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Presentamos un a1goritmo de direcciones factib1es basa
do en conceptos de dua1idad, para 1a reso1ucion de problemas
de programacion no lineal con restricciones de igua1dad y
desigua1dad. En cada iteracion se define una direccion de
descenso, 1a que modificada da origen a una direccion de des
censo factib1e. E1 esquema de busqueda lineal asegura 1a am
vergencia global del metodo y 1a factibi1idad de todas 1as
configuraciones. Se prueba 1a convergencia global del proces
so y se describen 10s resultados obtenidos con varios ejem~
p10s numericos.

We presen~ a feasible direction algorithm, based on
duality concepts, for the solution of the non-linear pro-
gramming problem with equality and inequality constraints.
At each iteration a descent direction is defined, by modify-
ing it, a feasible and descent direction is obtained. The
linear search procedure assures the global convergence of
the method, and the feasibility of all the iterates.We prove
the global eonvergence of the algorithm, ~nd show the re-
sults obtained in the reso1~tion of some test problems.



T~e general non-line'ar constrained optimization problem
can be defined -as follows:

min f(x)
x

sUbject to g. (x)
1

g. (x)
1

where f(x) and g. (x) denote real valued functions of a vector
x in the n-dimen§ional Euclidian space Rn.

A considerable research effort has been done to obtain
efficient and reliable methods for the solution of this
problem. Without trying to make a survey of this area. we
can mention different approaches concerning each of the com-
ponents of the problem. That is. minimizing the function.
"solving" the equality constraints and verifying the ine-
qualities. A very interesting survey in this sense. has been
d·one.by Fletcher [9J. The best known methods of unconstrained
optimization are concerned with the minimization of the func
tion. We shall mention steepest-descent. quasi-Newton. and
conjugate gradient methods. when only first derivative infor
mation is considered.

Equality constraints may be eliminated. linearized. or
penalized. Methods using simple penalty functions are robust.
but when a good precision is required the may give ill-con-
ditioning.

Augmented Lagrangians [3.l8J avoid in general the ill-
conditioning. but they are less robust and their precision
is not very good.

When the constraints are linearized. the first idea is to
project the steepest descent or the quasi-Newton direction
on the tangent subspace. In that case we have the ~rojacted
gradient method. or the reduced gradient on [1.2.l9J. When
the constraints are not linear. they need some feasibility
restoring scheme. It is also possible to combine the pro-
jected gradient direction with a feasibility improvement
step [lOJ.

The combination of a linear approximation of the cons-
traints with a quadratic approximation of the objetive func-
tion. is the basis of a family of methods which solve a
quadratic programming sub-problem in each iteration. They
give a direction tangent to the active equality constraints
and im~rove feasibility automatically.

It can be proved that if all the constraints are active.
directions given by projected gradient. augm~nted Lagrangian
and quadratic programming subproblem methods are similar.



Inequality constraints may be treated as equalities,
if the set of active constraints at the optimum is known.
In practice, it is very difficult to make a goodptediction
of the active set and the methods that use this approach
are subject to the so-called "jamming" problem.

Barrier and simple penalty methods search automatically
the active inequality constraints but they may give ill-
conditioning, and inexact penalty functions produce no
feasible points.

The quadratic programming subproblem methods are natu-
rally extended to inequality constraints. They identify very
efficiently the active set [11,18,20J, but the feasible region
of the subproblem may be empty or unbounded.

Duality is at the origin of a family of
the treatment of equality and inequality
Minimax and augmented Lagrangian methods are
cations of this theory.

approaches in
constraints,

natural appli-

If some proper update rule for the Lagrange multipliers
is stated, the exact minimization of the intermediate un-
constrained problem can be replaced by a single mini-
zation technique included in it.

In this work, we present a strong and efficient method
for the solution of problem (1.1), with good global con-
vergence qualities.

This is obtained by establishing an update rule for
the Lagrange multipliers, without employing active set
strategies. Quadratic programming subproblems and ill-con-
ditioning given by penalty functions are also avoided. The
method gives a feasible direction for the inequality cons-
traints and, in consequence, feasible intermediate points.
A super linear local convergence may be obtained by obtained
by including an approximation of the Hessian of the Lagrangian.

