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Se presenta un nuevo metodo para la resolucien de problemas de o~
timizacien de funciones objetivos no lineales con restricciones linea-
les 0 no lineales. Este metodo se basa en la combinacion de un metodo
derivativo y otro de busqueda directa. La seleccion de los algoritmos
se realize teniendo en cuenta la velocidad de convergencia y la preci
sien en la resolucien de probl~mas de este tipo. -

Se concluye que este metodo es muy eficiente debido a que es capaz
de llegar a la solucion aun en aquellos casos en que otros algoritmos
iterativos pueden diverger. Se presentan en tablas los resultados nume
ricos alcanzados y las comparaciones con otros metodos. -

A new method for the solution of optimization problems of non -
linear objetive functions with linear or non-linear constraints is
shown. The new method is based on a combination of a derivative method
and a direct search method. The choice of algorithms was made taking
into account the convergence rate and precision in the solution of
this type of problems.

To sum up, this method is very efficient since it can arrive at
the solution even in cases where other iterative algorithms diverge.
The numerical results achieved and their comparisons with the results
obtained by other methods are given in different tables.



The determination of the optimum of an objetive non-linear func-
tion subjected to linear or non-linear restrictions is a problem which
very frecuently occurs in the different stages of the technological and
scientific knowledge development. Thus, in Chemical Engineering we have
problems such as: '

Parameter estimation
Sequential experimental design for discrimination among
rival models.
Sequential experimental design for precise parameter estimation
Solution of algebraic and trascendent equations.
Optimun design and operation of industrial equipment and
processes.

These problems are generally solved as optimization problems by
means of the appropiate numerical method.

There is a large bibliography about algorithms to be used in the
solution of optimization problems. Each algorithm can be used to solve
rapidly and precisely a given type of optimization problem.

However, these algorithms may fail when used in the solution of
other problems in which the objetive function is of the same type for
which the algorithms have been developed. The failure of the algorithm
can be detected in some cases when the optimun value of the objetive
function is previously known.

There are, however, many problems where this value is unknown,
for example in non-linear regressions where neither the model nor the
variance of the experimental error is accurately known.

According to the authors' experience and the work of Spang (1962)
Rosembrock & Storey (1966), Berveridge & Schechter (1970) and Buzzi &
Casapollo (1972a);these difficulties can be convenienty overcome
applying a new method based on a combination of algorithms.

A combination between a derivative and a direct search method is
developed in this paper in order to solve optimization problems of no~
linear objective functions subjected to linear or non-linear cons_
traints. The algorithms were chosen considering the converg~nce rate
and the precision achieved in solving optimization problems of different
types.

1. Algebraic and Transcendental Equation System (Buzzi &
Casapollo, 1972a)

An algebraic or transcendental system of p equations with the
same number of unknowns is written as:



In the non-linear systems, the determination of vector k values
in eqn. (0 is generally subjected to "r" linear or non-linear
constraints.

In expressing equation (1) as an optimization problem, the
following objective function is obtained:

2. Parameter Estimation (Draper & Smith (1966),Kitrell (1966),
Beck & Arnold (1977), Froment & Hosten (1981), Quiroga & Go-
ttifredi (1982).

The most general case of parameter estimation belongs to the
multiple response models with interdependent experimental errors and
covariance matrix of unknown experimental errors.

The following objetive function is obtained from the maximum
likelihood principle:

F = Min [det ( ~ ) ] (4)
.{~}

However,if the covariance matrix of experimental errors is known
the objetive function is:

i.. (Y.. - 'l. .. )(Y .k - 'l.k)Jj=l F J~" ~ J

From a mathematical point of view, equation (5) can be adapted to
different statistical considerations used in parameter estimation.

