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Abstract. It is presented in this work a direct (non-iterative) method for solving the inverse scattering 
problem using the framework provided by the topological derivative and the boundary element 
method. The application is based on the topological derivative for scattering problems introduced by 
Feijóo (2004a).  
The method allows imaging the boundary of an impenetrable object immersed in a homogeneous 
medium by using a set of measurements of the radiated scattering pattern resulting from illuminating 
the object from different directions. This leads to an optimization problem consisting in the 
minimization of the mismatch between the measured scattering pattern and the scattering pattern 
resulting from an impenetrable inclusion placed at a point in the medium. The rate of change of this 
mismatch with respect to the size of the inclusion is the topological derivative field. Based on the 
heuristics that the boundary of the object can be assimilated to a group of inclusions, the boundary of 
the object is identified as the locus defined by the positions of the inclusions resulting in the highest 
values of the topological derivative. 
The computation of the topological derivate requires the pressure solutions of the adjoint and forward 
problems. The solution of the forward problem is that of the incident wave for a medium without 
obstacles. On the other hand, the adjoint problem accounts for the difference between the forward 
solution and the scatter measures in the field around the object. Both, the forward and the adjoint 
problems can be solved analytically.  
Reconstructions are done in this work by using synthetic data produced by means of a three-
dimensional boundary element analysis which requires the discretization of the object boundary only. 
The scatter solutions for a number of measuring points placed circularly around the inclusion are used 
as input data to compute the adjoint solution referenced in the previous paragraph. The BEM 
calculations are straight forward since the measuring points can be associated to internal points in the 
BEM model.  
Obtained results allow concluding that the BEM implementation of the method has the potential to 
further develop and implement algorithms which can improve the quality of the reconstructions. To 
this end an extended version of the present method can be coupled with the algorithms introduced in 
previous works for the topological optimization of potential (Cisilino, 2006) and elasticity (Carretero 
et al, 2008) problems using the topological derivative and BEM. 
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1 INTRODUCTION 

The inverse scattering problem consists in determining the shape of an object from 
measurement data of radiation scattered from the object. A number of methods have been 
developed to solve this type of shape-reconstruction problems (see Feijóo et al; 2001, 2004b). 
Most of these methods have the drawback that they are iterative and/or require the 
computation sensitivity of the cost function, what makes them computationally expensive. 

The topological derivative was firstly introduced by Ceá et al (2000) by combining a fixed 
point method with the natural extension of the classical shape gradient. The basic idea behind 
the topological derivative is the evaluation of cost function sensitivity to the creation of a 
hole. The application of the topological derivative for inverse scattering problems was 
introduced by Feijóo (2004a) who presented a direct (non-iterative) method for the solution of 
the shape-reconstruction problem.  

The direct method allows imaging the boundary of an impenetrable object immersed in a 
homogeneous medium by using a set of measurements of the radiated scattering pattern 
resulting from illuminating the object from different directions. This leads to an optimization 
problem consisting in the minimization of the mismatch between the measured scattering 
pattern and the scattering pattern resulting from an impenetrable inclusion placed at a point in 
the medium. The rate of change of this mismatch with respect to the size of the inclusion is 
the topological derivative field. Based on the heuristics that the boundary of the object can be 
assimilated to a group of inclusions, the boundary of the object is identified as the locus 
defined by the positions of the inclusions resulting in the highest values of the topological 
derivative. 

The boundary element method (BEM) is a powerful tool in computational acoustic 
analysis. In applying the boundary element method, only a mesh of the surfaces is required, 
making it easier to use and often more efficient than computing methods such as the finite 
element method when dealing with very large or infinite homogeneous domains. Besides, the 
BEM is very attractive to deal with shape and topology optimization problems because of the 
reduction in the model remeshing effort when compared to domain discretization methods. 

The object of this work is to present a combination of BEM computations and the 
topological derivative approach for solving the inverse scattering problem in acoustics. This 
work is a first step towards the implementation of topological optimization algorithms like 
those introduced in previous works for the optimization of potential (Cisilino, 2006) and 
elasticity (Carretero et al, 2008) problems using the framework provided by the topological 
derivative and BEM. 

