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Abstract. An energy conserving algorithm which was presented in previous works, is now being
extended to flexible problems by developing the formulation of a nonlinear large rotations beam.
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dynamics problems were tested. Flexibility is dealt with easily in energy conserving algorithms
only for finite element models with displacement degrees of freedom. However, beam models
which have rotation degrees of freedom, are more cumbersome to be handled. The beam model
which we introduce in this paper has been simplified and lead to quite compact expressions of
its different terms. The time integration algorithm proves now to be able to deal with flexible
multibody dynamics problems. This kind of algorithms have many advantages, both theoretical
and practical, because of its unconditional stability which is warranted even in the nonlinear
regime.
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1 INTRODUCTION

It is a well known fact that the time integration of the second-order, index 2 DAE equations
which arise in multibody dynamics may lead to numerical instability when we attempt to use a
method of the Newmark type.1–3 Several modifications to the Newmark scheme were proposed
(HHT scheme,2 α-Generalized method4), introducing high frequency algorithmic dissipation to
remedy this situation. An alternative way to achieve stability is based on the energy preserva-
tion property of time integration schemes.5 Several authors have introduced energy preserving
and/or decaying schemes for a variety of problems: constrained and unsconstrained rigid bodies
dynamics,6–10 nonlinear elastodynamics,11–17nonlinear dynamics of shells and beams.18,19

The main focus of this work is on the derivation of an algorithm for which unconditionally
stability can be proved in the nonlinear regime. A scheme based on Time Continuous Galerkin
approximations applied to the equations of motion is proposed in the frame of a variational
formulation. The energy preservation argument is used to prove its unconditional stability.

We have tested the scheme for rigid multibody systems in previous works.10 Kinematic
constraints were enforced via the Lagrange multipliers technique. A general formulation was
presented which takes account of most types of joints.

Now, we are extending the formulation to include flexibility of beams. Beams are modelled
using the Finite Elements Method. A new flexible beam formulation is described, which is
based on the idea of a multiplicative decomposition of incremental rotations along the beam
length to interpolate the rotations field. The formulation leads to simple expressions, which are
easier to implement than those of the formulation we proposed in previous works.1,3 Also, this
new beam formulation is suitable to be modified and implemented in the context of the energy
conserving algorithm, as described in this paper.

2 GENERAL FORMULATION OF THE DYNAMICS OF A MULTIBODY SYSTEM

Given a conservative mechanical system described in terms ofN generalized coordinatesq and
subjected toR algebraic constraints

Φ(q) = 0, (1)

its mechanical properties can be derived by an adequate description of its potential energyV =
V(q) and its kinetic energy which can be written without loss of generality in the quadratic form

K =
1

2
vT Mv. (2)

The (M × M) inertia matrixM can be assumed constant, symmetric and positive definite
provided that the velocitiesv are expressed in amaterial frame. The latter are treated as quasi-
coordinates and thus take the form of linear combinations of time derivatives of generalized
coordinates

v = L(q)q̇, (3)

beingL(q) a (M ×N) matrix.20
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The inequalityM ≤ N covers the case where the angular velocities description is made in
terms of redundant rotation parameters such as the Euler parameters. In this case the redundancy
between parameters has to be removed by adding appropriate constraints to the global set (1).

The equations of motion result from the application of the Hamilton principle which can
be written taking into account the system holonomic constraints (1) and the constraints which
relate the material velocities and the time derivatives of generalized coordinates (3):

δ

∫ t2

t1

{
1

2
vT Mv − µT (v −L(q)q̇)− V(q)− λT Φ(q)

}
dt = 0 (4)

If we successively perform the variations ofµ, λ, v andq:

– the variation of the multipliersµ restores the velocity equations (3)

– the variation of the multipliersλ restores the constraints set (1)

– the variationδv shows that the multipliersµ have the meaning of generalized momenta

µ = Mv (5)

– the variation of the generalized displacementsq yields∫ t2

t1

{
δqT

(
−∂V

∂q
− ∂ΦT

∂q
λ +

∂

∂q

[
(Lq̇)T µ

])
+ δq̇T LT µ

}
dt = 0 (6)

from which the equilibrium equations will be obtained.

