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Se obtuvo una soluci6n aproximada para el problema del titulo del
presente trabajo usando( a) El metodo de Rayleigh-Schmidt y b) El meto
do, de Elementos Finitos, en el caso de placas empotradas y simplemente
apoyadas. Se observa un buen acuerdo en los resultados.

Se demuestra que el metodo de Rayleigh-Schmidt permite la determi
naci6n de los autovalores en el caso en que la placa sea constrenida
elas'ticamente contra rotaci6n, los resultados fueron obtenidos en una
calculadora programable de bolsillo.

An approximate solution for the title problem is obtained using
a) The Rayleigh-Scqmidt method and b) A finite Element algorithm, in
the case of clamped and simply supported plates. Good engineering agree
ment is shown to exist. It is shown that the Rayleigh-Schmidt method -
allows for the straightforward determination of eigenvalues in the ca-
se where the plate is elastically restrained against rotation, the re-
sults been obtained on a pocket programmable calculation.



Continuous, rectangular plates executing small amplitude, transver
se vibrations have been treated in many excellent papers [1-2]. On the-
other hand no information is available in the open literature on vibra-
ting continuous plates of other shapes, e.g. a circular plate with an
internal, secant support, see Figure 1.

For the sake of generality it is assumed that the plate edge is
elastically restrained against rotation. An analytical solution is ob-
tained by means of the ~ay1eigh-Schmidt approach [3]. Independently,
the cases of clamped and simply supported edges are treated using a fi-
nite element algorithm [4] and very good agreement with the analytical
solution is shown to exist.

A convenient way to formulate an approximate solution of the title
problem is in terms of the governing functional

W- W
J[W] = DJJ {(W-- + -L + ~)2 +P rr r r2

(2.a)

(2.b)

W-(a,e) Wee(a,e)
W-(a,e) = -D4>[W--(a,e) + \.I (_r __ + 2)]
r rr a a

where W(r,e) is the dynamic displacement amplitude. Expression (2.b)
is the edge constitutive relation which defines the flexibility coeffi
cient 4>.

-
Introducing the dimensionless variable r = ~ in (1) and (2) one

obtains: a

2 W W W W
a J[W] = II {(w +..L + ~)2 + 2(l-I.t)[~ _ ~)2

D rr 2 2p r r r r

W Wee- W (..L + -)] }rdrde + 1.- J
rr 2 ",'r r ~ 0

W;(l,e)de - fl.2JJ w2rdrde
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W(l,e) = 0

xoW(rcose - , e) = 0
a

4II = phwa
D

lj>I =.!!2.
a

A suitable two-term approximation for the displacement amplitude
function is the expression

where y is the Rayleigh-Schmidt minimization parameter. The functional
relation (5) satisfies identically the essential boundary conditions
(4.a, b). but in an approximate sense (4.c), and this is accomplished
substituting

2[1+t' (1+Il)]
2y[1+lj>'(2y-1)+lj>'Il]-2[1+lj>'(1+1l)]

~1 = - 2y[1+p'(2y-l)+p'll]
2y[1+lj>'(2y-1)+lj>'Il]-2[1+lj>'(1+1l)]

.l+t' (5+}J)
(y+1)(l+lj>'(2y+1+\l)]-2(l+lj>'(3+\l)]

~ = 1+p'(1+}J)-(y+1)(l+t'(2y+1+}J)]
2 (y+1)[ 1+4> I (2y+1+\l) ]-2(1+lj>'(3+Il)]

ClJ 0Cle
i
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one obtains, from the non-tri viali ty condition a characteristic equation
whose lowest root constitutes the fundamental frequency coefficient of
the system °1,



Since this eigenvalue is an upper bound with respect to the exact
frequency result, by requiring now that

one is able to obtain the optimum value of Ql corresponding to the
functional relation (5).

The procedure is straightforward but rather lengthy to be included
here. In general it is more convenient to perform (7) numerically.

Fundamental eigenvalues of the mechanical system shown in Figure 1
were obtained using the procedure previously described and also by
means of SAPIV finite element algorithmic procedure [4] (the finite ele
ment net is shown in Figure 2) for the case of clamped and simply sup--
ported plates.

Table I shows a comparison of the eigenvalues obtained by using
both methodologies. Good engineering agreement is observed for all ca-
ses considered.

TABLE I - Comparison of values of Ql = lrih lIJ.a2
(\l = 0.30)

* The exact eigenvalue is known since it corresponds to the first an-
tisymmetric mode of a circular plate.

** Eigenvalue determined using Wa = Cl(~r2Y+~lr2+1)

Clamped Plate Simply Supported Plate

xo Rayleigh Finite Exact * Rayleigh Finite Exact *
Schmidt Elements [5] Schmidt Elements [5]a

0 21.26 21.59 21.26 14.12 13.95 13.94
0.1 20.26 20.23 - 13.56 13.16 -
0.2 18.17 18.07 - 12.30 11. 79 -
0.3 16.20 16.15 - 10.96 10.52 -
0.4 14.71 14.58 - 9.82 9.45 -
0.6 12.85 12.32 - 8.24 7.83 -
.0.8 11.83 10.94 - 7.27 6.68 -1.0 10.22** 10.29 10.215 4.98** 4.94 4.977

.

x
When ~ = 0 the Rayleigh-Schmidt approach yields a frequency value

which is a in excellent agreement with the exact result in the case
of a clamped plate. On the other hand the difference is of the order of
l~ when ~he pl~~e 1~ ~1mplysupported.

Table I illustrates also, in,a very clear fashion, the accuracy
achieved when a single polynomial is used to determine the fundamental
frequency coefficient by means of the Ray1eigh-Bchmidt procedure.





Table II depicts fundamental frequency coefficients for the case
of plates elastically restrained against rotation along the boundary.

XoWhen - = 0 the results are in good engineering agreement with fr~
quency a coefficients already available in the open literature [6].

TABLE II - Values of 01' in the case of Circular Plates elastica-
lly restrained against rotation.

I>{ Present Ref.6
Study<P' a 0 0 0.1 0.2 0.3 0.4

0 21.26 21.27 20.26 18.17 16.20 14.71
0.1 18.64 18.55 17.84 16.12 14.42 13.10
1 15.42 14.97 14.81 13.43 11.99 10.77
10 ·14.34 - 13.77 12.48 11.12 9.96.. 14.12 13.89 13.56 12.30 10.96 9.82
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