2 THE FORWARD AND INVERSE SCATTERING PROBLEMS 

Following Feijóo (2004a), the setting of the problem is depicted in Figure 1, where Ω is a 
homogeneous medium with scatters Ω0 with boundary Γ0. The boundary Γs is where the 
measurements of the scattering pattern are obtained and is assumed as circle of radius Rs that 
encloses all the scatterers.  

The so-called forward problem describes the interaction between the medium, scatterers 
and the incident radiation of a plane sound pressure wave ( ) i x

incp x e κ ⋅= d  with propagation 
direction d and wave number cκ ω=  (the relation of the angular frequency ω to the speed of 
sound c) governed by the Helmholtz equation as follows 

   in 2 2( ) ( ) 0p x p xκ∇ + = 2
0\Ω= Ω , (1) 
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 0p∇ ⋅ =n   on 0Γ , (2) 

 lim 0s
sr

pr i p
n

κ
→∞

∂⎛ ⎞− =⎜ ∂⎝ ⎠
⎟  (3) 

where p is the total wavefield given by the addition of the incident and scattered pressured 
fields, this is  and i the imaginary unit. Equation (2) is the sound-hard boundary 
condition which means that scatterers are modeled as rigid objects. Equation (3) is the 
Sommerfeld condition which is valid for the scattered part of the wavefield and implies that 
only outgoing waves are allowed at infinity. It is assumed that there is no attenuation in the 
medium, so Im(κ) = 0. 

inc sp p p= +

 
 

 

d 

Γs n 

Γ0 

Ω0 

ΓR 

Figure 1: The inverse scattering problem. 

 
At Γs measurements of p are obtained for different directions di of the incident wave, 

which will be denoted as pm(di)  (in the following development, di will be dropped to simplify 
the notation). The objective of the inverse problem is to determine the shape of the scatterers 
Ω0 such that 

s
mp p

Γ
= . This last condition is enforced via a least-squares-type solution of the 

form:  
find  such that Ω
 
 ( )arg minΩ = Ω  (4) 
where 

 ( ) 21
2 s

mJ p p d
Γ

Ω = −∫ Γ  (5) 

where p is the solution  of  Eq. (1)–(3). Thus, the inverse problem is now written in the form 
of a constrained optimization problem with Ω as the design variable and the forward problem 
in Eq. (1)–(3) as a constraint on the admissible scalar field p. 

The strategy to solve the above problem starts from a domain that contains no scatterers. 
Then, the functional in Eq. (5) is changed to account for the modification of the domain by 
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introducing a small circular hole, Bε (x), centered at x of radius ε. The new domain is denoted 
by ( )\ B xε εΩ =Ω  (see Figure 2). 

 

d 

x 

Ω 

x 

ε 

Ω d 

J(Ωε) J(Ω) 
 

Figure 2: Strategy for the solution of the inverse problem. 

 
Denoting by f(ε) the negative value of the ‘size’ of the hole Bε, the new expression of the 

functional in Eq. (5) can be expressed as follows: 
 ( ) ( ) ( ) ( ) ( )( )TJ J f D x O fε ε εΩ = Ω + +  (6) 

where  is the topological derivative which measures the rate of change of the 

functional value with respect to the size of the scatterer Bε (x). The term 
( )TD x

( )(O f )ε  is the 
remainder and satisfies 

 
( )( )
( )0

lim 0
O f

fε

ε
ε+→

= . (7) 

The scalar field  can be constructed by moving the point x in . Then the 
reconstruction technique can be motivated as follows: if it is necessary to choose where many 
small scatterers are to be placed in order to minimize the value of   (and as a 
consequence recreate the shape of the scatterer by obtaining the scattering pattern that is close 
to pm), they should be placed where DT  attains high values. 

( )TD x 2

( )J Ω

3 THE TOPOLOGICAL DERIVATIVE 

The topological derivative measures the sensitivity of a shape functional when an 
infinitesimal ‘hole’ is subtracted from the domain. This is defined through the following limit: 

( )TD x

 ( ) ( )0

( ) ( )limT
J JD x

f
ε

ε ε→

Ω − Ω
=  (8) 

where ( )f ε  is a monotonically decreasing negative function such that 

( )0lim 0fε ε→ = . The ( )f ε , which corresponds to the size of the ‘hole’ but not 
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necessarily is its measure in , is chosen so that 2 ( )TD x  is non-trivial,  i.e. it satisfies 

( )0 TD x< < ∞ . 
The direct application and implementation of the concept in Eq. 8 is not straightforward, as 

it is not possible to establish a homeomorphism between the domains with different 
topologies (domains with and without the hole). A method for solving the problem using this 
approach for elasticity can be found in Garreu et al (2001). 