The integration by parts of equation (6) yields

[
δqT LT µ

]t2

t1
+

∫ t2

t1

δqT

{
−∂V

∂q
− ∂ΦT

∂q
λ +

∂

∂q

[
(Lq̇)T µ

]− d

dt

(
LT µ

)}
dt = 0 (7)

and the combination of (5) and (3) yields

µ = ML(q)q̇ (8)

The equations of motion thus result in the form of a first-order differential-algebraic system of
equations inq, µ, andλ:

LT µ̇ +
∂V
∂q

+ BT λ + L̇T µ− ∂

∂q

[
(Lq̇)T µ

]
= 0

µ−MLq̇ = 0

Φ = 0

(9)
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where the matrixB = ∂Φ/∂q in equation (9-a) is theR×N Jacobian matrix of constraints. It
is worth noting at this stage that the latter two terms in equation (9-a) can be put in the form

L̇T µ− ∂

∂q

[
(Lq̇)T µ

]
= G(µ, q)q̇ (10)

where the skew-symmetric matrixG(µ, q) has the following components:

Gjp =
∑

i

µi

(
∂Lij

∂qp

− ∂Lip

∂qj

)
(11)

The skew-symmetry of (11) follows from its very definition. The final form of the equations of
motion is thus 

LT µ̇ +
∂V
∂q

+ BT λ + Gq̇ = 0

µ−MLq̇ = 0

Φ = 0

(12)

3 TIME DISCRETIZATION APPLYING THE MIDPOINT RULE

The mid-point integration rule is based on the application of the mean value theorem which
states that, for any continuous and differentiable functiony(t), there is a scalarα ∈ [0, 1] such
thaty(t + h) can be expressed in the form

y(t + h) = y(t) + h
dy

dt

∣∣∣∣
t+αh

(13)

When applied to the solution of a first-order non linear differential equation

ẏ = f(y, t) (14)

and imposingα = 1
2
, it yields the second-order accurate difference formula known as the mid-

point rule

yn+1 = yn + hf(yn+ 1
2
, tn+ 1

2
) + O(h2) where tn+ 1

2
=

1

2
(tn + tn+1) (15)

which is equivalent to the trapezoidal rule in the linear case. The application of the mid-point
rule to the momenta and to the generalized coordinates time derivatives yields

µ̇n+ 1
2

=
1

h
(µn+1 − µn)

q̇n+ 1
2

=
1

h
(qn+1 − qn)

(16)
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By making use of equations (16) the equilibrium equation (12-a) is thus discretized in the form

1

h
LT

n+ 1
2
(µn+1 − µn) +

(
∂V
∂q

+ BT λ

)
n+ 1

2

+
1

h
Gn+ 1

2
(qn+1 − qn) = 0 (17)

We also discretize the relationship (8) between momenta and time derivatives of the generalized
coordinates expressed at the timetn+ 1

2
in the form

µn+ 1
2

=
1

2
(µn+1 + µn) =

1

h
MLn+ 1

2
(qn+1 − qn) (18)

Combining (17) and (18) yields the final form of discretized equilibrium:

2

h2

(
LT ML

)
n+ 1

2

(qn+1 − qn)− 2

h
LT

n+ 1
2
µn +

(
∂V
∂q

+ BT λ

)
n+ 1

2

+
1

h
Gn+ 1

2
(qn+1 − qn) = 0

(19)
Equation (19) and the constraint equation (1) can both be solved in an iterative form to obtain
qn+1 andλn+ 1

2
.

The properties of this integration scheme in order to achieve the preservation of the total
energy have been discussed elsewhere.10 Let us recall that by multiplying equation (17) by the
jump of displacements∆q = (qn+1− qn) over the time step, we arrive to a series of conditions
to be verified for energy preservation. Concerning the potential energy term, it can be shown
that energy is preserved by replacing the midpoint derivative(∂V/∂q)n+ 1

2
by the approximation

(∂V/∂q)∗
n+ 1

2

(discrete directional derivative21) such that:

(qn+1 − qn)T ∂V
∂q

∗

n+ 1
2

= ∆qT f ∗
int n+ 1

2
= Vn+1 − Vn (20)

The termf ∗
int n+ 1

2

is the vector of internal forces of elastic origin, and depends on the particular

finite element model. Note also that we use the notation

∆(•) = (•)n+1 − (•)n (21)

to indicate the difference from quantities at timetn+1 with respect to quantities at timetn.