3. Sequential Experimental Design for Discrimination among Rival
Models. (Box & Hill (1967».

For the discrimination among rival models "Box and Hill deduced the
following expression from the information theory:
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4. Sequential Experimental Design for Precise Parameter Estimation.
(Hunter et al (1969), Kittrel et al. (1968), Buzzi & Donatti
(1970), Hosten (1974), Hosten & Emig (1975), Froment & Hosten
(1981» .

The following equation represents a criterion for an experimental
sequential design for a precise parameter estimation, given by Box and
Lucas (1959).

• Max {det 1
l~nt1~

v:z.
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These are only some of optimization problems that very frequently
occur in Chemical Engineering and related subjects. They require the
use of numerical methods for their solution.

Equations (4) & (7) define several types of objetive functions,
therefore a general optimization program must take these observations
into account.

Buzzi and Casapollo's detailed analysis on the most important
algorithms, and their respective modifications (1972 a,b) have been
suggested as the numerical techniques to solve optimization problems.
Their analysis emphasizes algorithm classification, its advantages and
disadvantages, and the criteria which have been suggested to overcome
the critical situations.

Buzzi and Casapollo used their analysis to make a program to solve
problems similar to those represented in equations (1) and (2). They
selected the Newton-Raphson method and the NeIder & Mead method as
basic algorithms.

The authors of this paper have studied the behaviour of the NeIder
&"Mead method in the resolution of problems similar to those shown in
equation (5) by means of a simulation technique of generated data
through a numerical integration system. It was noticed, even in the
simplest case of a single response, that the method could not solve
the problem with precision.

The following conclusions are the result of the previously
metioned Study:

a) To increase the method efficiency it is necessary to optimize the
magnitude of the distance between the simplex vertexes.

This may be done at the beginning or during the reconstitution
of the simplex figures.

b) The method stops at points quite far from the optimum and any
attempt to automatize the method to bring it closer to the optimun
requires a very long computing time.



direct search method and based on their experience they chose Buzzi's
OPTNOV method (1967 a,b). The main advantages of this method are:

It is safely convergent
The optimum is determined with acceptable precision.
It has given good results in the solution of problems similar
to those shown in equation (5), with experimental data coming
from differential integral reactions.
It allows optimization problem solutions with non-linear
constraints.

The main disadvantage noticed is its slow convergence rate which
is very notarious when the method is compared to other algorithms
which have demonstrated to be efficient in the solution of quadratic
functions similar to those shown in equation (1). This disadvantage can
be conveniently overcome combining the OPTNOV method with some deriva-
tive method.

The Marquardt method (1963) is one of the most important deriva -
tive methods. It is widely used as an optimization method due to the
advantages that it offers (convergence rate and stability) in the
solution of problems similar to those shown in equation (1). However,
it has been noticed that the Marquardt method does not have good
convergence stability when solving parameter estimation problems. This
disadvantage can be overcome by using the OPTNOV method which has good
convergence stability and the OPTNOV method disadvantage can be overcame
by using the Marquardt method which has good convergence rate.

The Marquardt method characteristics important in the development
of an optimization program are:
1. In each interaction the method predicts -the step and direction in

which the optimum value is located. Both are calculated by means of
the following equation:

(~T ~ + .A 1) (!!.q + 1 _ !!.q ) = _ ~T i

Lagrange's multiplier,Jl, behaves as an empiric parameter whose
value shows the direction in which the optimun value must be looked
for. This direction is the resultant between the direction expressed by
the hill-climbing method and that expressed by the methods based on
Taylor's series. It is easy to see that for). _ CI , the solution of
equation (8) expresses, the same step and direction as the Newton-Gauss
method does.

On the other hand, for A-co, bq+1_ bq are noticed. They are very
close together and in the direction given by the hill climbing method.

Marquardt's criterion to calculate the )l parameter values has
been modified by the authors of this paper. The flow diagram of the m£
dified Marquardt method is shown in Fig. 1.