Many authors, and in particular Feijoó (2004a) for the case of acoustic problems proposed 
an alternative definition of the DT that overcomes the above difficulties. They propose 
assimilating the creation of a hole to the perturbation of a pre-existing hole whose radius 
tends to zero (see Figure 3). Therefore, both topologies of the optimization domain are now 
similar and it is possible to establish a homeomorphism between them. According to this new 
definition, the expression for the DT is 

 ( ) ( ) ( )
( ) ( )0

0

limT

J J
D x

f f
ε δε ε

ε
δε

ε δε ε
+

→
→

Ω − Ω
=

+ −
 (9) 

where (J )εΩ  and ( )J ε δε+Ω  are the cost function evaluated for the reference and perturbed 
domain, ε  is the initial radius of the hole, δε is a small perturbation of the hole radius and 
f is a regularization function. The function f  is problem dependent and  

when
( ) 0f ε →

0ε → .  

 

Bε 

x 

ε 

Ω d 

Bε+δε 

x 

ε+δε 
n 

Ω d 

J(Ωε+δε) J(Ωε)  
Figure 3: Definition of the topological derivative using the shape sensitivity analysis approach. 

It could be argued that the new definition of the  in Eq. (9) merely provides the 
sensitivity of the problem when the size of the hole is perturbed and not when it is effectively 
created (as it is the case in the original definition of the topological derivative). However, it is 
understood that to expand a hole of radius 

TD

ε , when 0ε → , is nothing more than creating it (a 
complete mathematical proof that establishes the relation between both definitions of the  
is given in 

TD
Novotny et al, 2003). Moreover, the relationship between the two definitions 

constitutes the formal relation between the  and the shape sensitivity analysis. The TD
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advantage of the novel definition for the topological derivative given by Eq. (9) is that the 
whole mathematical framework developed for the shape sensitivity analysis can now be used 
to compute the . TD

 
 

Among the available shape sensitivity analysis results, the differentiation of the shape 
derivative for acoustic problems presented by Feijóo et al (2001, 2004b) is of particular 
interest here. Given a shape functional ( )J Ω , the shape derivative ( )DJ Ω ⋅V in the direction 

given by the vector field ( )xV  is defined as follows: 

 ( ) ( )( )
0

dDJ J
d ε ε

φ
ε =

Ω ⋅ = ΩV  (10) 

where εφ  is the mapping ( ) ( )x xεφ ε= + V x  between the reference and perturbed domains. 

The computation of shape derivative in Eq. (10) for the functional  in Eq. (5) in the 

case in which the direction 
( )J Ω

( )xV  is that of the normal vector n(x) (see Figure 3) results in (a 
detailed derivation of this result is in Feijóo et al, 2004b): 

  ( ) (
0

* 2 *Re n)DJ pλ κ λ
Γ

p v d⎡ ⎤Ω ⋅ = ∇ ⋅∇ − Γ⎢ ⎥⎣ ⎦∫V , (11) 

where p is the solution of the forward problem in Eq. (1)–(3) and λ is the solution of the 
following adjoint problem: 
 

 ( )( )2 2( ) ( )
smx x p p xλ κ λ δΓ∇ + = −   in Ω , (12) 

 0λ∇ ⋅ =n   on 0Γ , (13) 

 lim 0
r

r i
n
λ κλ

→∞

∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠
. (14) 

In Eq. (12), 
s

δΓ is the Dirac delta-function defined on the sampling surface sΓ . It should be 
noted that the adjoint field λ corresponds to the backpropagation (note the plus sign in Eq. 
(14) and compare with Eq. (3)) of the mismatch between the solution given by the forward 
model and the measured signature at sΓ . 

