Mecanica Computacional Vol. XXIII, pp. 545-562
G.Buscaglia, E.Dari, O.Zamonsky (Eds.)
Bariloche, Argentina, November 2004

AN ENERGY PRESERVING SCHEME FOR CONSTRAINED
FLEXIBLE NONLINEAR MULTIBODY SYSTEMS

Elisabet Lens*and Alberto Cardona

Centro Internacional de 8odos Computacionales en Ingeiaer
CIMEC-INTEC, Conicet-Universidad Nacional del Litoral
Guemes 3450, 3000 Santa Fe, Argentina
e-mail: acardona@intec.unl.edu.ar

Key Words: Flexible multibody dynamics, Nonlinear beam, Energy conservation, Large fit
rotations.

Abstract. An energy conserving algorithmwhich was presented in previous works, isnow being
extended to flexibl e problems by devel oping the formulation of a nonlinear large rotations beam.
Although the general formulation in previous works included flexibility, only rigid multibody
dynamics problems were tested. Flexibility is dealt with easily in energy conserving algorithms
only for finite element models with displacement degrees of freedom. However, beam models
which have rotation degrees of freedom, are more cumbersome to be handled. The beam model
which we introduce in this paper has been simplified and lead to quite compact expressions of
its different terms. The time integration algorithm proves now to be able to deal with flexible
multibody dynamics problems. This kind of algorithms have many advantages, both theoretical
and practical, because of its unconditional stability which is warranted even in the nonlinear
regime.
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1 INTRODUCTION

It is a well known fact that the time integration of the second-order, index 2 DAE equati
which arise in multibody dynamics may lead to numerical instability when we attempt to u
method of the Newmark typk? Several modifications to the Newmark scheme were propos
(HHT schemé, a-Generalized methd} introducing high frequency algorithmic dissipation tc
remedy this situation. An alternative way to achieve stability is based on the energy pres
tion property of time integration schemeSeveral authors have introduced energy preservi
and/or decaying schemes for a variety of problems: constrained and unsconstrained rigid [
dynamics319 nonlinear elastodynamiés;*’ nonlinear dynamics of shells and beathis?

The main focus of this work is on the derivation of an algorithm for which unconditiona
stability can be proved in the nonlinear regime. A scheme based on Time Continuous Gal
approximations applied to the equations of motion is proposed in the frame of a variati
formulation. The energy preservation argument is used to prove its unconditional stability.

We have tested the scheme for rigid multibody systems in previous Worksnematic
constraints were enforced via the Lagrange multipliers technique. A general formulation
presented which takes account of most types of joints.

Now, we are extending the formulation to include flexibility of beams. Beams are mode
using the Finite Elements Method. A new flexible beam formulation is described, whic
based on the idea of a multiplicative decomposition of incremental rotations along the t
length to interpolate the rotations field. The formulation leads to simple expressions, whicl
easier to implement than those of the formulation we proposed in previous Woriso, this
new beam formulation is suitable to be modified and implemented in the context of the er
conserving algorithm, as described in this paper.

2 GENERAL FORMULATION OF THE DYNAMICSOF A MULTIBODY SYSTEM

Given a conservative mechanical system described in teridvsgeineralized coordinatesand
subjected tak algebraic constraints

P(q) =0, 1)
its mechanical properties can be derived by an adequate description of its potentiallérerg
V(q) and its kinetic energy which can be written without loss of generality in the quadratic fc

1
K= §vTMv. (2)

The (M x M) inertia matrix M can be assumed constant, symmetric and positive defir
provided that the velocities are expressed in@aterial frame. The latter are treated as quasi
coordinates and thus take the form of linear combinations of time derivatives of genera
coordinates

v = L(q)q, ®3)
beingL(q) a(M x N) matrix

546



E. Lens, A. Cardona

The inequalityM < N covers the case where the angular velocities description is mad
terms of redundant rotation parameters such as the Euler parameters. In this case the redu
between parameters has to be removed by adding appropriate constraints to the global se

The equations of motion result from the application of the Hamilton principle which ¢
be written taking into account the system holonomic constraints (1) and the constraints v
relate the material velocities and the time derivatives of generalized coordinates (3):

5 /t ltz {%UTMU _ " (v - L(@)q) — V(q) - ,\ngs(q>} dt = 0 @)