According to equation ~8), know},edge of thy Jacobian Matrix ~ is
required. Its elements are igij} = t'fj / ) hi] ; they can be calculated
knowing the analitical or numer~cal der~vatives. These alternatives have
been considered in the development of the program. The numerical analysis



of the elements (gij} was done according to the followin equations:

f. (b1 ••.•• b. + $.....,bp) - f.(b1, .•.•b .•.•.• b )
J 1 1 J 1 P

with i· 1•••• , p. j • 1, .••• n. The diferential elment bi is calcu-
lated as Ibi I 10-4. If the resul is ~ i ~ 10-7 it will be considered

~i - 10-7.

The .ethod cannot be easily adapted to solve optimization problems
with constrains.

It is required the use of a triangularization or matrix inversion
numerical method to solve equation (8). The behaviour of Choleski's
method has been studied with this objective in mind (Ralston & Wilf
(1966), Pipes (1963), Golub (1965). Scarborough (1966), Salvadori &
Baron (1969). Peters & Wilkimason (1970».

It allows the solution of equation (8) through triangularization
saving computing time.
It allows the calculus of the determinant of a "p" order matrix.
(4) and (7).
It can be used to estimate the inverse of a matrix. This allows
the solution of the most general case shown in equation (5).
It is not advisable to use the method if simple precision is
required, because the errors between l!and ~ or the resulting
matrix (~T~) u;l ~-1 errors are big and become bigger as "p"
increases.
It is noticed that the relative error belongs to the 10-10 order
or lower when working with double precision and with the 20th
order matrixes.

For these reasons Choleski's method has been chosen andimpemented
in such a way so as to allow the first row to be interchanged with the
largest absolute value element row of the first column.

Golub's criterion (1965) was rejected because it is more accurate
but it needs more computing time.

This program based on the direct search OPTNOV method and the
derivative Marquardt method is called REGRE.

In this program some of the followimg alternatives can be chosen
to solve optimization problems:

the OPTNOV method only (KD
the methods combined with

cO).
\gij ~

{gij}

The use of
The use of
(KD = 1).
The use of
O{l) • 2).

These are expresed by the user in its external subroutine. Internal
and external subroutine interactiona are shown in Fig.2. The REGRE



~ubroutine leads all operations and takes the decisions. The main
characteristics of each subroutine are:
REGRE:
AUREA:
FUNLIM:
ROTAR:

It is Buzzi's OPTNOV modified subroutine (1968 b).
It is Buzzi's PASSOI and AURNOV combined subroutines.
It is Buzzi's FUNNOV modified subroutine.
It is Buzzi's ROTAR modified subroutine.
The main modifications concern the redefinition of the OPTNOV
method original variables just to reduce the program
requirements.
It is the development of Marquardt's method shown in Fig.1.
It is the development of Choleski' method.
It is a subroutine through which initial, intermediate and
final values from optimization variables and finals of some
statistical variables are printed.

MEDE:
CHOLES:
IMPRI:

The external subroutines that must be implemented by the user are:
MAIN: It is the main program through which the control parameter

values of the REGRE and the initial values of the optimization
independent variables as well as any other related information
are introduced.

FUNCIO: It is the subroutine where the objetive function calculus form
is expressed.

LIMITE: It is the subroutine where the restriction calculus form is
expressed.

DERANA: It is an optional subroutine where the terms of-the Jacobian
matrix are expressed. If anyone chooses KD = a or KD = l,this
subroutine must be annulled.

The subprogram operative control is given by the REGRE subroutine.
The calculus operations start with the memorization of the optimization
variables and the constrains control. If one of the constrains is
violated, the subprogram notices this anomaly and the control is imme-
diately transferred to the MAIN. Otherwise F(memorized as FO) is cal-
culated. This criterion was chosen taking into account the fact that
many times the constrains are imposed to prevent the internal function
calculus whose arguments exceed the higher accepted values.Once FO is
calculated MEDE, subroutine takes the operation control and the calcu-
lations go on as shown in Fig. 1. According to the reasons why MEDE
operations end, the REGRE decisions are:
1a. If the best absolute value of the objetive function found at the

moment, "Fopt", is lower than a certain value, for example lO-8,or
if the number of interactions planned by the user are achieved,the
operation control returns to MAIN.