The topological derivative can be computed now by combining the results in Eq. (9) and 
Eq. (11). Having in mind that the boundary condition on ∂Bε is the one of a rigid object (see 
Eq.  (2)), it results  

 ( ) ( ) ( )2
'0

1lim ReT B
D x p

f ε
ε ε p d Bε εε

λ κ λ
ε ∂→ ε

⎡ ⎤= − ∇ ⋅∇ − ∂⎢ ⎥⎣ ⎦∫ , (15) 

where pε and λε are solutions of the forward and adjoint problems posed in the configuration 
( )\ B xε εΩ =Ω  and the symbol  indicates the conjugate complex. An asymptotic analysis of 

these solutions and their gradients at ∂Bε reveals that these terms are of O(1) as ε → 0 (see 
Feijóo, 2004a). Therefore, to satisfy ( )0 TD x< < ∞  it is required that ( )' 2f ε πε=− , which 

implies that ( ) 2f ε πε=− . The final expression for the topological derivative is then 

 ( ) ( ) ( ) ( ) ( )2Re 2TD x x p x xλ κ λ⎡= ∇ ⋅∇ −⎣ p x ⎤⎦ , (16) 

where p and λ are solutions of the forward and adjoint problems posed in the configuration 
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( ) 2
0 0\ B xΩ =Ω =Ω= , this is the domain containing no obstacles. 
The forward and adjoint fields in Eq. (16) can be calculated explicitely for the domain 

with no obstacles. For the forward problem, the solution is that of an incident wave 
 ( ) i x

incp x e κ ⋅= d . (17) 
On the other hand, the solution for the adjoint problem in Eq. (12)-(14) for the case of 

0 sr R≤ ≤  is given in series (see Feijóo, 2004b) 

 ( ) ( ), ( )
n

n nn
n

r A J rλ θ κ ϕ θ
=∞

=−∞

= ∑ , (18) 

where  

 ( ) 1
2

in
n e θϕ θ

π
= , (19) 

 2 ( )
2 n

s
n

R
s nA i H R aπ κ= +  (20) 

and  are the Fourier coefficients of the discrepancy na ( )( ),m sp p R θ− , 

 ( )( )( )
2 *

0
,n n m sa p p R

π
dϕ θ= −∫ θ θ . (21) 

4 THE BOUNDARY ELEMENT METHOD FOR ACOUSTICS 

The Boundary Element Method (BEM) is used in this work to produce synthetic data for 
the reconstruction algorithm. This is, the BEM is used to compute the pm along Γs introduced 
in the previous sections.  

In this work, the direct BEM formulation is used. It is derived for acoustics in the 
frequency range. The governing equation is the Helmholtz equation, Eq. (22), describing the 
acoustic pressure distribution in a nonviscous compressible fluid. For unbounded domains 
Sommerfeld's radiation condition, Eq. (23), must be fulfilled additionally. This condition 
specifies that waves in an infinite domain only travel into infinity. 

  (22) 2 2( ) ( ) ( )p x p x b xκ∇ + =

 
1p i p

n r
κ∂ ⎛ ⎞= +Ο⎜ ⎟∂ ⎝ ⎠

 for  (23) r →∞

where p is the acoustic pressure (the harmonic extention i te ω  being omitted); b defines a 
source distribution; the sound flux p n∂ ∂  is the partial derivative of pressure in normal 
direction and r the distance from the radiating surface. 

To apply the BEM for a certain problem two prerequisites have to be fulfilled: the domain 
is homogeneous and the fundamental solution is known. 

4.1 Fundamental solution of the Helmholtz-Equation in 3D 

The fundamental solution describes the reactions in an unbounded domain caused by a 
point source with the intensity of 1 at point ξ. The fundamental solution p* needs to fulfill the 
inhomogeneous differential equation 

 2 * 2 *( , ) ( , ) ( )p x p x xξ κ ξ δ∇ + = − ξ−
)

 (24) 
with (xδ ξ− being the Dirac delta function. 

The BEM makes use of the Dirac delta function's property to filter out the value of an 
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integrand at point ξ: 
 ( ) ( )( )f x x d fδ ξ ξ

Ω
− Ω =∫ . (25) 

The fundamental solution *p is the solution of Eq. (24) and becomes for radiation 
problems with outgoing waves 

 * 1 1( , )
4

i rp x e
r

κξ
π

=  with :r x ξ= − . (26) 

The fundamental solution solves the homogeneous differential equation for all points x 
except for the source point ξ where it becomes singular. Differentiation in normal direction 
gives the fundamental solution for the sound flux: 

 ( )*
,2

1 1( , ) 1
4

i r
nq x i r e r

r
κξ κ

π
= − − . (27) 

Both the fundamental solution and its normal derivative depend on the wave number κ. 
 