4 SPHERICAL MOTION AND ROTATIONS PARAMETERIZATION

Spherical motion corresponds to the rotation of a rigid body about a fixed point in space. The
length of the position vector of a given pointP attached to the body is not affected by the
pure rotation and the relative angle between any two directions attached to the body remains
constant under the transformation. If we describe withX the position vector of the pointP in
the reference configuration and withx the position vector of pointP after transformation, the
pure rotation can be expressed as the following linear transformation

x = RX (22)
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beingR proper orthogonal:RT = R−1 and det(R) = 1. The absolute velocity vector of
pointP is computed as

v = ṘX = RΩ̃X (23)

whereΩ̃ is the skew-symmetric matrix of angular velocities, defined by

Ω̃ = RT Ṙ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 (24)

The angular velocity vector can then be computed in terms of the rotation operatorR as

Ω = vect(Ω̃) = vect(RT Ṙ) (25)

If we apply the midpoint rule to the time incrementation of the finite rotations, the discrete
approximation of the angular velocities can be computed as

Ω̃n+ 1
2

= RT
n+ 1

2
Ṙn+ 1

2
� 1

h
RT

n+ 1
2
(Rn+1 −Rn) (26)

In order to define the configuration that is half-way betweenRn andRn+1 let us decompose
the rotation increment fromRn to Rn+1 in the form

RT
nRn+1 = F 2 (27)

The resulting operatorF is such that

Rn+ 1
2

= RnF = Rn+1F
T (28)

and verifies the properties of orthonormalityFF T = F T F = I. After replacing equation (28)
into (26), the angular velocity can be computed as

Ω̃n+ 1
2

=
1

h
(F − F T ) (29)

and the material rotational increment takes the form

∆Θ̃ = (F − F T ) (30)

The operatorF can be described in terms of the invariants(n, ∆φ) of the relative rotation in
the form

F = R(n,
1

2
∆φ) (31)

If we choose for instance the Euler parameters, we have

vect(F ) = n sin
1

2
∆φ = e (32)
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wheree is the vectorial part of the Euler parameters of the relative rotation. The operatorF
thus has the following explicit form

F = e0I +
1

1 + e0

eeT + ẽ (33)

and we get the following simplified approximations

Ωn+ 1
2
� 2

h
e ∆Θ � 2e (34)

After identification with equation (3), we may see that for this parameterization the matrix
Ln+ 1

2
= 2I is constant.

5 FORMULATION OF A NONLINEAR BEAM

5.1 Kinematics of a beam

Let (X0(s),RE) be the reference configuration of the beam such that

X0(s) =
1

L
(XBs + XA(L− s)) s ∈ [0, L] (35)

whereXA, XB are the reference positions of the beam element end nodesA andB, and

Ei = REii (i = 1, 2, 3) → RE = [E1 E2 E3] (36)

The reference configuration of pointP of relative coordinatesY = (s, Y2, Y3) in local beam
axes is

X(s) = X0(s) + REY (37)

and the current configuration can be described as

x(s) = X0(s) + u(s) + R(s)REY (38)

whereu(s) is the displacement field of the centerline along the beam axis. It is interpolated
linearly as usual:

u(s) = NA(s)uA + NB(s)uB (39)

whereNA(s), NB(s) are the linear shape functions, anduA, uB are the displacements at nodes
A andB of the beam. The displacements at the middle of the beam write

u0.5 =
1

2
(uA + uB) (40)

The rotationR(s) in (38) describes the finite rotation of the cross-section at points from
reference to actual configuration. LetRA andRB be the finite rotations (3 × 3 orthogonal
matrices) at nodesA andB of the beam. Finite rotations are objects that lie on a curved manifold
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(the so called special orthogonal groupSO3) and do not form vector space. For this reason,
we are not able to interpolate the rotations field as we did for the displacements (note that
1
2
(RA + RB) is not orthogonal unless both rotations have a common axis).

