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Este artigo trata de la investigacion del campo de flu
jo sobre cuerpo chato por la resolucion de las equaciones tiem
po dependientes de Euler. La solucion es obtenida por la mar
cha en el tiempo una hasta alcanzar su estado permanente. El
choque es capturado como una parte de la solucion. El progra
ma de computacion desarrollado es aplicable a flujo continuo
y puede ser facilmente modificado para considerar 105 efectos
de la eonizacion y de la disociacion en 105 cuerpos de reen-
trada. Muestra de 105 resultados de flujo sobre unaesfera 10
calizada en una corriente supersonica es presentada y compa=
rada con otros resultados.

The paper deals with the flow field investigation over
a blunt body solving the time dependent Euler's equations. The
solution is marched in time till the steady state is reached.
The shock is captured as a part of the solution. The computer
code developed is applicable to a continuum flow and can be
easily modified to consider the ionization and the dissociation
effects in a reentry-body. Sample results over a sphere kept
in a supersonic stream are presented and compared with other
results.



There has been considerable interest in the solution: of
the subsonic region of a blunt-body problem sin.ce the las t
three decades or so when it was originally solved by Belotser
kov.ski III using the method of integral relations. Subsequently-;-
various attempts have been made 12 - 51 to investigate .this
problem over a sphere bya time-dependent'apj)J::oach.ln the pre!.
ent paper, the formulation, usingtime .••dependent approach 151,
for a general configuration is presented •.· The· equations are
written in the conservation form of Lax 131~

The time derivative is replaced by a forward and the spa.
tial derivatives by a central difference schemes.The solution is
ob t a ined by mar chi ng in time till the convergence is reacb,ed. Vari
ous studies have been made to accelerate the convergence by
controlling the time step as the CFL stability criteria. in
certain cases, .~id not yield a convergent solution. _

The shock is captured as a part of the solution. Sample
results over a sphere along with its computer schlieren are
presented and compared. The comparisions show a good agreement
with other theoretical/experimental data.

The computer code developed is applicable to continuum
flow but can be easily applied to consider the ionization and
the dissociation effects in a re-entry-body.

The well-known basic equations of gasdynamics include those
for conservation of mass, momentum and energy in addition to the
equation of state.

Considering that the gas is inviscid and non-conduting these
non linear partial differential equations can be written in a
compacted form, in terms of four independent variables namely
the time plus the spatial coordinates:
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where the subscript Xl is time and x2, x3' x4 are spatial de
r~vatives. depending upon the coordinates sistem choosen. The
81 are column matrices defined by
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where hi = aCi/dXi are metric coefficients, whence ci
arc length evaluated in the xi(2 ~ i ~ 4) diretion,
.he other two independent variables fixed.

are the
keeping

In equation (1), p represents the density, p is the pres~
ure and u, v, and ware velocity components in the xi direc-
tions respectively and fina1y e represent the total energy
per unit volume related by

Depending upon the choice of hi, hz and h3 the differ-
eat coordinate system, table 1, can be used

coordinate spatial metric
System increment

xm * lIxm hm

Cartesian x, y, z lIx, lIy, lIz 1, 1, 1
Cylindrical r, <p, z lIr, lI<p, /5,z 1, r, 1
Spherical r, e, <p lIr, lie, M 1, r, r sine

To choose a coordinate system, we use those metric
of the table 1. We expand and rearrange the equation (1).
How this Euler equations is written in a conservation form,
we use the classical FTCS (Forward Time Central Space) ap-
p~oach obtaining the first order derivatives resulting in the
general explicit finite difference scheme given by
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The value of et j k (n -time level) is obtained of av-
erage put into effect upon the mesh point surrounding to a
~ene'ric mesh p-oint (i,j"k). May be included in the expression
that eyolve e?- j k terms that depend on the coordinate system,
Jhich finally1, assure that flow in the free stream region
remain uniform during computation. The Sf j k means the cal-
culation in (n + 1) time level. ' ,



The Sm is central difference operator which when applied
to generic function nm (dependent of the variables p, p and v)
has the form (1/2~xm) Inm +1 - nm - lli,j,k·

The spatial increment is represented by ~xm and the time
level increment obtained of the CFL condition is given by

whence a is the local sound velocity and hm the scale factor.
As the CFLcondiction is necessary but not sufficient to en-
sure the stability requiriment in the computation process, m~
nipulations in ~t (CFL) value was accomplished.

