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Abstract. Images represent complex visual information. From a human point of view, image informa-
tion extraction is merely a global process: starting with usually short, local and bad quality information,
our brain can identify basic compositing elements and their relationship, elaborate a coherent sensorial
experience and finally get the required information.

From a computational point of view, images clearly represent non structured information. Getting
information from them involves to simulate human visual perception. At early stages, a human visual
system is involved in identifying objects (the “what” system) and in locating them (the “where” system).
The two systems can be simulated by looking for visual cues such as color, shape, depth, and motion.
The combined cues lead to a unique image visual content representation. The most common image
representation is a feature vector, where each vector component represents an image feature.

At this work we proposed a parallel feature vector construction following the precepts stated by the
“what” and “where” system and by using high performance computing. The problem enables the appli-
cation of multiple levels of parallelism and different paradigms combination. Finally some preliminary
results are given.
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1 INTRODUCTION

Visual perception is the process of acquiring knowledge about environmental objects and events
by extracting information from the light they emit or reflect. Visual perception concerns the
acquisition of knowledge - that is: vision is fundamentally a cognitive activity, distinct from
purely optical processes such as photographic ones -. Image recognition area studies the differ-
ent methods and techniques of capturing visual content of images for indexing and retrieval.

Marr (1982)’s theory supports that in the early stages of the vision process, there are cells that
respond to stimulus of primitive shapes, such as corners, edges, bars, etc.. Young (1987) models
these cells by using Gaussian derivative functions. Riesenhuber and Poggio (1999) propose a
model for simulating the behavior of the Human Visual System (HVS), at the early stages of
vision process.

At early stages, a human visual system is involved in identifying objects and in locating
them. These two pathways are often called the “what” system and the “where” system, re-
spectively. As was stated by Livingstone and Hubel (1988) information processing is done at
separate neural pathways and related to different visual properties such as color, shape, depth,
and motion. Color and shape properties may project to the “what” system for object identifica-
tion and the depth and motion properties to the “where” system for object localization. Now, it
is clear that a great deal of visual processing takes place in parallel across different subregions
of visual cortical areas and finally they get together somewhere in the brain.

In image recognition, an image is firstly converted to a reduced format called a feature vector,
then being recognized using some sort of classifiers. Therefore, extracting only the essential
information contained in the original image and representing it as a feature vector is the most
important processing in image recognition. In Adachi and Shibata (2001) an edge-based feature
vector representation algorithm was proposed and has been successfully applied to medical
radiograph analysis as well as to handwritten pattern recognition. Other representations also
based on the edge information have been proven very robust in face detection Pan et al. (2003).

Other approaches use different local image features in the field of object categorization in im-
ages. Serre et al. (2005) use local features based on filter responses to describe objects, achiev-
ing a high performance in the problem of object categorization. On the other hand, different
approaches using grey-scale image patches, extracted from regions of interest, to represent parts
of objects has been suggested, Li et al. (2004), Agarwal et al. (2004), Leibe (2004). At the mo-
ment, all of the approaches are specific application oriented and there is not a clear advantage
for general application problems.

The aim of this work is to carry out an experimental study in order to propose a set of
different multi-scale filters bank that process local features of an image based on the what and
where system. All the processing is oriented to the generation of a robust feature vector for
visual image categorization by using a general, non-parametric and simple approach.

In section 2 of this paper, we review the feature vector construction and introduce the pro-
posed filter functions associated with extracted image features. Section 3 analyses the system
parallel characteristics. Section 4, describes the experiments and presents preliminary results.
Finally, in section 5, a summary and some conclusions are sketched.

2 IMAGE FEATURE VECTOR

Images are an alternative form of communication and the most popular medium of information
on the Internet. Feature extraction is the process by which image features are extracted and
used to represent concisely the image visual content. The issue of choosing the features to be
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extracted should be guided by certain concerns like:

• The features should carry enough information about the image and should not require any
domain-specific knowledge for their extraction.

• They should be easy to compute in order for the approach to be feasible for a large image
collection and rapid retrieval.

• They should relate well with the human perceptual characteristics since users will finally
determine the suitability of the retrieved images.

