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Abstract. A practical strategy to increase the software reliability and to reduce programming effort is 

to implement the code using Application Frameworks (AF). A strategy for the implementation of a 

Boundary Element Method (BEM) solver within an AF for discrete methods is presented in this work. 

The rationale behind this approach is to reuse existing code for the implementation of the BEM 

solver. Thus, the effort put into the implementation of the BEM code is much less than that required 

for an ad-hoc development starting from scratch.  Two strategies are introduced in order to reduce the 

memory requirements of the direct BEM .  Both approaches consist in iterative procedures in which a 

number of coefficients of the fully-populated BEM system matrix are moved to the to the right hand 

side multiplied by the corresponding values of the unknowns in the previous iteration. In the R-

approach the coefficients are selected using a criterion based on the distance between the collocation 

and field points, while in the N-approach consists in a condensation procedure for clusters of 

elements. A benchmark problem is used to verify and assess the developed code. Convergence and 

accuracy is studied for both memory reduction strategies while the performance of the 

implementations is assessed in terms of execution times and memory requirements. The ability of the 

proposed methodologies for reducing the memory requirements is demonstrated. The analysis of an 

example showed that the N-approach has a better convergence behavior than the R-approach.  

Mecánica Computacional Vol XXVIII, págs. 217-226 (artículo completo)
Cristian García Bauza, Pablo Lotito, Lisandro Parente, Marcelo Vénere (Eds.)

Tandil, Argentina, 3-6 Noviembre 2009

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

INTRODUCTION 

The solution of problems formulated in terms of partial differential equations by means of 

numerical methods is a topic of great interest in engineering and science. A practical strategy 

to increase the software reliability and to reduce programming effort is to implement the code 

using Application Frameworks (AF). An Application Framework is an abstraction in which 

common code providing generic functionality can be selectively overridden or specialized by 

a user in order to provide specific functionality. Frameworks are similar to software libraries 

in the sense that they consists of reusable abstractions of code wrapped in an Application 

Programming Interface (API); but unlike libraries, the overall control is not governed by a 

program, but by the framework itself.  

It is presented in this work the implementation of a Boundary Element Method (BEM) 

solver within the AF “SolverGP”. This AF has been developed in the Department of 

Mechanical Engineering of the University of Mar del Plata, Argentina. SolverGP is coded 

using FORTRAN and Object Oriented Programming tools. It has been successfully employed 

to implement FEM applications to solve a variety of problems in the fields of hemodynamics 

(Urquiza, 2006), friction stir welding (Santiago, 2004) and mold-filling using the resin 

transfer molding process (Santiago, 2007). The rationale behind using SolverGP to implement 

a BEM solver is to reuse the existing code. Thus, the effort put into the implementation of the 

BEM code is much less than that required for an ad-hoc development starting from scratch.  

There are introduced two strategies to reduce the memory requirements of BEM. Both 

strategies are based on distinguishing the entries in the BEM matrix contributed by elements 

located far away and in the vicinity of the collocation point. As a result, a sparse BEM matrix 

is obtained and the system of equations is solved using an iterative solver. The developed code 

is verified and assessed solving a benchmark example for the Laplace equation which has 

analytical solution (the so-called Motz problem, Motz 1946). The performance of the 

algorithm is compared to that of a standard direct BEM solver and assessed in terms of 

computing time and memory requirements. 

1 BEM IMPLEMENTATION USING THE APPLICATION FRAMEWORK 

1.1 Direct BEM formulation 

The BEM discrete formulation for a two-dimensional stationary potential problem 

discretized using N constant elements is 

 1
2

0 , ( , )d ( ), ( , )d ( )

j j

ij j ij j ij i ij i ij

S S

g q f u g G S f F S δ
∆ ∆

= − = = +∫ ∫x y y x y y  (1) 

where uj and qj (j = 1,2,…,N) are the values of the potential and the flux in the element ∆Sj 

(see Figure 1); G(x,y) and F(x,y) are the well-known potential and the flux Kelvin 

fundamental solutions; and x and y stand for the collocation and the field points respectively. 

When the problem boundary conditions are replaced into the the equations in Eq. (1), it results 

a linear system of equations of the form Ax=b where the matrix A is of dimension N×N and 

the vectors x and b are of length N. The vector x contains all the problem unknowns which are 

the nodal values of the fluxes, qi, on the boundary S1 (the portion of the model boundary with 

prescribed potential, ju , see Figure 1) and the nodal values of the potentials, ui, on the 

boundary S2 (the portion of the model boundary with prescribed flux, jq , see Figure 1). For 
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further details, the reader is referred to the book by Aliabadi and Wrobel (2002). 