As the value of the flow quantities are advanced in time,
the solution of the difference analogues of Eqs (3) is straight
forward. At t = 0, the initial conditions are that of the free-
stream. The boundary conditions in the entire computing region
are specified as in Ref. 141. The grid is en tended one mesh
width inside the solid body. None of the variables is computed
there but assigned a suitable value to satisfy the exact flow
tangency condition on the body.

The magnitude of the time-step, ~t, used for the marching
is controlled by the CFL stability criteria 141. But cer-
tain difficulties were encountered, with this ~t, to obtain
a stable solution. However a stable solution could be possible
for a reduced time-step value of ~t/N where N = 600. Actually,
different values of N are attempted for a stable solution and
the largest of ~t/N is retained since the spread of the shock
transition is primarily proportional to (~r)2/~t.

In the case of a sphere, the ray e = 0 is treated in a
different manner 141 to avoid problems associated with the van
ishing of Sine in the governing equations written in spherical
coordinate system.

The present computer code developed at IAE is very gen-
eral to consider different configurations. However a few sample
results are presented only for a sphere to demonstrate the
good comparision obtained with experimental data. In fig. I,
the pressure distribution and the location of the sonic point
ever a sphere for different Mach nos 3,5 and 10 are presented.
The comparision with the experimental data is very good. Fig. 2
shows- a sample of the development of a steady state solution from
the initial value of the free stream at the e = 0° over a
sphere kept in a free stream of Mach no. = 4.03 in Fig. 3, a
computer schlieren for M = 4.03 over a sphere is presented.
It can be seen that the shock is not very sharply cpatured in
the present case. However, its spread can be reduced by in-
creasing the mesh points near the earlier calculated shock
regions.

The solution presented was carried out for an ideal gas.
However, by adding the equatLons of chemical kinetics, it is
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Flg:~ COMPUTER SCHLIEREN OF THE SHOCK
SHAPE FOR A SPHERE (Moo =4,031.
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possible to include the effects of dissociation and ionization
on the flowfield as encountered in re-entry problem.

Belotserkovskii, O.M., "Flow past a Circular Cylinder
with a detached shock waves", AVCO Corporation, RAD-9-
TM-59-66. 1959.

Moretti, G. and Abett, M., "Time-Dependent Computational
Method for Blunt-Body flows", AIAA Journal, Vol. 4, no. 12,
1966, p 2136-2141.

Lax, P.D. "Weak Solutions of Nonlinear Hyperbolic Equa-
tions and their Numerical Computation", connn. Pure Appl.
Math., v.7, 1957, pp. 159-193.

Bohachevsky, I. O. and Mates, R.E., "A Time-Dependent Com
putational Method for Calculation of Flow about an Axi~
xymmetric Blunt Body at Angle Attack", AIAA Journal, V.4,
no. 5 (1966) p 776-782.

Nascimento, D.P., Prakash, S. e Fourniols, J.R., "Anali
se da Regiao Subsonica em Problema Corpo Rombudo Usanda
Aprox imac;ao Tempo Dependen te", subme t ido VIII COBEM-BRASIL,
1985.

Inouye, M. and Lomax, H. "Comparision of Experimental
Numerical results for the flow of a Perfect Gas about
Blunt Nosed Bodies" NASA TN D-1426 (1962)

Baer, A.I., "Pressure Distribution on a Hemisphere Cyl-
inder at Supersonic and Hypersonic Mach Numbers". AE DC
TN-6l-96 (1961)

Singh, K.P., Babu, T.C., and Hussaini, M.Y. "Computation
of Supersonic Flow Past a Multi-Stage Rocket at Zero Angle
of Attack", Trivandrum - India, VSSC TR-00008 (1975).

~~7f~