We will express instead the rotation at the mid-point of the beam in the form:

R0.5 = RAH = RBHT (41)

where the rotation incrementH is written:

H =
√

RT
ARB = exp(φ̃) (42)

Here,φ is the axial vector of three rotation parameters corresponding to the rotationH.
The deformation of the beam in material frame is computed from:3

D(s) = RT
E

(
R(s)T dx

ds
− dX

ds

)
(43)

which, owing to (35-38), can be put in the form

D(s) = Γ (s) + K̃(s)Y (44)

where

– Γ (s) is the deformation of the neutral axis

Γ (s) = RT
ER(s)T

(
E1 +

du

ds
(s)

)
− i1 (45)

with iT
1 = (1 0 0). The deformation at the middle of the beam is thus interpolated in the

form

Γ0.5 = RT
ERT

0.5

(
E1 +

uB − uA

L

)
− i1 (46)

– K(s) is the curvature vector of the neutral axis extracted from the skew-symmetric matrix

K̃(s) = RT
E

(
R(s)T dR

ds
(s)

)
RE (47)

By approximating the derivative ofR as the difference between rotations at the beam
nodes over the beam length, we may write the curvature tensor at the mid-point of the
beam in the form:

K̃0.5 = RT
E

H −HT

L
RE (48)
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We remark that this form of computing the curvature is not fully consistent with the
particular character of rotations. However, this expression may be acceptable whenever
rotations at nodesA andB do not differ too much between them.

The corresponding axial curvature vector is then expressed:

K0.5 = RT
E

2 vect(H)

L
(49)

where thevector part of a matrixA is defined :[vect(A)]i = εijkAkj/2.

5.2 Rotations and derivatives of rotations at the middle of the beam

In order to compute the different terms of the beam formulation, we will need to differenti-
ate the expressions of deformations (equations (46) and (49)). Therefore, we will necessitate
derivatives of the rotation operator in terms of rotation parameters at the nodes.

The middle rotation has been expressed as :

R0.5 = RAH = RA exp(φ̃) (50)

The variation of rotations at the middle of the beam then results:

δR0.5 = RAδΘ̃AH + RAHδφ̃ = R0.5δΘ̃0.5 (51)

with ΘA,Θ0.5 the axial rotation vectors corresponding toRA,R0.5. Therefore:

δΘ̃0.5 = RT
0.5RAδΘ̃AH + δφ̃ = δφ̃ + HT δΘ̃AH (52)

and then, in terms of axial vectors we write:

δΘ0.5 = δφ + HT δΘA (53)

From the definition (eq (42)),H2 = RT
ARB, and therefore, the variation ofH may be

computed by taking variations giving:

HδH + δHH = RT
ARBδΘ̃B − δΘ̃ART

ARB (54)

SinceδH = Hδφ, then:

H2δφ̃ + Hδφ̃H = H2δΘ̃B − δΘ̃AH2 , (55)

and in terms of axial vectors, we write

δφ + HT δφ = δΘB −HT 2
δΘA (56)
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Finally, the variation ofφ may be computed as follows:

δφ = [I + HT ]−1
(
δΘB −HT 2

δΘA

)
(57)

By replacing the latter equation into equation (53), we get:

δΘ0.5 = [I + HT ]−1δΘB −
(
[I + HT ]−1HT − I

)
HT δΘA (58)

By noting that the following identity holds for any orthogonal matrixH:(
[I + HT ]−1HT − I

)
HT = [I + HT ]−1 − I (59)

we finally get the expression of variations of the rotational vector at the middle of the beam:

δΘ0.5 = [I + HT ]−1δΘB −
(
[I + HT ]−1 − I

)
δΘA (60)

Note that equations (57) and (60) areexact and do not make any approximation for the
evaluation of the derivatives.

Even if the beam suffers large finite rotations, we may consider that rotations at both extreme
nodes are not very different between them (i.e.RA � RB). Note that the approximation for
the computation of the curvature tensor (eq. (48) ) is based on this fact. Then, by retaining first
order terms in the Taylor series expansion :

[I + HT ]−1 =
1

2
I +

1

4

(
1 +

1

12
‖φ‖2 +

1

120
‖φ‖4 +

17

20160
‖φ‖6 + . . .

)
φ̃ , (61)

we may write:

δΘ0.5 �
[

I

2
+

φ̃

4

]
δΘB +

[
I

2
− φ̃

4

]
δΘA (62)

By a similar reasoning, we get

δφ �
[

I

2
+

φ̃

4

]
δΘB −

[
I

2
− 3φ̃

4

]
δΘA (63)

5.3 Deformations variations

In order to compute the beam internal forces, we need to compute the expressions of the deriva-
tives of the axial strains and curvatures.