4.2 Derivation of the direct boundary integral equation 

To derive the boundary integral equation the method of weighted residua is applied to Eq. 
(22). As test function the fundamental solution (Eq. (26)) is chosen. Applying Green's second 
identity, resubstituting Eq. (24), and using the filter property of the Dirac delta function leads 
to 

 ( ) ( ) ( ) ( ) ( ) ( )* * *( ) , , ,p q x p x p x q x d b x p xξ ξ ξ d
Γ Ω
⎡ ⎤= − Γ +⎣ ⎦∫ ∫ ξ Ω  for ξ ∈Ω . (28) 

The above equation gives the relation for the acoustic pressure ( )p ξ  at an arbitrary source 
point within Ω and the boundary functions ( )p x  and . Moving the source point also onto 
the boundary Γ yields a relation that only consists of boundary values. To account for the 
singularity of the fundamental solution at the source point, the source point is considered to 
be within Ω and enclosed by a sphere-shaped volume of radius ε. Equation (28) is then 
integrated over two boundary parts 

( )q x

εΓ −Γ  and εΓ with 0ε → , leading to the Boundary 
Integral Equation (BIE) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *, ,c p p x q x d q x p x d b x p x dξ ξ ξ ξ ξ
Γ Γ Ω

+ Γ = Γ +∫ ∫ ∫ , Ω . (29) 

The factor ( )c ξ is given by 

 ( ) ( )*1 lim ,c q x
ε

d εε
ξ

Γ→∞
ξ= + ∫ Γ  (30) 

and becomes ( ) 0.5c ξ =  for a smooth boundary. 

4.3 Boundary Element Equation 

An exact solution of the BIE is generally not available. Therefore, the boundary is 
discretized into a finite number of boundary elements. The values for acoustic pressure p and 
flux q are approximated using shape functions in the form of  and p = Np q = Nq , 
respectively. The vector N holds the shape functions while p and q contain the values of 
pressure and flux at the nodes. Setting up the BIE, Eq. (29), for each node (collocation 
method) and assuming for a start that no internal sources are present, leads to a system of 
equations known as the Boundary Element equation, 
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 . (31) Gq - Hp = 0

Finally, with known boundary conditions (given flux q  on a Neumann boundary and given 
pressure p  on a Dirichlet boundary) the unknown values for pressure p and flux q can be 
evaluated. For further details on the boundary element formulation and implementation please 
refer to any classic book on BEM like Wrobel & Aliabadi (2002).  
 

5 THE RECONSTRUCTION ALGORITHM AND VALIDATION EXAMPLE 

Figure 4 depicts the set-up for the reconstruction algorithm which was implemented 
following Feijóo (2004a). The in Eq. (16) is sampled on a grid covering a region of the 
domain where the object is believed to be located. This requires the computation of the 
forward and adjoint fields p and λ and their gradients. Both the p and λ fields and their 
gradients can be computed analytically using Eqs. (17) and (18), their derivatives. The images 
generated from this sampling procedure will reveal regions with high values for the 
topological derivative. These regions are the locations where the boundary of the object may 
be located. The reasoning behind this heuristic comes from Eqs. (4) and (5), where the inverse 
scattering problem is identified as an optimization problem, and from Eq. (6): removing 
regions from Ω where the topological derivative is high generates a new domain where the 
cost functional has a lower magnitude and therefore the resulting scattering pattern is closer to 
the measured signature.  

TD

The performance of the algorithm is demonstrated by means of an example consisting in 
the silhouette of a B2 aircraft (one of the examples presented in the paper by Feijóo, 2004a). 
Datasets were constructed from 120 measurements obtained along Γs (this is, a measurement 
was obtained every 3°). Each dataset corresponds to the illumination of the object by a plane 
wave with incident direction ( )cos ,sin T

i i iθ θ= −d with 2 120i iθ π= . The 120 datasets were 
used to construct the scatters, so . The adjoint field given by the series in Eq. 
(18) was truncated to . 