A sort of standard image processing tasks are commonly used at feature extraction stage,
like image smoothing, histogramming, 2-D FFT calculation, local area histogram equalization,
contextual statistical classification, scene segmentation, clustering feature enhancement, among
others Choudhary and Ranka (1992). Because of perception subjectivity, there not exist a single
best representation for a feature and consequently there not exist a unique representation for a
feature vector. In addition, there not exist a unique way of feature extraction by processing and
usually it is computationally expensive.

There exist many algorithmic implementions for those extraction tasks that could be done
thru parallel solutions Ballard and Brown (1982); Giardina and Dougherty (1988); Jain (1989);
Beucher and Meyer (1993); Crespo et al. (1995); Jahne (1997). Moreover, different techniques
at different grain scale could be applied depending on the particular task Vorontsov (1999);
Barbosa and Padilha (2000); T. Braunl (2001).

These image processing tasks could be classified according to the information to be obtained,
they could be done in parallel, and at the end, be combined to enable the construction of a
descriptive feature vector at the feature extraction stage. At the following sections, we will
focus on trying to organize the most representive image processing tasks for the what and where
system. In particular, we will focus on the extraction tasks and representation of color, shape,
texture, and geometric projection information, running them in parallel, and at last, combining
them into a unique system for the construction of the image feature vector.

2.1 The What System

The human ventral stream visual pathway, commonly referred as the "What" stream, is involved
in the recognition, identification and categorization of visual stimuli. The ventral stream does
not merely provide a description of the elements in the visual world, but it plays a crucial role
in judging the significance of these elements. Visual cues for the what system are: color, shape
and texture.

2.1.1 Color Feature

Color is a psicological fenomenom, a subjective experience depending on the combined char-
acteristics of three element: the light emitting source, the observed object and the observer’ s
visual system.

Color space is the benchmark used to define the colors of an image. There exist different
ways to define a color space J.D.Foley et al. (1990). Thinking about RGB color space contain-
ing n colors (RGBn), the color features of an image I in this color space could be describe
as RGBn(I) =

∪n
i=1(ri, gi, bi), where ri, gi, bi are the ith color value of the component Red,

Green and Blue, respectively.
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There exist at the bibliography many ways to operate color characterisitcs of pixels in order
to define an image descriptor Burl (1999); Lee and Street (2001); Tan et al. (2001). All of them
use an specific color space. The color space in conjunction with the selected color operation
will strongly influenciate the final image descriptor. The most commonly used color treatment
methods are: color histogram, color moments, color coherence, and color correlograms. Here
we will advocate to the first two cases: color histogram and color moments, because they offer
good processing times with parallel characteristics and complement each other giving a robust
image color representation.

Histogram
Color histogram is the color’s statistical information of an image at a given color space.
In RGBn color space, let I be an N × M image, its color histogram is a vector as following

H(I) = (hc1(I), hc2(I), . . . , hci
(I), . . . , hcn(I))

where, ci = (ri, gi, bi) ∈ RGBn(I), and the component hci
(I) is the number of pixels of a

given color ci in the image I and
∑n

j=1 hcj
(I) = N × M

According to this definition, the frequency of each color is relevant to the given image size.
Normalizing each component hcf

(I) of H(I) by image size will eliminate the image size de-
pendency on the image feature specification and hci

∈ [0, 1]. Thus, color histogram is a discrete
representation of image appearances and similarity between images can be expediently com-
puted.

In most of the known color spaces, image colors are represented in the form of a 3D vec-
tor. In RGBn color space, axis R,G, and B have 256 discrete color values. Hence, the color
histogram of an image is a 256 × 256 × 256 dimensional vector in RGB256 color space. As it
is well known, if the number of colors of an image is too large, it will exceeds human’s visual
capacity. Thus, without sacrificing representation precision and taking advantage of human’s
visual capacity, the number of dimension of each axis can be reduced by using groups of colors.
In a general context, groups of data are called classes, but in the context of a histogram they are
known as bins, because one can think of them as containers that accumulate data and "fill up" at
a rate equal to the frequency of that data class. As a result and according with the corresponding
spectral response function for the R, G, B channels, axis R and G are grouped into 8 bins, and
the axis B into 4 bins. In this way, the former 256 × 256 × 256 feature vector is reduced into
a 8 × 8 × 4 feature vector. At this work, we present this last representation named bins color
histogram or Mean Value Histogram (MVH).