 

Figure 1: Boundary discretization using constants elements. 

1.2 BEM implementation using the application framework 

The assembly strategy in the SolverGP consists in using “i-j archetypal” assemble-elements 

(Urquiza, 2002). Each i-j archetypal assemble-element accounts for the contribution of a 

boundary element pair i-j (being i the element containing the collocation point and j the field 

element) to the BEM system of equations. Thus, for a problem discretized using N boundary 

elements there will be approximately N
2
/2 archetypal assemble-elements. The elemental 

matrix for given i-j archetypal element is 
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The archetypal element embeds the information of the i and j boundary elements (element 

conectivities and node coordinates) so that the fij and gij entries in Eq. (2) can be evaluated. 

The elemental matrices contribute to the BEM system by assembling their contributions into 

the global matrix which is computed by performing loop over all the archetypal elements. The 

number of unknowns for the resulting system of equations is twice the number of equations. 

Then, the AF applies a reduction technique which eliminates the equation related to the 

known value of ju or jq at each node and leaves the equation for the qj or uj unknown 

accordingly. The process results in the system of equations Ax=b introduced in the previous 

section. 

1.3 Sparse BEM strategies 

This work proposes two alternative BEM assembly strategies which aim to reduce the 

memory requirements of the standard direct approach. Both approaches consist in iterative 

procedures in which a number of coefficients of the matrix A of the BEM system of equations 

Ax=b are moved to the to the right hand side (RHS), b, multiplied by the corresponding 

values of the unknown (or the value of the boundary conditions) evaluated in the previous 
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iteration (it). In this way the number of non-zero entries in the A matrix is reduced and 

consequently the associated memory requirements.  

In the first approach (which will be referred in what follows as the R-approach) the A-

matrix coefficients moved to the RHS are selected based on the distance Rij = |xi-xj| between 

the collocation and field points i and j, respectively. When the distance Rij for the i-j 

archetypal element is minor than a given threshold value R (Rij<R), the elemental matrix (see 

Eq. (2)) is assembled in the A
C
  matrix. In contrast, when the distance Rij is greater than 

threshold value R (Rij>R), the elemental matrix is assembled in the A
L
 matrix and moved to 

the RHS as follows: 
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             ,  0      if   .
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The second approach (from now on referred as the N-approach) incorporates an auxiliary 

matrix, A
G

, into the BEM system of equations. This new matrix accounts for the contribution 

of a number of clusters of BEM neighbor elements which influences are condensed in a sparse 

mode (see  

Figure 2). The BEM elements clusters are G
C
 = {E1, … , Er, … , En}, where Er is the element 

which condenses the group influence, and ‘n’ is the number of elements in the group. In other 

words, every element into the cluster G
C
 is considered to have the same value of u and q, 

which is assigned to the element Er . Using this approach the global system of equations is: 
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The above strategies are implemented into the framework during the system matrix 

assembly. In this way the matrix A can be stored in a sparse format, resulting in a memory 

requirement reduction when compared to the dense matrix of the standard direct BEM. It is 

worth mentioning, that the above introduced strategies in contrast to other acceleration 

techniques (fast multipole, panel clustering, wavelets, etc.) keep the precision of the direct 

BEM (no extra approximations are done) but they solve the linear system of equations 

iteratively. 

 

Figure 2 shows a schematic representation of the sparse A matrix on the left and the 

corresponding geometry discretized with 20 constant BEM elements on the right. Here the A 

matrix obtained with the N-approach is shown, in which A
C
 matrix, A

G
 matrix and A

L
 matrix 

are represented with different colors. The A
L
 matrix is given by A

L
 = A - A

C
 - A

G
, i.e. the 

white blocks in  

Figure 2. 
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Figure 2: Matrix and geometry representations for the N-approach for N=20 and n=5. 

2 NUMERICAL EXAMPLE AND VALIDATION 

The Motz problem (Motz, 1946) is used to validate the proposed implementations. The 

problem geometry and boundary conditions are depicted in Figure 3. The problem presents the 

challenge of possessing a singularity at x=y=0, where the boundary conditions suddenly 

change from u=0 to ∂u/∂y=0. An analytical solution to the problem is given in terms of the 

series expansion 

 ( )[ ](2 1)/2

1

( , ) cos 2 1 / 2
j

j

j

u r r jθ α θ
∞

−

=

= −∑  (5) 

where the origin of the polar system is in the location of the singularity (see Figure 3). The 

coefficients αj are tabulated in the literature (Georgiou, 1996). 
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Figure 3: The Motz problem: geometry, governing equations and boundary conditions. 