An algorithm is given in Section 2, and some numerical
examples are considered in Section 3.

All vector spaces are finite dimensional, the space
of all 0' x m matrices is denoted by Rnxm and the transpose
of M-by MT • If -<P is a real valued function in Rn, then

. 'Vlj>(x) _ (a'<j>(x), ~,

a xl a x2
~)T

ax
0'

We call n the feasible region for the inequality con~
traints, that is \



Definition 1.1: A point i is a "stationary point" of
problem (1.1) if there exists a vector X in am+p such that
the following requirements are simultaneously satisfied:

gi (it) ~ 0 i ·1, .•• ,m

gi(x) .0 i ·m+l, ..• ,m+p

Lg. (it) .0 i ·1, .•• ,m
1 1

and

Ilf(i) + . 1 1: A. Ilgi(it) = o.
1= ,m+p 1

Definition 1.2: A "Kuhn-Tucker point" of the proble~
(1.1) is a stationary point associated to a vector X veri-
fying

Definition 1.3: d E Rn is a "descent direction" at
point x of a real continuously differentiable function $,
if

Definition 1.4: d E itn is a "feasible direction" [21J
of problem (1.1) at x E n if for some T > 0 we have

Defini tion 1.5: A point x 1S a "regular point'" of
the problem (1.1) if the set of vectors



We shall define a feasible direction algorithm
on Lagrangian concepts, for the solution of problem
The method constructs a sequence {xk}, starting from
initial strictly feasible point, verifying

based
(1.1).

m+p
e (x) - f(x) - L cigi(x)

c i-m+l

where c ::(c c) is given by the algorithm.m+l, ... , m+p
A search direction is computed in two stages. First a de-
scent direction of ec(x) is defined; by modifying it, a
feasible descent direction in obtained.

A linear search is stated, in order to guarantee the
global convergence of the method and the strict feasibility
of all the iterates.

An important feature, is that all the constraints are
considered in each iteration, and it is not necessary to
perform any active set strategy.

The iterative algorithm for solving the general non-
linear programming problem (1.1) is stated as follows:

Step 0 : Select a strictly feasible point for the ine-
quality constraints

ox ED, and the values of a, YO' Po



If necessary. redefine the inequality constraints in
a way that

Step I : Compute AO € Rm+p and the descent direction
dO € Rn by solving the linear system of e-
quations

Compute A € Rm+p and the search direction d E Rn by
solving the linear system of equations

m+p
r

i=l

dT Vg. =-[g.(x) + p IdOI2]; i • m+1•••••m+p~ ~



constr~ints, and Yi • 0 for the equalities.
Call T the greatest ti such that

We shall make some remarks explaining the behaviour
of the algorithm and the ideas behind its construction. Sup-
pose first that there are not equality constraints, in
this case:
- At the stationary points of the problem A and ~O are

equal to the Lagrange multipliers, according to definition
1.1. At these points, d and dO·are zero, then they are
fixed points of the algorithm.

L(x) • f(x) ~ E AOi gi(x)
i:'l,m

- Equalities (2.3) can be considered as an updating rule
for AO •
They force dO to point to the constraints associated to
a positive XOi - parameter.
This fact, which performs an automatic selection of the
active set ot constraints, is confirmed in the statement
of the linear search scheme.

- If the minimum of the problem is an interior point, dO
approaches the steepest descent direction.



dO is contained in the subspace tangent to the active
constraints.
Then, when there are active constraints, dO may point
towards the exterior of the feasible region.

- It was shown in ref. [13J that dO becomes 'the proj ected
gradient method when all the constraints are active.

- In order to get a fesib1e direction when there are active
constraints, the ~angent direction dO is modified to
obtain a secant direction d.This is done by adding a
positive element in the 'right hand side of (2.3), getting
(2.6). p is computed in a way to assure that d is a
descent direction also (see [13J).