Color Moments
Color moments are statistical measures that can be used to differentiate images based on their

features of color. The basis of color moments lays in the assumption that the distribution of
color in an image can be interpreted as a probability distribution. Probability distributions are
characterized by a number of unique moments. If an image color follows a certain probability
distribution, then the distribution moments can be used as features to identify that image based
on its color.

Stricker and Orengo (1995) used three central moments of an image’s color distribution:
Mean, Standard deviation and Skewness. For color representacion here we will restrict our-
selves to the HSV color scheme (Hue, Saturation and Value) attempting to describe perceptual
color relationships more accurately than RGB color space. Moments are calculated for each

J. FERNANDEZ, R. GUERRERO, N. MIRANDA, F. PICCOLI230

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



one of these three channels in an image, then 9 moments characterize an image. Defining the
ith color channel at the jth image pixel as pij , the three color moments can then be defined as:

µi =
1

N

N∑
j=1

pij, σi = (
1

N

N∑
j=1

(pij − µi)
2)

1
2 , si = (

1

N

N∑
j=1

(pij − µi)
3)

1
3

where N is the number of pixels in the image.

2.1.2 Shape Feature

Edges characterize object boundaries and are visually important to human beings in recognizing
or perceiving the shape of objects. Edge detection is a problem of fundamental importance in
image analysis, therefore useful for segmentation, registration, and identification of objects in a
scene. An edge is a jump in intensity and an ideal edge is a descontinuity. An edge detection
strategy can be expressed in terms of the derivatives of the continous image F (x, y). In practice,
finite difference approximations of first and second order directional derivatives are used and
represented by dicrete masks formally embodying linear-phase FIR filters that convolve with
the image. Recovering of edges, is obtained by segmenting the convolved image with a global
or local threshold operator. The perceived quality of the edge detector is determined by the
selected threshold value. In selecting an appropriate threshold value, it is useful to consider the
cumulative histogram of the convolved image.

Substantial research has been made on image processing methods for edge detection Gonzalez and Woods
(2002). In Fernandez et al. (2008) we analized the most common first-order edge operators
(Robert, Prewit, and Sobel) and here we will advocate to a second-order edge operator (Lapla-
cian of a Gaussian) because it robustness in capturing important intensity changes filtering out
information that may be regarded as less relevant, while preserving the important structural
properties of an image.

Laplacian of a Gaussian Operator
It is a zero-crossing edge operator (LoG(x, y)) originally
proposed by Marr and E.Hildreth (1980). In order to ef-
fectively detect intensity changes (edges), the operator
needs to have two characteristics. First, it must be a dif-
ferential operator, taking either a first or second spatial
derivative of the image. Second, it should be capable of
being tuned to act at any desired scale so that large filters

Figure 1: Masks:
(a) Laplacian, (b) Gaussian.

can be used to detect blurry shadow edges, and small ones can be used to detect sharply focused
fine details in the image. The so-called Laplacian-of-Gaussian edge operator is a compound
operator that combines a smoothing operation (Gaussian-shaped filter, G) with a differentation
operation (discrete Laplacian, ∇2). Edges are identified by the location of zero crossings. The
resulting operator is defined for every pixel (x, y) of the image I as stated by the following
formulae and implemented by the composition of the two kernels of Figure 1.

LoG(x, y) = ∇2(G(x, y)I(x, y)) where ∇2 = ∂2

∂x2 + ∂2

∂y2 and G(x, y) =
e−

x2+y2

2σ2

2πσ2
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2.1.3 Texture Feature

A main drawback in texture image analysis is the lack of proper definition for texture. A number
of definitions have been proposed and used by various researchers in their context of analysis.
Few schemes for texture analysis have been suggested. They are statistical, structural and spec-
tral approaches. Using statistical approaches, several schemes have been suggested right from
co-occurence matrix, run length matrix based, auto correlation, auto regression, MRF based,
moments based, etc. as found in literature Chen (1988); Wang et al. (2004). The most common
is radius and angular histogram features obtained by computing Discrete Fourier Transform of
the texture image signal for content based image retrieval.

In structural approach, the texture region is defined to have a constant texture if a set of local
statistics or other local properties of the image are constant, slowly varying or approximately
periodic. An image texture is described by the number and types of its (tonal) primitives and
the spatial organization or layout of the primitives. Textures could be rated as coarse, micro,
macro, regular, periodic, aperiodic, directional, random, or stochastic Tuceryan and Jain (1998).
Texture images are analyzed by identifying the local and global properties of the images under
consideration.