The variation of the material axial deformationΓ0.5, equation (46), is written:

δΓ0.5 = −RT
EδΘ̃0.5R

T
0.5

(
E1 +

uB − uA

L

)
+ RT

ERT
0.5

(
δuB − δuA

L

)
(64)
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If we now replace the approximation obtained for the variation of the rotation parameters at the
middle of the beam, equation (62), we get:

δΓ0.5 =
(

˜Γ0.5 + i1

)
RT

E

[
I

2
+

φ̃

4

]
δΘB +

(
˜Γ0.5 + i1

)
RT

E

[
I

2
− φ̃

4

]
δΘA

+RT
ERT

(
δuB − δuA

L

)
(65)

By differentiation of equation (49), the variation of the curvatures axial vector at the beam
mid-point may be written as follows:

δK0.5 = RT
E

[
HT − tr(H)I

L

]
δφ =

RT
E

L
dev[HT ]δφ (66)

where dev[H ] = H − tr(H)I. By using Taylor series developments, we may expressHT

andtr(H) in the form:

HT = I − φ̃ +
1

2!
φ̃2 − 1

3!
φ̃3 + . . . tr(H) = 3− ‖φ‖2 +

1

6
‖φ‖4 + . . . (67)

Then, after replacement of these two equations into equation (66), and by using equation (57),
we get:

δK0.5 = −2RT
E

L

[
I +

φ̃

2
+ . . .

]
δφ =

RT
E

L

{
−

[
I − φ̃

]
δΘA +

[
I + φ̃

]
δΘB

}
(68)

From now on, we will omit the index0.5 and notate directlyΓ ,K, . . . for quantities evaluated
at the middle of the beam.

Note thatK = 2RT
Eφ/L, and therefore

RT
Eφ =

L

2
K (69)

By replacing the latter equation into equations (65) and (68), we get:

δΓ =

(
Γ̃ + i1

2

)[
I +

LK̃

4

]
RT

EδΘB +

(
Γ̃ + i1

2

)[
I − LK̃

4

]
RT

EδΘA

+RT
ERT

(
δuB − δuA

L

)
(70)

δK = −
[

I

L
− K̃

2

]
RT

EδΘA +

[
I

L
+

K̃

2

]
RT

EδΘB (71)
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If we now define matrixB which relates strains variations at the midpoint with variations of
nodal displacements and rotations:

B =

−RT
ERT

L
1
2

(
Γ̃ + i1

) [
I − L

4
K̃

]
RT

E
RT

ERT

L
1
2

(
Γ̃ + i1

) [
I + L

4
K̃

]
RT

E

0 − 1
L

[
I − L

2
K̃

]
RT

E 0 1
L

[
I + L

2
K̃

]
RT

E

 ,

(72)
we may write (

δΓ
δK

)
= B


δuA

δΘA

δuB

δΘB

 (73)

5.4 Deformation energy

The strain energy is computed by integrating the density of strain energy along the beam length.
This integral may be approximated using one Gauss point at the middle of the beam, giving:

V =
1

2

∫ L

0

(
Γ (s)
K(s)

)
·C

(
Γ (s)
K(s)

)
ds � 1

2

(
Γ
K

)
·C

(
Γ
K

)
L (74)

whereC is the matrix of elastic coefficients, which may takes usually the form:

C = diag
(
EA GA2 GA3 GJ EI2 EI3

)
(75)

Here,EA is the axial stiffness,GA2 andGA3 are the shear bending stiffnesses along the trans-
verse axes,GJ is the torsional stiffness andEI2 andEI3 are the bending stiffnesses.

The internal forces are evaluated by differentiation of the strain energy of the element:

δV =

(
δΓ
δK

)
·CL

(
Γ
K

)
=


δuA

δΘA

δuB

δΘB

 · fint (76)

After replacing equation (73) in the latter, we get the expression of the vector of internal forces
of the beam:

fint = BT

(
N
M

)
L =


−RREN

−1
2
RE

[
I + L

4
K̃

] (
Γ̃ + i1

)
NL−RE

[
I + L

2
K̃

]
M

RREN

−1
2
RE

[
I − L

4
K̃

] (
Γ̃ + i1

)
NL + RE

[
I − L

2
K̃

]
M

 (77)
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where

(
N
M

)
= C

(
Γ
K

)
is the vector of internal efforts and moments at the middle point

evaluated in material axes.
After differentiating the internal forces vector, we get the tangent stiffnessS:

Dfint ·∆q = S∆q = BT CLB


∆uA

∆ΘA

∆uB

∆ΘB

 + (DBT ∆q) · L
(

N
M

)
(78)

The first term on the RHS is the so-called material tangent matrix:

Smat = BT CLB (79)

The second term on the RHS of equation (78) is the geometric stiffness matrix, which may be
written in the form:

Sgeo∆q = D
∣∣∣
N,M

(
BT L

(
N
M

))
·∆q (80)

whereD
∣∣∣
N,M

{} · ∆q denotes the Frechet derivative along the direction∆q with N ,M held

constant. These derivatives can be computed straightforwardly and are not given here for con-
ciseness. Both matricesSmat andSgeo are symmetric.