If we successively perform the variations@f A, v andgq:
— the variation of the multiplierg restores the velocity equations (3)
— the variation of the multipliera restores the constraints set (1)

— the variationyv shows that the multipliera have the meaning of generalized momente

p=Mv (5)

— the variation of the generalized displacemenyselds

t2 oy 0P’ 0
5T(————A+— Lg)" >+5'TLT }dtzo 6
/tl {q 9a oq 8q[( q)" pl q"L"p (6)

from which the equilibrium equations will be obtained.
The integration by parts of equation (6) yields

to
[5qTLTu}Z+/ dq

t1

oy odT 0 : d
T {_% “ M 5 [(L4)" ] —— (LTN)} dt=0(7)

and the combination of (5) and (3) yields

p=ML(q)q (8)

The equations of motion thus result in the form of a first-order differential-algebraic syster
equations ing, u, andA:

oy . o
L"p+—+B"AX+L"u— —=—[(Lg)"u] =0
Pt gt +L"p 8q[( Q)" pl

uw—MLg=0 ©)
b=0
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where the matribxB = 0®/dq in equation (9-a) is th& x N Jacobian matrix of constraints. It
is worth noting at this stage that the latter two terms in equation (9-a) can be put in the for

L™p— a% [(Lg)"u] = G(p,q9)d (10)

where the skew-symmetric matr¥(u, q) has the following components:

OL;; 0L,
Zul( - ) (12)
qj

0qp

The skew-symmetry of (11) follows from its very definition. The final form of the equations
motion is thus

LT;l+g—:;+BT)\+GqZO
. (12)
u—MLqg=0

=0

3 TIME DISCRETIZATION APPLYING THE MIDPOINT RULE

The mid-point integration rule is based on the application of the mean value theorem w
states that, for any continuous and differentiable funcgign, there is a scalax € [0, 1] such
thaty(t + h) can be expressed in the form

dy

y(t+h) = y(t) +h = (13)
t+ah
When applied to the solution of a first-order non linear differential equation
y=fl(y.1) (14)

and imposingy = 1, it yields the second-order accurate difference formula known as the n
point rule

2

1
Ynt+1 = Yn + hf(yn+ ) n+ ) + O<h2) where tn—i-l = §(tn + tn+1) (15)

which is equivalent to the trapezoidal rule in the linear case. The application of the mid-g
rule to the momenta and to the generalized coordinates time derivatives yields

. 1
I"’n+§ = _(p'n—H - /J'n)
(16)

S

qn1 = E(Qn—i—l —qn)
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By making use of equations (16) the equilibrium equation (12-a) is thus discretized in the i

1 9)% 1
=L 3 (o1 — pn) + (— + BTA) +

, G,.1(qui1 —qn) =0 17
p L 9 " i1 (@n1 — Gn) 17

We also discretize the relationship (8) between momenta and time derivatives of the gener.
coordinates expressed at the time; in the form

1 1
Hpyl = §(Hn+1 + Hn) = EMLTL+% <Qn+1 - Qn) (18)
Combining (17) and (18) yields the final form of discretized equilibrium:

9 . 2 oV T 1
75 (LML), (@n = @n) = 7Ly 1o + (% TBA o

Gn+%(qn+1 - qn) =0

(19)
Equation (19) and the constraint equation (1) can both be solved in an iterative form to o
Qn+1 andAnJr%.

The properties of this integration scheme in order to achieve the preservation of the
energy have been discussed elsewRgteet us recall that by multiplying equation (17) by the
jump of displacementgq = (q,.1 — g,,) over the time step, we arrive to a series of conditior
to be verified for energy preservation. Concerning the potential energy term, it can be sl
that energy is preserved by replacing the midpoint derive(imefaq)mé by the approximation

(0V/0q); . (discretedirectional derivative?l) such that:

oV |* g
(qn+1 - qn)T a9 = AqTfmt nt+i = Vn-‘rl —Vn (20)
8q n+% 2
The termf L is the vector of internal forces of elastic origin, and depends on the particl
2
finite element model. Note also that we use the notation

A(e) = (¢)n+1 — (o)n (21)

to indicate the difference from quantities at time; with respect to quantities at tinig.