0,1,...119i =
30n = ±

The BEM was used to obtain the pm measures along Γs. Although the implementation 
discussed in this work is two-dimensional, a three-dimensional BEM solver was used.  The 
only reason for using the three-dimensional BEM solver is that a two-dimensional one was 
not available at the moment of preparing this paper. The three-dimensional BEM models in 
the x,y,z domain were assimilated to two-dimensional ones in the x,y plane by giving the 
silhouette of the B2 a dimension in the ±z directions (see Figure 5). In order to assess possible 
3D effects, the B2 shape silhouettes were modeled with thicknesses z=±3 m, ±6 m, and 
±12 m.  
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RR=50 

ΓR 

Γs 
120 measuring 

points  

 

120 source points 

Source points are located far 
enough in order to get a plane 

incident wave on the 

Evaluation points placed using 
a 100×100 point grid  

L=16 m 

L=
16

 m
 

Hidden object   

r =12r.75 m, 20m and 40 m 

Figure 4: Set-up for the reconstruction algorithm and the solution of the example of the B2 silhouette.  

 
In every case, the sources were placed in the xy plane (this is z=0) along a circle with a 

radius RR =50 m. It is important to note that the implemented BEM code accounts only for 
point sources; so the position of the sources was set far enough to allow for considering 
incident waves as plane waves. The surface of the B2 silhouette was modeled as acoustically 
hard, defining a Neumann boundary with flux q set to zero. Following the paper by Feijóo, 
2004a, the ratio between the dimension of the evaluation domain and the wave length was set 
L/λ = 17, the grid spacing was chosen t=L/100= 0.16 m, and the ratio of the wave length to 
the grid spacing λ/t= 9.375. The wave length was λ= 1.5 m, the speed of sound c= 3 108  m/s, 
the source frequency f= 2 108 Hz and the wave number k= 4.189 1/m. The element size was 
set to be of maximum value l= 0.3 m, thus fulfilling the criterion of the mesh size being one 
fifth or less of the probing wave length. Models were discretized using quadrilateral linear 
elements. The model with thickness z=±3 m consisted of 4120 elements, the model with 
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thickness z=±6 m consisted of 6920 elements and the model with thickness z=±12 m 
consisted of 12520 elements. Each problem was solved for three positions of the measuring 
points, for r=12.75 m, 20 m and 40 m on the xy plane. Measuring points were assimilated in 
the BEM model to internal points where the pm values were computed in a post processing 
procedure. Models were solved using an AMD Opteron 246, 2.0 GHz CPU. Computation 
times for a single source point are reported in Table 1. As an example, Figure 6 shows the 
sound pressure level on the B2 silhouette as well as on the xy plane in the surrounding air 
with the source placed at 50 m on the x-axis. The sound pressure levels depicted give a 
typical example for three dimensional distribution including diffraction and interference 
effects. 

 

 

 
Figure 5: BEM models used to solve the B2 problems. The 2D silhouette in the xy plane was assigned heights of 

z=±3 m, ±6m, and ±12 m. 

 
 
 

 z=±3 m  
4120 elements 

z=±6 m  
6920 elements 

z=±12 m  
12520 elements 

Computation time 2:08 min 7:41 min 72:39 min 
Table 1: Computation times of the BEM solver 
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Figure 6: Sound pressure distribution on the B2 structure and on the xy plane in surrounding space. 

Figures 9, 8 and 7 show the images generated with the topological derivative results 
resulting from the sampling procedure for the three positions of the measuring points r= 40 m, 
20 m and 12.75 m. For each case the results are reported for the three thicknesses of the 
model. The silhouette of the B2 is superimposed (dashed lines). It can be seen that for the 
cases r=12.75 m and 20 m it is possible to make a reasonable reconstruction of the B2 
silhouette. For the three sets of results the quality of the reconstruction improves with the 
model thickness. This allows arguing that three-dimensional effects exist and significantly 
influence the quality of the calculations. The best result is obtained for the closest position of 
the measuring points to the object (r=12.75 m). This last result was as expected, since the 
measuring points closest to the object constitute the best scenario for the reconstruction 
method. Besides, it is worth noting that the closer the measuring points are to the object the 
ratio z/r increases, and thus it could be argued that the three-dimensional effect is reduced. 
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Figure 7: B2 profile superimposed to the topological derivative for the measuring points at r=40 m and different 

thicknesses of the BEM models. 
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z=±3 m                                                         z=±6 m
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Figure 8: B2 profile superimposed to the topological derivative for the measuring points at r=20 m and different 
thicknesses of the BEM models. 
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z=±12 m                

z=±3 m                                                         z=±6 m

Figure 9: B2 profile superimposed to the topological derivative for the measuring points at r=12.75 m and 
different thicknesses of the BEM models. 