- Strict feasibility is needed to avoid stataionary points
which are not Kuhn-Tucker points.

- The stepsize procedure maintains a monotone decrease of
the function and acts as a barrier, in order to escape
from the constraints with negative A.' It also guarantees
strict feasibility at each iteration. We used an Armijo
type procedure, wich showed to be very simple and effi-
cient.
When equality constraints are also considered, we shall
mention that:

- Condition (2.4) can be considered as an updating rule for
AOi' wich forces the new configuration to meet the equa-
lity constraint~.

- Condition (2.7) and the linear search procedure
that all the iterates are on the same side of the equa-
lity constraints.
Otherwise, it would be necessary to use a nondifferentiab1e
function instead of ec defined in (2.1).
The proof. of global convergence of this method was
ve10ped by the author in ref [13J. It was assumed
f is C1, g. are C2, and that all the iterations give~
u1ar points of the problem.

de-
that
reg-

The given algorithm has been applied to several test
problems. We report here our experience with six problems,
described in a work by Hock et a1 [14J.

We shall identify them with the same number as in the men-
tioned work.
Problem 35 - (Beale's problem) has 3 design variables and

4 linear inequality constraints.

Problem 43 - (Rosen - Suzuki, [7J has 4 d!sign variables
and 3 non-linear inequality constraints.



Problem 78 - [3,15] has 5 design variables and 3 non-linear
equality constraints.

Problem 80 - (Powell, [18J is a modification of problem 78;
it has 5 design variables, 3 non-linear equa-
lity constraints and 10 linear inequality con-
straints.

Problem 86 - (Colville n91, [8] has 5 design variables and
15 linear inequality constraints.

Problem 117 - ·(Co1ville n92, [8] has 15 design variables,S
non-linear inequality constraints and 15 li-
near inequality constraints.

In all of themm the initial point is feasible for the
inequality constraints and non feasible for the equalities.
The iterative process was stopped with a value of the func-
tion correct to five significant digits, the inequalities
verified, and the equalities verified with an error less

5

The tests were performed on a HB-68 DPS/Mu1tics com-
puter. All the calculations were carried out in single pre-
cision (27 bit mantissa), except problem 117, for which
double precision was used.

In table 3.1 we give our final results and also inter-
mediate results in which the objetive function value is
correct up to two significative digits.

Even if the purpose of the work of Hock et a1, was not
to study the efficiency of the tested non-linear program-
ming methods, it is very convenient to compare our results
with those that they obtained with six different methods.
In their work, the best performances are given by VF02AD
and OPRQP programs.

VF02AD was developed by Powell; it is an implementation
of Wilson, Han and Powell's method [11,12,16,17].

OPRQP w~s developed by Biggs, based on his own method
descr"ibed in refs. [5,6J. Note VFIJ2AD solves a quadratic
programming subproblem at each iteration, and .OPRQP needs
an active set strategy. Both programs approximate the Hessian
of the Lagrangian of the problem, by means of a quasi-Newton
method.

In the numerical tests shown in [14], in general VFIJ2AD
needed a less number of functions and gradient evaluations
than OP~QP; but in counterpart, OPRQP used less calculation
time.



In the examples considered here, the number of eval-
uations with our method, generally goes between the number
of VF02AD and OPRQP. We estimate that computation time per
iteration used by our method is similar to that used by
Bigg's approach.

Table 3.1 shows that the final convergence of the pre-
sent method is slow. It seems that this may be improved with
the use of quasi-Newton technique.

Problem Iteration Func. and grad. Function value
evaluations -

35 5 6 0.1123447

9 11 0.1111125

43 5 9 -43.81453

13 18 -43.99907

78 5 5 -2.959694

12 12 -2.919709

80 3 4 0.05478925

15 18 0.05394989

86 6 6 -32.03453

9 9 -32.34851

117 34 38 32.81567

49 64 32.34897

Considering that the present is a feasible method and
that it doesn't make use of quasi~Newton techniques, we
conclude that the numerical results are very satisfatory.