4 SPHERICAL MOTION AND ROTATIONS PARAMETERIZATION

Spherical motion corresponds to the rotation of a rigid body about a fixed point in space.
length of the position vector of a given poift attached to the body is not affected by thi
pure rotation and the relative angle between any two directions attached to the body rel
constant under the transformation. If we describe uXthihe position vector of the poinf in
the reference configuration and withthe position vector of poinP after transformation, the
pure rotation can be expressed as the following linear transformation

r=RX (22)
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being R proper orthogonalR” = R~! and detR) = 1. The absolute velocity vector of
point P is computed as ' B
v=RX = RN2X (23)

wheres2 is the skew-symmetric matrix of angular velocities, defined by

~ ' 0 —25
Q — RTR — 03 0 _Ql (24)
—{2 () 0

The angular velocity vector can then be computed in terms of the rotation op& ator
2 = vec(2) = vec{ R"R) (25)

If we apply the midpoint rule to the time incrementation of the finite rotations, the discr
approximation of the angular velocities can be computed as

Qn+% - Rr:C 1Rn+% ~ R} %(Rn-i-l - R,) (26)

In order to define the configuration that is half-way betwégnand R,,,, let us decompose
the rotation increment fronk,, to R, in the form

R’R,,, = F* (27)
The resulting operataF’ is such that
R, =R,F=R, F" (28)
and verifies the properties of orthonormally#? = FTF = I. After replacing equation (28)

into (26), the angular velocity can be computed as

0, - %(F _FT) (29)

and the material rotational increment takes the form

N|=

A@ = (F — F") (30)

The operatoF' can be described in terms of the invariafits A¢) of the relative rotation in
the form

1
F = R(n. 5 A¢) (31)
If we choose for instance the Euler parameters, we have

vec F') = nsin %Agb =e (32)
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wheree is the vectorial part of the Euler parameters of the relative rotation. The opdfatc
thus has the following explicit form

ee’ +e (33)

1
F = €0I+
1 €o

and we get the following simplified approximations

(P ~

e AO ~ 2e (34)

n-+

N

S o

After identification with equation (3), we may see that for this parameterization the me
L, . =2Iisconstant.

5 FORMULATION OF A NONLINEAR BEAM
5.1 Kinematicsof abeam
Let (X,(s), Rg) be the reference configuration of the beam such that
1
Xo(s) = Z(XBS + Xa(L —9)) s €0, L] (35)

whereX 4, Xp are the reference positions of the beam element end nbdes 3, and

The reference configuration of poift of relative coordinatey” = (s, Y3, Y3) in local beam
axes is
X(s) = Xo(s) + REY (37)

and the current configuration can be described as
xz(s) = Xo(s) +u(s) + R(s)RgY (38)

wherew(s) is the displacement field of the centerline along the beam axis. It is interpole
linearly as usual:
u(s) = Na(s)ua + Np(s)up (39)

whereN 4(s), Np(s) are the linear shape functions, amg, up are the displacements at node
A andB of the beam. The displacements at the middle of the beam write

1
U5 = §<UA +up) (40)
The rotationR(s) in (38) describes the finite rotation of the cross-section at pofndm
reference to actual configuration. L&, and Rp be the finite rotations3(x 3 orthogonal
matrices) at noded andB of the beam. Finite rotations are objects that lie on a curved manifi
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(the so called special orthogonal grod@3) and do not form vector space. For this reasol
we are not able to interpolate the rotations field as we did for the displacements (note
s(R4 + Rp) is not orthogonal unless both rotations have a common axis).

We will express instead the rotation at the mid-point of the beam in the form:

Ry; = R,H = RgH” (41)

where the rotation increme#f is written:

H = \/RiRy = exp() (42)

Here,¢ is the axial vector of three rotation parameters corresponding to the rofdtion
The deformation of the beam in material frame is computed from:

D(s) = R (R(9"E - ) (43
which, owing to (35-38), can be put in the form
D(s)=TI'(s)+ K(s)Y (44)
where
— I'(s) is the deformation of the neutral axis
I'(s) = RLR(s)" (E1 n Z—Z@)) i (45)
with " = (1 0 0). The deformation at the middle of the beam is thus interpolated in
form
;= RLRY, (E1 + %) iy (46)

— K (s) is the curvature vector of the neutral axis extracted from the skew-symmetric me

+dR

K(s) = RE (RO

<s>) Ry (47)
By approximating the derivative aR as the difference between rotations at the bea
nodes over the beam length, we may write the curvature tensor at the mid-point o
beam in the form:

H-HT

Ko: — RﬁTRE (48)
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We remark that this form of computing the curvature is not fully consistent with t
particular character of rotations. However, this expression may be acceptable whe!
rotations at noded and B do not differ too much between them.