6 FORMULATION OF A BEAM WITH ENERGY CONSERVATION

The key aspect in achieving energy conservation is the computation of internal stresses at the
(time) mid-point. Indeed, when the mid-point rule is applied for time integration the work
produced by the discrete internal forces takes the formfT ∗

int,n+ 1
2

(qn+1−qn), as shown in section

3.
The strain energy of the beam has the expression:

V =
1

2

(
N
M

)
·
(

Γ
K

)
L (81)

and therefore:

Vn+1 − Vn =
L

2

[(
N
M

)
n+1

·
(

Γ
K

)
n+1

−
(

N
M

)
n

·
(

Γ
K

)
n

]
=

(
N
M

)
n+ 1

2

·
[(

Γ
K

)
n+1

−
(

Γ
K

)
n

]
L (82)

Then, if we build a strain matrixB∗
n+ 1

2

(discrete directional derivatives) such that:(
Γ
K

)
n+1

−
(

Γ
K

)
n

= B∗
n+ 1

2
(qn+1 − qn) , (83)
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energy will be preserved provided internal forces at the mid-point are computed in the averaged
form:

f ∗
int,n+ 1

2
= B∗ T

n+ 1
2

(
N
M

)
n+ 1

2

L (84)

6.1 Computation of the strains/displacements discrete directional derivatives matrix

In order to arrive to the expression ofB∗
n+ 1

2

, we will use the approximationR0.5 � RA+RB

2
in

the computation of the axial strains giving:

Γ0.5 = RT
E

RT
A + RT

B

2

(
E1 +

uB − uA

L

)
− ii (85)

Note that theincrement in average rotations between the initial and final time instants may be
written:

2∆R = 2 (Rn+1 −Rn) = (RA n+1 −RA n) + (RB n+1 −RB n) =

RA n+ 1
2

(
FA − F T

A

)
+ RB n+ 1

2

(
FB − F T

B

)
= RA nFA∆Θ̃A + RB nFB∆Θ̃B (86)

Note also that themean average rotation between the initial and final time instants results:

Rn+1 + Rn

2
=

1

4
(RA n+1 +RA n +RB n+1 +RB n) =

1

4
RA n(F 2

A +I)+
1

4
RB n(F 2

B +I)

(87)

Finally, using equations (85-87), we get theidentity:

Γn+1 − Γn =
RT

E

2L

(
−∆Θ̃AF T

A RT
A n −∆Θ̃BF T

B RT
B n

)
(LE1 + uB n+ 1

2
− uA n+ 1

2
)+

RT
E

4L

[
(F T 2

A + I)RT
A n + (F T 2

B + I)RT
B n

]
(∆uB −∆uA) =

= −RT
E

4L

[
(F T 2

A + I)RT
A n + (F T 2

B + I)RT
B n

]
∆uA

+
RT

E

2L
˜[F T

A RT
A n(LE1 + uB n+ 1

2
− uA n+ 1

2
)]∆ΘA

+
RT

E

4L

[
(F T 2

A + I)RT
A n + (F T 2

B + I)RT
B n

]
∆uB

+
RT

E

2L
˜[F T

B RT
B n(LE1 + uB n+ 1

2
− uA n+ 1

2
)]∆ΘB

(88)
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After truncation of the exponential seriesH = exp(φ̃) = I + φ̃ + . . . to first order, we may
approximate the skew ofφ in the form:

φ̃ �
√

RT
ARB − I � 1

2

(
RT

ARB − I
)

(89)

By using the latter expression into equation (48), we get the following approximation for the
curvatures vector at the mid-point of the beam which is suitable for implementation of the
energy conserving time integration algorithm:

K0.5 =
RT

E

L
vect(RT

ARB − I) (90)

Indeed, the time increment of the curvatures at the mid-point of the beam may be written:

