whole space of discretization is formed, and it is
then possible to compute the exact solution to the problem in consider-
ation.

The method was here tested by computing the transient nonlinear
response in thermal conduction problems. Some convergence difficulties
were evidenced, and more testing should be done to get a final con-
clusion on its performance.
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