The corresponding axial curvature vector is then expressed:

2 vect H)

Kos = Ry, 7

(49)

where thevector part of a matrix A is defined :[vect{ A)]. = ¢, Ax;/2.

5.2 Rotationsand derivatives of rotations at the middle of the beam

In order to compute the different terms of the beam formulation, we will need to differe
ate the expressions of deformations (equations (46) and (49)). Therefore, we will neces
derivatives of the rotation operator in terms of rotation parameters at the nodes.

The middle rotation has been expressed as :

Ry5 = RAH = Ryexp(e) (50)
The variation of rotations at the middle of the beam then results:
SRy; = Ry0O,H + RyHég = Ry 560, 5 (51)
with @ 4, @, 5 the axial rotation vectors correspondingRy,, R, 5. Therefore:
6045 = RT.R,00,H + 0 = 0+ H 60 . H (52)
and then, in terms of axial vectors we write:

5@05 =0+ HT50 4 (53)

From the definition (eq (42))H*> = R’ Rp, and therefore, the variation df may be
computed by taking variations giving:

HJH + dHH = RLR;3005 — 60,RL R (54)
SincedH = H{g, then:
H%¢ + HSGH = H*5O5 — 6O, H? | (55)
and in terms of axial vectors, we write

5+ H ¢ = 60 — H 60, (56)
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Finally, the variation otp may be computed as follows:

5¢ = [I + HT]™! (593 _ HT25@A) (57)

By replacing the latter equation into equation (53), we get:
6@0; =T+ H"|"'605 — (I+H"|'"H" —I) H 60,4 (58)
By noting that the following identity holds for any orthogonal matfi
(I+H")'"H"-I)H"=[I+H"] "' -1 (59)

we finally get the expression of variations of the rotational vector at the middle of the bean

6@ =[I+H"| 6@ — (I+H"|"' 1)@, (60)

Note that equations (57) and (60) ameact and do not make any approximation for the
evaluation of the derivatives.

Even if the beam suffers large finite rotations, we may consider that rotations at both ext
nodes are not very different between them (ife4, ~ Rjpg). Note that the approximation for
the computation of the curvature tensor (eq. (48) ) is based on this fact. Then, by retaining
order terms in the Taylor series expansion :

1 1 ~
-1 _ * - - 2 - 4 6
T+ B =0 g (14 0+ el + greolel®+ )6 L 6y
we may write:
0605 ~ g d) 0@p + [g - ?] 00 4 (62)
By a similar reasoning, we get
I ¢ I 3¢
o ~ 2 0@p — [5 - T] 0O 4 (63)

5.3 Deformationsvariations

In order to compute the beam internal forces, we need to compute the expressions of the ¢
tives of the axial strains and curvatures.
The variation of the material axial deformatidp s, equation (46), is written:

_ — Sug — 90
0I5 = —R55@0.5Rg.5 <E1 + w) + RER,(J;b (%) (64)
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If we now replace the approximation obtained for the variation of the rotation parameters ¢
middle of the beam, equation (62), we get:

¢
1

5Ty — (ro/,;fil) RT g + 250, + (rﬂil) RT [I ‘b] 50,

2 4

+RLRT <5“’B%) (65)

By differentiation of equation (49), the variation of the curvatures axial vector at the be
mid-point may be written as follows:

MﬁzRﬂ

L ] 56 = B dey s (66)

where de/H| = H — tr(H)I. By using Taylor series developments, we may expidss
andtr(H) in the form:

~ 1~ 1~ 1
HT:I—¢+§¢2—§¢3+... tr(H)zS—||¢||2+6||¢||4+... (67)

Then, after replacement of these two equations into equation (66), and by using equation
we get:

0]
I+ =+ ...
+5+

2RE
0Ko5 = — —LE

S¢p — RTg {— [I _ $] 504 + [I + qﬂ 593} (68)

From now on, we will omit the indef.5 and notate directly", K, . .. for quantities evaluated
at the middle of the beam.