Very few schemes have been suggested which attempt to propose for both local and global
descriptors. One such method is texture spectrum scheme Stefanou and Kerekes (2009). Gabor
filters have been recently used for the texture analysis at different tuning parameters Ilonen et al.
(2008); Kong (2009). Wavelet based features have been successfully employed for the texture
classification Fischer et al. (2007). A new statistical model based wavelet domain single value
decomposition for image texture classification has been described Huang and Aviyente (2008).
Other recent approaches for texture analysis and synthesis may be referred from Dong et al.
(2008); Li et al. (2009).

Each method discussed above can be chosen based on the application and the problem do-
main. At this paper two methods corresponding to two different types of the named methods
will be used into a general feature vector specification: Radius and Angular Histogram by Di-
rect Fourier Transform calculus (statistical) and Gabor filters (spectrum scheme).

Discrete Fourier Transform
This operator calculates texture features based on image power spectral in the frequency do-
main. Let F (u, v) the Fourier frequency spectrum of an image signal and the correspond-
ing associated characteristics of Magnitude (|F (u, v)|), Phase (|φ(u, v)|) and Power Spectrum
(|F (u, v)|2). Texture features will be the Power Spectral Radius ρ and the Power Spectral Angle
θ of the image’s power spectral representation of the Fourier transform obtained after converting
F (u, v) to polar coordinates.

Gabor Filter Operator
A filter design-based approach has been of interest in modeling the processing by the visual
cortex. The Gabor model is one of the most widely used in human visual system modeling at
the visual cortex level Rosin (2006). This operator is based on the premise that texture is an im-
age pattern containing a repetitive structure that can be effectively characterized in a frequency
domain, such as the Fourier domain. However, one of the challenges of such an approach is
dealing with the tradeoff between the joint uncertainty in the space and frequency domains.
Meaningful frequency based analysis cannot be localized without bound. An attractive math-
ematical property of Gabor functions is that they minimize the joint uncertainty in space and
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frequency. In Kong (2009) they achieve the optimal tradeoff between localizing the analysis
in the spatial and frequency domains. Texture analysis is accomplished by applying a bank of
scale and orientation selective Gabor filters to an image. These filters are constructed by using
a two-dimensional Gabor function g(x, y) and its Fourier transform G(u, v) written as:

g(x, y) =

(
1

2πσxσy

)
e
− 1

2

„

x2

σ2
x

+ y2

σ2
y

+2πiWx

«

G(x, y) = e
− 1

2

„

(u−W )2

σ2
u

+ v2

σ2
v

«

2.2 The Where System

The “Where” system is the mental process at work as a person sees with two normal eyes. It
is related with depth perception. In monocular images depth estimation, if no particular prior
knowledge of the scene is given, can be retrieved in many real images by the monocular cues.
Several strong monocular cues allow relative distance and depth to be judged. These monocular
cues include: Relative size, Occlusion (also referred to as Interposition), Linear Perspective,
Aerial perspective, Accommodation (also referred as Focus), Motion parallax, Depth from mo-
tion, Familiar size, Peripheral vision and Texture gradient.

At this work we started incorporating the “where” system to the feature vector by the addition
of the linear pespective feature to its specification.

2.2.1 Linear Perspective

When objects of known distance subtend a smaller and smaller angle, it is interpreted as being
further away. Among others, vanishing points can also refer to perspective in a perspective
drawing. A vanishing point is a point in the distance to which parallel lines of objects appear to
converge (such as roads and railway lines).

There exist different techniques that try to estimate vanishing point from still images Criminisi et al.
(2000); Seo et al. (2006); Marquis-Bolduc et al. (2008).

The technique implemented in Cantoni et al. (2001) estimates the position of vanishing points
in an image, based on a deterministic analysis. It works directly in the image plane, which is
used as an accumulation space for a particular version of the Hough Transform.