2a. If the constraint control over ~q+1 shows that they violate the
constraints the 12 value corresponding to "Fopt" is retaken and the
operation sequencies related to the initial OPTNOV cycle continue.

3a. If an unstable convergence region is detected (j ~ 10+ p), if it
belongs to a ~ variable insensitive region or if ;l value is too
high (e.q. '" > 108), the ~ values corresponding to Fopt are
retaken and the OPTNOV "antricrisis" cycle continues.

Once the OPTNOV initial cycle is completed in the REGRE according
to option 2, the operation control returns to MEDE, because the

critical region was left behind and the Marquard's method can continue
with rapid convergence.

After the cycle is completed, the completion causes are analized
in the REGRE and the following decision are taken.



lb. If no improvements is noticed in F t' the operation continues
according to what was first planneRP in the OPTNOV.

2b. On the other hand, if a better F value in "F t" is obtained,
decisions la, 2a or 3a are taken. op

The constraint controls and decision criteria are the same as
Buzzi's (1969 a,b).

The REGRE memory requirements thought to solve optimization pro-
blems given by equations (1) to (7) are of the following order:

217 p + P + n(2v + u + pv) + 3 r

Use of the OPTNOV - Marquardt combined method in the solution
of problems.

Classical examples were chosen to compare the combined method to
other algorithms. The program is developed in FORTRAN IV computer
language with simple and double precision called REGRE and REGRED
respectively.

In the final result tables, NI expresses how many times theoijedive
function was evaluated. The best objective function value obtained in
the NI interactions is shown in column F. The NI value agrees with the
number of the final interaction.

The method, called REGRE, was applied to different examples chosen
for their comparison with other algorithms.

The method has shown excellent convergence velocity even forprotlams
due to bad conditional of the variables as the example suggested by
Powell (1964) or as the highly unbalanced functions referred to by Buzzi
(1968) and Tabato e Ito (1973). Because the REGRE method is a combinmion
of the OPTNOV direct search method and the Marquardt derivative method,
it has more acuracy and reliability than each of the two mentioned
before. The REGRE method has also shown an excellent behavior in the
resolution of problems of parameter estimation in systems with complex
chemical reactions.

The results obtained by the application of the REGRE method to
different examples are given in Tables.

Example 1

f1 = 104 b1 b2 - 1

This example is cited by Buzzi & Cassapollo (1972b). Originally it
was proposed by Powell (1964) as a complex particular case due to a bad
conditioning of the two variables. Table I shows REGRED program and
other authors' results.



- 333 -

4 -b1 -b2 2 2TABLE I. f1 = 10 b1b2 - 1; f2 = e + e - 1.0001; F = f1 + f2
initial value point k (0;1): F=1.13; Results:k(1.098 E-5;9.106)
F = O.

METHOD OR AUTHOR F b1 x 105 b2 NI
REGRED: KD = 0 1.10778 E - 4 2.2 4.543162 223
REGRED: KD = 1 3.6281 E -20 1.097 9.1136253 37
REGRED: KD= 2 1.3221 E -19 1.09725 9.1136252 13
Buzzi Ferraris & 1.4338 E -13 1.098159 9.1061461 26
C~ssapollo(1972b) 7.3881 E - 9 1.1064 9.0380 223Ref. (2)
Ref. (3) 5.2812 E - 8 1.2524 7.9841 202
Morales & Quiroga
(1980) (Newton- 2.3 E -22 1.098 9.10614 12
Raphson method)

Example 2. Non - linear regression.

N
F .2... Wi( Y. -'7. .)2

i=1 ~ ~

rz (31 + (0.49 -f.J
1

) exp { -P2 ( X - 8)J

The problem reported by Draper & Smith (1966) was solved using
the REGRED program in order to study its behaviour in the solution of
non-linear regression problems.