6 CONCLUSIONS 

It has been presented in this work a direct method of a reconstruction algorithm for inverse 
scattering based on the optimization framework provided by the topological derivative 
proposed by Feijóo (2004a). The algorithm is very efficient and simple to implement: it 
involves the computation of a series at points where a function is sampled. Besides, its 
implementation using BEM for input data is straight forward since the measuring points can 
be associated to internal points in the model BEM model. 

Although the implementation discussed throughout the paper is for two-dimensional 
problems and plane waves, a three-dimensional BEM solver with point sources was used in 
this preliminary work. The only reason for using the three-dimensional BEM solver is that a 
two-dimensional one was not available at the moment of preparing this paper. The three-
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dimensional BEM models were assimilated to two-dimensional ones by setting the sources, 
the measuring points and the evaluation grid in the xy plane and by giving the silhouette of 
the model a thickness in the ±z direction. The occurring three-dimensional effects were 
assessed by solving a number of cases with different thicknesses. The point sources were 
placed far enough from the object in order to assimilate the incident waves to plane ones. The 
results obtained for the validation examples demonstrate the influence of the three-
dimensional effects of the BEM used here. 

In spite of the limitations resulting from the utilization of a three-dimensional BEM model 
to solve the two-dimensional problem, it was possible to obtain reasonable reconstructions 
when the measuring points were located relatively close to the object. It is concluded that the 
method has the potential to further develop and implement iterative algorithms which can 
improve the quality of the reconstructions. To this end an extended version of the present 
method can be coupled with the algorithms introduced in previous works for the topological 
optimization of potential (Cisilino, 2006) and elasticity (Carretero et al, 2008) problems using 
the topological derivative and BEM. 

As a further step it is aimed to extend the presented method into a 3D formulation which 
would allow for reconstruction in space. 

ACKNOWLEDGEMENTS 

This work has been supported by the Project DA0806 ‘Acoustic Inverse Scattering Using 
the Topological Derivative and the Boundary Element Method’ sponsored by the MINCYT 
(Argentina) and the DAAD (Germany). 

REFERENCES 

Ceá J., Garreau S., Guillaume P. and Masmoudi M., The shape and topological optimization 
connection, Comput. Methods Appl. Engrg., 188:713-726, 2000. 

Carretero Neches L. and Cisilino A.P. ,Topology optimization of 2D elastic structures using 
boundary elements, Engineering Analysis with Boundary Elements, 32:533-544, 2008. 

Cisilino A.P., Topology optimization of 2D potential problems using boundary elements, 
Computer Modelling in Engineering & Sciences, 15/2:99-106, 2006. 

Feijóo G. R., Malhotra M., Oberai A. A. and Pinsky P. M., Shape sensitivity calculations for 
exterior acoustics problems, Eng. Comput., 18:376–91, 2001. 

Feijóo G. R., A new method in inverse scattering based on the topological derivative, Inverse 
Problems, 20:1819-1840, 2004a. 

Feijóo G. R., Oberai A. A. and Pinsky P. M., An application of shape optimization in the 
solution of inverse acoustic scattering problems, Inverse Problems, 20:199–228, 2004b. 

Garreau S., Guillaume P. and Masmoudi M., The topological asymptotic for pde systems: the 
elasticity case, SIAM J. Control Optim.,  39:1756–78, 2001. 

Novotny A.A, Feijoo R.A., Taroco E. and Padra C. C., Topological sensitivity analysis. 
Comput. Methods Appl. Mech. Engrg., 192:803-829, 2003. 

Wrobel L. and Aliabadi  M.H., The Boundary Element Method, Applications in Thermo-
Fluids & Acoustics, WileyBlackwell, Volume 1 (2002). 

A.P. CISILINO, S. BECK, S. LANGER38

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