Note thatK = 2RL¢/L, and therefore

L

T n
Rl¢ =~

K (69)

By replacing the latter equation into equations (65) and (68), we get:

or = (F;“> [I+%] RLs@; + (F;“> [I—%] R%50,

+RIRT <—5“B — 5“/*) (70)

L
K = —F—El RLOO, +

% RLsOp (71)

I 2
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If we now define matrixB which relates strains variations at the midpoint with variations
nodal displacements and rotations:

o () [ B () 1 i

0 ~1[1- K| B} 0 L1+ K| RY |
(72)
we may write
5'U,A
ory 0O 4
(55) = B | e 8
0@p

5.4 Deformation energy

The strain energy is computed by integrating the density of strain energy along the beam le
This integral may be approximated using one Gauss point at the middle of the beam, givir

vy [ e () e=5(k) (k) oo

whereC' is the matrix of elastic coefficients, which may takes usually the form:

Here,F A is the axial stiffness;7 A, andG A3 are the shear bending stiffnesses along the trat
verse axes;7.J is the torsional stiffness ankl/, and £ I; are the bending stiffnesses.
The internal forces are evaluated by differentiation of the strain energy of the element:

5’U,A
_(ér r\ |se.| ,
B

After replacing equation (73) in the latter, we get the expression of the vector of internal fo
of the beam:

—RRpN
foi=B" () 1= LRy 1+ K] (;rRR>ZL o 1+ 55

~iRy [T~ K| (T +4)) NL+ Ry [T~ 5K| M

(77)
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where (Aj\; =C (;;) is the vector of internal efforts and moments at the middle poi

evaluated in material axes.
After differentiating the internal forces vector, we get the tangent stiffSess

A’U,A
AB N
L. — — T A T X
Dfin-Aq=SAq=B CLB Aug + (DB Aq) - L (M) (78)
ABp
The first term on the RHS is the so-called material tangent matrix:
Smat = BTCLB (79)

The second term on the RHS of equation (78) is the geometric stiffness matrix, which me
written in the form:

_ v (NYY
S,0\g = D‘N,M (B L ( M)) Aq (80)

where D {} Agq denotes the Frechet derivative along the directitapwith N, M held

constant. These derivatives can be computed straightforwardly and are not given here fo
ciseness. Both matrices,,,, and.S,., are symmetric.

6 FORMULATION OF A BEAM WITH ENERGY CONSERVATION

The key aspect in achieving energy conservation is the computation of internal stresses
(time) mid-point. Indeed, when the mid-point rule is applied for time integration the w
produced by the discrete internal forces takes the tﬁ?t i1 , (@ns1— @), @s shown in section

3.
The strain energy of the beam has the expression:

1 /N r
v (M) . (K) L (81)
and therefore:

v = 5 |(ar) ()L~ () ()
B (J\]\D+ <I€>n+1_(11;)n]L (82)

Then, if we build a strain matri)B’;;+l (discrete directional derivatives) such that:
2

r r X
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energy will be preserved provided internal forces at the mid-point are computed in the aver
form:

* k N
fintm—}—— an— (M> N L (84)

1

6.1 Computation of the strains/displacements discrete directional derivatives matrix

In order to arrive to the expression H;;, we will use the approximatiof, 5 ~ % in
2
the computation of the axial strains giving:

RT RT _
I = R@% <E1 n W) — (85)

Note that thancrement in average rotations between the initial and final time instants may
written:

QZR =2 (Rn+1 - Rn) = (RA n+1 — RA n) + (RB n+1 — RB n) =
Ry,1 (Fa—F{)+Rg, 1 (Fp — F}) = Ry, FaAO, + Ry ,FpAOp (86)

Note also that thenean average rotation between the initial and final time instants results:

R,.,+R, 1 1 1
% = (Ranai+ Ran+ Ry + Rpy) = JRau(Fi+ 1)+ Ry o(Fy+1)
(87)
Finally, using equations (85-87), we get tidentity:
RT T o T T
Loy — L= 52 ( AG,FTR! - AO,FIR’, n) (LE) + i1 — g, ,0)+
T
7 [((Fi?+ DRY, + (Fg* + DR, ] (Aup — Auy) =
R} _
~SE[(FE*+ DRY, + (FL? + DRE,) Au,
RL _
+ E[FTRZ; n(LEl + Up n+ — Uy n+%)]A@A
RL _
+ 17 EN(FI°+I)RY, + (F;*+I)R},| Aup
RT — _
2L [FTRgn(LEl +uBn+ uAn—}—%)]A@B
(88)
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After truncation of the exponential seriéf = exp(%) =TI+ q§+ ... tofirst order, we may
approximate the skew @ in the form:

~ 1
¢~/RIRp — I ~ 3 (RﬁRB — I) (89)
By using the latter expression into equation (48), we get the following approximation for

curvatures vector at the mid-point of the beam which is suitable for implementation of
energy conserving time integration algorithm:

Ry,
Kos = — vect R\Rp — 1) (90)

Indeed, the time increment of the curvatures at the mid-point of the beam may be written:

RT
K,,.-K,= TE vect(RY ..\ Rg i1 — R, Ri,) (91)
The term between parentheses on the RHS may be transformed giving:

T T T T T T
RA n+1RB n+l — RA nRB n = RA n—l—lRB n+l — RA nRB n+1 T RA nRB n+l — RA nRB n —

(F} — F4)R, it Boni 1 Fo— F.R’, i1 B wit(FE — Fp) =

~AO@4R),, Rni1+ RY Ry, 140 = —A0,P, + PyAO; (92)
with Py = R, M%RB w1 Fp and Py = F.\R’, H%RB n+1- After some algebraic steps, we

can verify that:

vec(~A6,P, + PyAGy) = (P} —t(PHI)AO, — (P~ (P36, , (93)

and therefore, the curvatures time increment is written:

Rp g RE
Kn+1 - Kn - EdeV{PB]A@B - E deV[PA]A@A (94)
Finally, using equations (88) and (94), we get:
Z'U,A
A\ ., AO,
(ZK> =Bt | Zuy (95)
A@p
where
B}, Bj, Bj, Bj
B, - (B B Bi 14) %
"t (le B;, B;; B;, (96)
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and:

RT

B = — 7 [(Fi*+ DR, + (Fp* + DRy,
RT

B>1k2 = 2L [FTREn(LEl—i_uBnJr ’u’AnJr%)]
RT

B, — LC[(Fi*+DRL,+(Ff*+ DR
RT —

B>1k4 = 2L [FTRgn(LE1+uBn+ uAn—i—%)]

B, =0

* R%— T pT 2

By, = 5L deVF, R, Ry, F]

B = 0

By, - PLgevFTRT R,.]
24 2L B Bn An

After replacement into equation (97), we obtain the expression of the averaged internal fo

—>[Ran(I+ F3)+ Rg,(I + F3)]RgN, 1

f _ | EFARL (LB + gy — w0 1)|REN, 1 — 5 dePI]Rp M,
z'nt,n—}—% o i[RAn(I+Fi)+RBn(I+F2)] REN

_%[FgRgn(LEl +U’Bn+% - UAnJr;)]REN +3 +3 deV[PB]REM

(9 7
We may see, by comparing with equation (77), the time averaged character of the int
forces vectorf” S The tangent stiffness matri&* is obtained by differentiation of the
2

internal forces vector, as we did previously in section 5.4. It is worth noting that in this case
stiffness is not symmetric, which is characteristic of the energy conserving algorithm. W
not present here the final expression of this matrix for brevity.

7 CONCLUSION

A large rotations nonlinear beam finite element model was developed, in both a classica
mulation and an energy conserving formulation. The element makes several simplification
lead to compact expressions and simple to be adapted to the energy conserving algorithn

The discussion was centered on deriving the expressions of the internal forces vecto
both formulations. The stiffness matrices may be straightforwardly computed by differentie
of these terms.

The inertia terms, although not presented here, can be computed by following a corotai
approach. The mass matrix and gyroscopic and inertia forces have a similar pattern as t
the rigid body, which was presented elsewhd@rénterested readers are referred to this wor
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to find also more details on implementation of the time integration algorithm. Example:
application will be presented at the oral presentation.
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