The final results for the two initial values of b are shown in
table II.

N

TABLE II.F=2 (Y. - rz.>2p.; 1= f.J1+ (.49 - ~1) exp {-~2(X - 8)1i=1 1. 1. 1. 'j

METHOD F b1 b I NI2
REGRED : KD = 0 0.4976 0.38757 9.1513 E-2 300
REGRED : KD = 1 0.4976 0.38754 9.141 E-2 215
REGRED : KD= 2 0.4976 0.38754 9.142 E-2 244

= ~ X12 + (3 2 (l) 2
2
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1.2 = f.>1 I X + ~ 2 X

'b (31 + {32 X

'14
= p., 12 + f.>2 X/3e1

15 10 - 0.32 X <{31+(32X)

This example was chosen to study the REGRE and REGRED program
behaviours in the solution on non-linear regression problems in
multiresponse models.

X Yl Y2 Y3 Y4 Y5
I 1. 6.88 11.86 11.88 6.97 6.84

2. 9.60 6.19 11.84 7.56 5.03
3. 16.97 3.87 12.80 7.14 3.07
4. 25.57 4.14 14.76 9.38 2.45
5. 30.29 2.63 14.52 10.05 2.13
6. 38.39 2.08 15.64 11. 75 2.26
7. 47.45 2.41 17.08 15.28 3.31
8. 56.21 2.28 18.09 19.53 4.96
9. 65.01 1.79 18.84 24.70 7.02

10. 75.69 2.22 20.32 33.22 10.07

~
1 2 3 4 5

1 1. 0.364 0.482 0.245 - 0.036
2 0.364 0.25 0.195 0.206 0.0042
3 0.482 0.195 0.25 0.14 - 0.016
4 0.245 0.206 0.14 0.25 0.0227
5 - 0.036 0.0042 - 0.016 0.0227 0.0225
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REGRED REGRED
Ec. KD

F b1 b2 NI b1 S NIS F b2
Inic 1.812 E 3 12 0.5 - 1 1.812 E 3 12 0.5 - 1

a 15.5276 10.017 1.0012 15.5276 107 5.5275 10.017 1.00115 15.527 118
(16)

1 15.5276 10.017 1.0012 15.5276 83 5.5275 10.0176 1.00119 15.527 98

2 15.5276 10.0171 1.00119 15.5276 77 5.5275 10.0176 1.00119 15.527 97
Inic. 9.1806E 4 12. 0.5 - 1 9.1806 E 4 12. 0.5 - 1

a 2.06112E 2 10.0119 1.0023 15.537 160 2.0609 E 2 10.0119 1.00225 15.537 160(14)
1 2.0615 E 2 10.0169 1.00256 15.539 243 2.0609 E 2 10.0124 1.00227 15.536 300--
2 2.0609 E 2 10.0126 1.0023 15.537 300 2.0609 E 2 10.0132 1.00233 15.536 182

nic. 2.5475 E 5 12 0.5 - 1 1.5475 E 3 12. 0.5 - 1

a 7.1733 EH 10.0024/ 1.000484 15.567 187 7.1478 E-6 10.0028 1.00053 15.564 196(17)
1 1.3451 &5 10.0082 1.00272 15.549 300 1.2306 E-5 10.0124 1.00118 15.531 300

2 7.1733 Erl 10. 0023~ 1.000471 15.567 222 7.1455 E-6 10.0022 1.00052 15.567 205
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!l(~);!2(~): (r x 1) .vectors of the inferior and superior boundaries
respectl.vely.

82 estimate of error variance

observed value of the i-th response variable during the
j-th experiment.

true, unknown, value of i-th response variable corresponding
to the j-th observation.

variance of predicted value of dependent variable under
model i.

(v x v) covariance matrix of experimental errors in the
multivariate regression situation,
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