The method proved also to be very reliable. This is due
to the fact that active set strategies are unnecessary, and
that the linear search scheme doesn't introduce discontin-
uities.



Abadie, J., Carpentier, J., "The generalization of the
Wolfe reduced gradient method to the case of non-linear
constraints, in: Optimization, R. Fletcher ed., Aca-
demic Press, 1969.

Abadie, J., "Methode du gradient reduit generalise: Le
coede GRGA, Note HI 1756/00, Electricite de France, Pa
ris, 1975.

Bertsekas, D.P., "On penalty and multiplier methods for
constrained minimization, SIAM J. Control and Opti-
mization, Vol. 14, n9 2, 2/1978.

Biggs, M.C., "Constrained minimization using recursive
equality quadratic programming, in: Numerical methods
for non-linear optimization, F.A. Lootsma ed., Academic
Press, London, New York, 1971.

Biggs, M.C., "On the convergence of some constrained
minimization algorithms based on recursive quadratic
programming, Journal of the Institute of Mathematics
and its applications, Vol. 21. n9 1 (1978), 67-82.

Bartholomew-Biggs, M.C., "An improved implementation
of the recursive quadratic programming method for con-
strained minimization, Technical Report n9 105, Numer-
ical Optimization Centre, The Hatfield Polytechnic,Hatfield,
England, 1979.

[7J Charambolus, C., "Non-linear least path
and non-linear programming, Mathematical
Vol. 12 (l977), 195-225.

o,ptimization
Programming,

[8J Colville, R.A., "A comparative study on non-linear program-
ming codes, IBM Scientific Center, Report 320-2949, New
York, 196,8.

[9] Fletcher, R., "Methods for non-linear constraints, NATO
Advanced Research Symposium, Cambridge, 7/1981.

~OJ Gabay, D., "Reduced quasi-Newton methods with feasi-
bility improvement for non-linear constrained optimi-
zation, 10th International Symposium on Mathematical
Programming, Montreal, 10/1979.

[llJ Han, S.P'., "Super linearly convergent variable metric
algorithms for general non-linear programming problems,
Mathematical Programming 11 (1976), 263-282.

[12J Han, S.P., "A globally convergent method for non-linear
programming, J.O.T.A., Vol. 22, n9 3, 7/1977.



Herskovits, J., "A two-stage feasible direction algo-
rithm for non-linearly constrained optimization: LN.R.LA
Rap. N9 103, Le Chesnay, France."

Hock., W., and Schittkowski, K., "Test examples for non-
linear programming codes, Lecture Notes in Economics
and Mathematical Systems, Springer Verlag, 1981.

Powell, M.J.D., "A method for non-linear
in minimization problems, in: Optimization,
ed., Academic Press, New York, 1969.

constraints
R. Fletcher

Powell, M.J .D., "A fast algorithm for non-linearly con-
strained optimization calculations, in: Proceedings
of the 1977 Dundee Conference on Numerical Analysis,
Lectures Notes.in Mathematics, Springer Verlag, Berlin,
Heidelberg, New York, 1978.

Powell, M.J.D., "The convergence of variable metric
methods for non-linearly constrained optimizations, in:
Non-linear programming 3, O.L. Mangasarian, R.R.Meyer,
S.M. Robinson eds., Academic Press, New York, San
Francisco, London, 1978..

Powell, M.J.D., "Algorithms for non-linear constraints
that use Lagrangian functions, Mathematical Program-
ming, 14 (1978) 224-248.

Sargent, R.W.H., "Reduced-gradient and projectionmethods
for non-linear programming, in Numerical Methods for
constrained Optimization, edited by Gill P.E. and W.
Murray, Academic Press, London, 1974.

[20J Tapia, R.A., "Diagona1ized multiplier methods and quasi-
Newton methods for constrained optimization", J.O.T.A.,
Vol. 22, n9 26/1977.

[21J Topkins, D.M., and Veinott, Jr., "On the convergence of
some feasible direction algorithms for non-linear pro-
gramming, J. SIAM Control, Vol. 5, n9 2, 1967.