The algorithm is composed of the following steps. First, an edge detection operation is
performed on the original image through an isotropic operator, which is composed of two 3 ×
3 masks (one for the horizontal and one for the vertical component - Sobel as an example).
The result image is then normalized and thresholded against a very high value, to eliminate
redundant information. This way, a binary image is obtained. For each point P within it, the
tangent is calculated, by means of the following expresion:

m = tan θ =
Dy

Dx

(1)

where Dx and Dy are the x and y components resulting from the application of the isotropic
operator in the point. Now that θ is known, it can be used to draw a straight line, with slope m,
passing through P . Such line is then accumulated in the (x, y) parameter space. At the end of
the process, those points having the greatest numbers of votes will be marked as candidates.
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2.3 Feature Vector Composition

Color, shape, texture and geometric properties associated values will set the feature vector rep-
resention of visual content of images for indexing and retrieval. This feature vector structure
must lead to an unique image identification. The following table shows the resulting feature
vector structure with its vector components associated values:

Feature Descriptions Num. of data
Color
. RGB values: mean 3
. HSV values: conversion from RGB values 3
. Hue histogram (4 bins) and entropy 5
Shape
. Normalized x and y pixels: mean 2
. Number of detected edge pixels 1
Texture
. Power spectral radius and angle values 2
. Gabor transform value: mean 1
3D Geometry
. Detected vanishing point: x and y values 2

3 OPTIMIZING FEATURE VECTOR CALCULUS

Representing the image visual content through a feature vector implies not only the issue of
choosing the appropiate image features but to extract them. Considering the processing time
and resources involved, feature extraction is an expensive process that should be expected to
be done in a fast way. The use of different optimal performing computational techniques could
help to reduce processing costs.

Most selected image feature extraction methods could be performed in an independent way
and do not require an specific processing order. Moreover, each feature calculus could enable
the use of different optimal computing techniques going from traditional parallel ones to high
performance like cloud, grid and GPU computing Foster and Kesselman (2004); Buck (2000);
Chen and Hang (2008); Beard (2008).

A posible solution to the feature extraction problem is the application of two different levels
of parallelism: a macro level, corresponding to the calculus of each vector component visual
feature, and a micro level, stablished by the singularities of each calculated feature, that could
be resolved in multiple levels of parallelism. Figure 2 shows graphically the global system
structure for the feature vector calculus.

Figure 2: Parallel processing Levels
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This macro level can be considered a program level parallelism, it is characterized by parallel
execution of different programs that are totally independent units without common data (every
one works over image) and with little or no communication and synchronization needs. By other
side, the micro level can be considered task level parallelism, the program can be partitioned
into a number of parallel executable tasks. Tasks have to be synchronized, and they usually
communicate with each other. Tasks can be the same, but working over different data.

The first level is an MIMD parallelism, all features are calculated at the same time in a
parallel way, keeping independence and not sharing data. Each process has an image copy, with
no communication with others, and data are collected at the end of the labor by an specific role
process. This structure applies directly to a farm parallel programming structure.

The second level depends on the specific feature properties to be calculated. At present work,
solutions could be implemented in an SIMD parallelism or, in a more general way, in SPMD
parallelism while no consideration are taking over feature particularities.

Process organization for feature vector calculus is associated to the concept of group. Pro-
cesses are divided into different groups depending on features to be extracted. Each group
extracts an specific feature and every process into the group works in parallel. Every group has
a group-with-coordinator structure without considering the specific feature.

In order to get architecture independence, the working methodology of the BSP computa-
tional model fits adequately to any architecture type, including cluster among them. In conse-
quence, every feature calculus parallel version was implemented following the BSP computa-
tional model.

Image, as the input data, is partitioned into stripes, one for each worker. Workers calculate
the corresponding processing function for the assigned image slices. Finally, one worker takes
the coordinator rol and joins the processed image slices.

3.1 Feature Calculus Analysis

In color feature calculus, the implemented histogram version (posterized image - 8×8×4) could
be thought as a combination of two processing steps, a posterization step and a histogram step.
Because of their particularities, color moments calculus needs two supersteps. The first one
takes care of RGB to HSV color space convertion and a partial mean calculus for each image
channel at the corresponding image portion. The second superstep involves a partial standard
deviation and skewness calculus. This solution use two kinds of communication types: an all-to-
all communication reduction and a one-to-one communication among workers and coordinator.
At this moment, the parallel version is ready but some adjustments have to be made for a better
speedup tunning.

In shape feature calculus, the Laplacian-of-a-Gaussian filter is simple combined mask filter
implementation. Thus it could done in an embarrasly parallel way, every edge detection parallel
implementation must consider pixel’s correlation to stablish image strip sizes. Calculus of strips
sizes must takes into account overlapping because calculus singularity.