The performance of the standard direct BEM to solve the Motz problem was assessed for a 

model discretized using a 240-element discretization (case 1). Figure 4 depicts the computed 

solution which exhibits an error less than less that 0.5% relative to the analytical solution. 

The same problem was solved using both strategies described in Section 1.3. For the R-
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approach the threshold value R was chosen to range from 0.4 to 1, while for the N-approach 

the number of elements in the group was set to n=5, 10, 20 and 40. The BEM system of 

equations was solved using Gauss factorization for the case 1, including the direct BEM case 

(dense A matrix) and both sparse BEM strategies. Computer runs were performed in an Intel 

Core 2 Duo at 1.66 GHz PC with 2GB of RAM. 

Results are reported in Table 1 and Figure 5. Table 1 reports the memory requirements and 

the solution status for the different analysis. Figure 5 shows a log-log plot of the evolution of 

the relative error with respect to the analytical solution as a function of the number of 

iterations.  

It can be seen that the solution for the R-approach is convergent for R ≥ 0.5 and the results 

are coincident with those of the direct implementation. In contrast, for values of R<0.5, the 

solution diverges (see Figure 5). For the N-approach, the convergence is achieved for all the 

values of n.  

 

Figure 4: Left: Contour plot of potential field for case 1.  Right: plots of the analytical and BEM solutions for the 

potential and flux fields versus node number along the boundary (see arrows and node numbers in the left figure). 

 

R-approach N-approach 

R Memory (KB) Convergence n Memory (KB) Convergence 

0.40 424 Not achieved 5 1151 Achieved 

0.45 471 Not achieved 10 922 Achieved 

0.50 519 Achieved 20 836 Achieved 

0.70 711 Achieved 40 865 Achieved 

1.00 1008 Achieved    

      

Direct BEM 2194 - -     

Table 1: BEM memory requirements and convergence for the case 1. 

To further investigate the performance of the N-approach, the problem was discretized 

using larger number of elements: 2.400 elements (case 2) and 12.000 elements (case 3). In 

every case the system of equations was solved using the Jacobian pre-conditioned GMRES 

iterative solver provided by the SPARSEKIT, Saad (1994). Computer runs were performed in 

an AMD PhenomX4 at 2GHz PC, with 2GB of RAM. 
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Figure 5: Log-log plot of the relative error vs. iteration number for both approaches (case 1). 

The resulting memory requirements, execution times and relative error (up to the 10
th

 

iteration) with respect to the analytical solution for cases 2 and 3 are reported in Table 2. For 

the case 2, good agreement with the direct BEM solution for all n values was found using only 

10 iterations. Memory reduction was important for all n values and for both cases. It can be 

inferred from the analysis of the results in Table 2 that the optimal value for the parameter n in 

the case 2 is in the range 50 < n < 100 (with a memory reduction up to 93%), while in the case 

3 the optimal value for n is around 125 (with a memory reduction up to 97%). It is worth to 

note that the memory requirement for the SolverGP is proportional to the parameter Nzero in 

Eq. (6). This difference is due to the auxiliary data structures used by SolverGP. 

 

Case 2 Case 3 

N Memory 

(MB) 

Time (s) 

(
a
) 

Relative error 

(10
-2

) (
b
) 

n Memory 

(MB) 

Time (s) 

(
a
) 

Relative error  

(10
-2

) (
b
) 

5 77 11.5 0.098 50 233 124 0.093 

10 42 6.9 0.11 80 173 100 0.16 

20 24 4.9 0.14 100 158 93 0.21 

50 15 3.3 0.33 125 149 87 0.27 

80 15 3.1 0.64 250 167 79 0.58 

100 15 3.1 0.89 400 221 78 1.11 

200 23 3.3 1.04     

400 40 4.3 1.15     

        

Direct BEM 222 50 0.093 Direct BEM 5.500(
c
)   

 (a) Time per iteration, (
b
) Relative error after 10 iterations, (c) Insufficient RAM memory available. 

Table 2: Memory requirements, execution time and relative error for different strategies. 