Kn+1 −Kn =
RT

E

L
vect

(
RT

A n+1RB n+1 −RT
A nRB n

)
(91)

The term between parentheses on the RHS may be transformed giving:

RT
A n+1RB n+1−RT

A nRB n = RT
A n+1RB n+1−RT

A nRB n+1 +RT
A nRB n+1−RT

A nRB n =

(F T
A − FA)RT

A n+ 1
2
RB n+ 1

2
FB − FART

A n+ 1
2
RB n+ 1

2
(F T

B − FB) =

−∆Θ̃ART
A n+ 1

2
RB n+1 + RT

A nRB n+ 1
2
∆Θ̃B = −∆Θ̃APA + PB∆Θ̃B (92)

with PA = RT
A n+ 1

2

RB n+ 1
2
FB andPB = FART

A n+ 1
2

RB n+ 1
2
. After some algebraic steps, we

can verify that:

vect(−∆Θ̃APA + PB∆Θ̃B) =
1

2
(P T

B − tr(P T
B )I)∆ΘB − 1

2
(PA − tr(PA)I)∆ΘA , (93)

and therefore, the curvatures time increment is written:

Kn+1 −Kn =
RT

E

2L
dev[P T

B ]∆ΘB − RT
E

2L
dev[PA]∆ΘA (94)

Finally, using equations (88) and (94), we get:

(
∆Γ
∆K

)
= B∗

n+ 1
2


∆uA

∆ΘA

∆uB

∆ΘB

 (95)

where

B∗
n+ 1

2
=

(
B∗

11 B∗
12 B∗

13 B∗
14

B∗
21 B∗

22 B∗
23 B∗

24

)
(96)
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and:

B∗
11 = −RT

E

4L

[
(F T 2

A + I)RT
A n + (F T 2

B + I)RT
B n

]
B∗

12 =
RT

E

2L
˜[F T

A RT
A n(LE1 + uB n+ 1

2
− uA n+ 1

2
)]

B∗
13 =

RT
E

4L

[
(F T 2

A + I)RT
A n + (F T 2

B + I)RT
B n

]
B∗

14 =
RT

E

2L
˜[F T

B RT
B n(LE1 + uB n+ 1

2
− uA n+ 1

2
)]

B∗
21 = 0

B∗
22 = −RT

E

2L
dev[F T

A RT
A nRB nF 2

B]

B∗
23 = 0

B∗
24 =

RT
E

2L
dev[F T

B RT
B nRA n]

After replacement into equation (97), we obtain the expression of the averaged internal forces:

f ∗
int,n+ 1

2
=


−1

4
[RA n(I + F 2

A) + RB n(I + F 2
B)] RENn+ 1

2

−1
2

˜[F T
A RT

A n(LE1 + uB n+ 1
2
− uA n+ 1

2
)]RENn+ 1

2
− 1

2
dev[P T

A ]REMn+ 1
2

1
4
[RA n(I + F 2

A) + RB n(I + F 2
B)] RENn+ 1

2

−1
2

˜[F T
B RT

B n(LE1 + uB n+ 1
2
− uA n+ 1

2
)]RENn+ 1

2
+ 1

2
dev[PB]REMn+ 1

2


(97)

We may see, by comparing with equation (77), the time averaged character of the internal
forces vectorf ∗

int,n+ 1
2

. The tangent stiffness matrixS∗ is obtained by differentiation of the

internal forces vector, as we did previously in section 5.4. It is worth noting that in this case the
stiffness is not symmetric, which is characteristic of the energy conserving algorithm. We do
not present here the final expression of this matrix for brevity.

7 CONCLUSION

A large rotations nonlinear beam finite element model was developed, in both a classical for-
mulation and an energy conserving formulation. The element makes several simplifications that
lead to compact expressions and simple to be adapted to the energy conserving algorithm.

The discussion was centered on deriving the expressions of the internal forces vectors for
both formulations. The stiffness matrices may be straightforwardly computed by differentiation
of these terms.

The inertia terms, although not presented here, can be computed by following a corotational
approach. The mass matrix and gyroscopic and inertia forces have a similar pattern as that of
the rigid body, which was presented elsewhere.10 Interested readers are referred to this work
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to find also more details on implementation of the time integration algorithm. Examples of
application will be presented at the oral presentation.

ACKNOWLEDGMENTS

Financial support from Agencia Nacional de Promoción Cient́ıfica y Tecnoĺogica, Argentina,
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