In texture feature calculus, the statistical implementation (Fourier Transform and Power
Spectrum) enables de use of two parallel levels. At the first one there exist three task in parallel,
every one concerning an image plane (R, G, B) leading to a three group organization for the
processes. At each group, processes split the FT calculus into a row FT calculus, follow by the
column FT calculus and finally the Power Spectrum calculus. At the resulting system, texture
feature calculus will imply three levels of parallelism, one at the feature level, other at the image
level, and the last one coming from FT calculus. Communication follows an all-to-one model
for the second level, while level an all-to-all and all-to-one model for the third level.
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On the other side, Gabor transform implemention involves two supersteps, one for the calcu-
lus of the Gabor function and the other for the calculus of its Fourier transform. Communication
among processes and coordinator are all-to-all in the first superstep and all-to one in the second
superstep.

For this work, linear perspective calculus had been implemented but results must be adjusted
before valid results could be shown.

4 EXPERIMENTS

Experiences were applied on three different image sizes: small (128 × 128), medium (1024 ×
1024) and large (4096 × 4096), and organized into two stages: at first, the calculus of optimal
features in an independent way and then the calculus of the final feature vector composition.
Results were obtained from a 18 networked nodes cluster, each node consisting on a 64 bits Intel
E6750 de 2,66GHz processor with 2GB DDR2 667 Mhz Ram. Nodes are connected together
by Ethernet segments and Switch Linksys SLM2048 of 1Gb. Base software on cluster includes
a 64 bits Debian 5 Lenny Operating System and MIPCH 2.1.0.6.

Taking into account every vector component parallel calculus and cluster particularities the
18 processors were divided into 5 groups (4 groups with 3 processors and the remaining group
with 6 processors) While the biggest group was working on FFT spectral calculus (2 levels of
parallelism) the others were working on remaining features.

Figure 3(a) shows the speedup obtained on the Mean Value Histogram calculus applied to the
three tested image sizes. It could be observed high profits and the influence of communications
and data combination in respect to the image size. The same applies to figure 3(b).

Figure 3(c) shows performance obtained by Laplacian of a Gaussian operador. The size of
images carried some weight on the obtained results. Besides the speedup is not close to lineal
speedup, it is not bad.

Figures 3(d) and 3(e) show the speedup obtained through the application of texture filters.
Besides both performances are similar, Gabor filter works better.

In general, results show some improvement only on medium and large image sizes (speedup:
3,21 and 3,36 respectively). This behavior comes from feature calculus cost disparity, where
greater costs hide some acquired cost optimizations. Some improvements could be got through
load balancing according with assigned work. For example, 2 groups with 6 processors working
on FFT calculus and color moments, and 3 groups with 2 processors working on the remaining
features. This arrangement could give some profits also on small images. Another arrangement
is combining in group those less working cost features and processing them in parallel.

5 CONCLUSIONS

In this report, we have summarized the most relevant ideas for extracting essential visual infor-
mation contained into an image and how to used them to conform a unique image visual content
representation by means of a feature vector specification. This feature vector could be used later
for indexing and retrieval. The selected features tried to follow the precepts stablished in section
2 (information relevance, computational simplicity and perceptual meaning).

We have given an overview of the used parallel filter applications and their computational
speed. In all cases they got good profits inherited from feature properties in spite of communi-
cation and processing relationship.

Small changes in processors work distribution policy and task assignment had caused bet-
ter results. A more detailed analysis would enable to get better results avoiding processors
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(b) Color Moments

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2  4  6  8  10  12  14  16  18

S
p
e
e
d
U
p

Processors

Laplacian Gaussian

128x128
1024x1024
4096x4096

(c) Laplacian of a Gaussian
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Figure 3: Speedup on Color, Shape and Texture calculus.

subutilization.
Our design and analysis show that image feature vector lends itself well to parallelization,

extending the posibilities to multi-level parallelism. However, there are several issues that could
benefit from further work on the parallel algorithm front. The parallel implementation demon-
strated good speedup and performance at the feature vector calculus and gives some hints on
communication and synchronization improvements. In addition, some advances will be to ad-
just the existing parallel implementation to dual and quad core processors and the corresponding
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architectures,
Finally, future studies will be oriented to enable portability to other architectures and high

performance computation.
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