The optimum value for n can be computed analytically. The number of non-zero 

coefficients (Nzero) in the matrix A is (see  

Figure 2) 

 �
2

# of non-zeros in # of non-zeros in 

( 1) (2 1)
C G

Nzero n Nz Nz Nz n= + − ⋅ ⋅ −
A A

���������
 (6) 

where Nz = N/n, and N is the total number of BEM elements. Then, for a fixed value of N, 
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there exists an optimal value of n that minimizes the memory requirements, given by 

 
2

3

( 1)( 2 )
0

dNzero N n n n N

dn n

− + −= = . (7) 

The positive root of the quadratic equation in the right hand side of Eq. (7) is the number 

that will minimize the memory requirement. This is 

 
1 1 8

2
opt

N
n

− + += . (8) 

If N is maintained big enough so that 1N >> , then the optimum value of n can be 

approximated by 

 2optn N≈ . (9) 

Thus, for case 2 the optimum value nopt ≈ 69, and for the case 3, nopt ≈ 155. These values 

for nopt are in agreement with those observed in the memory requirements in Table 2. This is 

so because the memory required by SolverGP is proportional to the number non-zero 

coefficients in A, as mentioned before. 

Besides, the memory requirement relative to a direct BEM for a given N can be computed 

using 

 
2

( ) 1 3 2
Relative Storage (%) 100 4 1 100

22

optNzero n N
N

N NN

 
= ⋅ = − − ⋅  

 
. (10) 

Then, if 1N ≫ , then the Relative Storage can be approximated by 

 
8

Relative Storage (%) 100
N

≈ ⋅ . (11) 

For the case 2, the memory used by the solver, with n=80, is the 6.8% of the direct BEM, 

and the Relative Storage approximated by the Eq. (11) is 5.8%, showing that this measure is a 

good estimation of the memory saving. For the case 3, the Relative Storage approximation is 

2.58%. 
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Figure 6: Memory requirements log-log plot for the N-approach. 
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The evolution of the Relative Storage with the number of elements, N, is shown in Figure 

6. It can be seen that for problems with more than 10
5
 unknowns a reduction of two or more 

orders of magnitude in the memory requirement is achieved. This improvement increases with 

N letting this strategy be a candidate to solve large-scale problems with BEM. 

Figures Figure 7 and Figure 8 depict the relative error versus the number of iterations for 

the cases 2 and 3 respectively. The green lines correspond to the values of n closer to nopt. In 

both cases and for all values of n studied, a stable convergence to the direct BEM solution is 

observed. It can also be seen that the lower the value of n, the greater the convergence speed, 

nevertheless, for values smaller than nopt the memory requirement increases. In spite of the 

fact that the convergence speed is slower for values of n closer to nopt, each iteration takes a 

shorter time, what results in the same relative error with respecto to the direct BEM for a 

similar total time. 
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Figure 7: Log-log plot of the relative error vs. iteration number for case 2. 
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Figure 8: Log-log plot of the relative error vs. iteration number for case 3. 
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3 CONCLUSIONS 

This work introduced an effective implementation of a BEM solver using the SolverGP 

Application Framework for discrete methods. In this way the effort needed for the 

implementation of the BEM solver is much less than that required for an ad-hoc development 

from scratch. 

Two strategies are introduced in order to reduce the memory requirements of the direct 

BEM.  Both approaches consist in iterative procedures in which a number of coefficients of 

the fully-populated BEM system matrix are moved to the to the right hand side multiplied by 

the corresponding values of the unknowns in the previous iteration. In the R-approach the 

coefficients are selected using a criterion based on the distance between the collocation and 

field points, while the N-approach consists in a condensation procedure for clusters of 

elements. The analysis of an example showed that the N-approach has a better convergence 

behavior than the R-approach.  

For large problems (10
5
 unknowns) the N-approach allows for reductions of two orders of 

magnitude in the memory requirement when compared to the standard direct BEM. This 

makes of it a good a candidate to solve large-scale problems. On the other hand, and although 

effective to reduce the memory requirements, the N-approach requires longer execution times 

than the standard direct BEM in order to achieve the same level of accuracy. However, these 

execution times are of the same order of direct BEM. Actual work is devoted to investigate 

different strategies to improve the convergence of the iterative solver and to further reduce the 

memory requirements. Further developments aim to extend the N-approach sparse BEM 

strategy to transient heat problems and three dimensions. 

Finally it is worth noting that although the actual implementation is based on the classical 

direct BEM formulation, the Application Framework SolverGP possesses the potential for the 

implementation of accelerated BEM formulations such as Fast Multipole, Adaptive Cross 

Approximation and Hierarchical Matrices. 
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