

SPARSE BEM IMPLEMENTATIONS USING AN APPLICATION

FRAMEWORK FOR DISCRETE METHODS

Marco Dondero
a
, Diego Santiago

b
, Adrián P. Cisilino

a
 and Santiago Urquiza

b

a
División Soldadura y Fractomecánica, INTEMA-CONICET, Universidad Nacional de Mar del Plata,

J. B. Justo 4302, 7600, Argentina, mdondero@fi.mdp.edu.ar, cisilino@fi.mdp.edu.ar

b
Grupo de Ingeniería Asistida por Computadora, Facultad de Ingeniería, Universidad Nacional de

Mar del Plata, CONICET, J. B. Justo 4302, 7600, Argentina, dsantiago@fi.mdp.edu.ar

Keywords: Boundary Element Method, Application Framework, discrete methods, low-

memory requirement.

Abstract. A practical strategy to increase the software reliability and to reduce programming effort is

to implement the code using Application Frameworks (AF). A strategy for the implementation of a

Boundary Element Method (BEM) solver within an AF for discrete methods is presented in this work.

The rationale behind this approach is to reuse existing code for the implementation of the BEM

solver. Thus, the effort put into the implementation of the BEM code is much less than that required

for an ad-hoc development starting from scratch. Two strategies are introduced in order to reduce the

memory requirements of the direct BEM . Both approaches consist in iterative procedures in which a

number of coefficients of the fully-populated BEM system matrix are moved to the to the right hand

side multiplied by the corresponding values of the unknowns in the previous iteration. In the R-

approach the coefficients are selected using a criterion based on the distance between the collocation

and field points, while in the N-approach consists in a condensation procedure for clusters of

elements. A benchmark problem is used to verify and assess the developed code. Convergence and

accuracy is studied for both memory reduction strategies while the performance of the

implementations is assessed in terms of execution times and memory requirements. The ability of the

proposed methodologies for reducing the memory requirements is demonstrated. The analysis of an

example showed that the N-approach has a better convergence behavior than the R-approach.

Mecánica Computacional Vol XXVIII, págs. 217-226 (artículo completo)
Cristian García Bauza, Pablo Lotito, Lisandro Parente, Marcelo Vénere (Eds.)

Tandil, Argentina, 3-6 Noviembre 2009

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

INTRODUCTION

The solution of problems formulated in terms of partial differential equations by means of

numerical methods is a topic of great interest in engineering and science. A practical strategy

to increase the software reliability and to reduce programming effort is to implement the code

using Application Frameworks (AF). An Application Framework is an abstraction in which

common code providing generic functionality can be selectively overridden or specialized by

a user in order to provide specific functionality. Frameworks are similar to software libraries

in the sense that they consists of reusable abstractions of code wrapped in an Application

Programming Interface (API); but unlike libraries, the overall control is not governed by a

program, but by the framework itself.

It is presented in this work the implementation of a Boundary Element Method (BEM)

solver within the AF “SolverGP”. This AF has been developed in the Department of

Mechanical Engineering of the University of Mar del Plata, Argentina. SolverGP is coded

using FORTRAN and Object Oriented Programming tools. It has been successfully employed

to implement FEM applications to solve a variety of problems in the fields of hemodynamics

(Urquiza, 2006), friction stir welding (Santiago, 2004) and mold-filling using the resin

transfer molding process (Santiago, 2007). The rationale behind using SolverGP to implement

a BEM solver is to reuse the existing code. Thus, the effort put into the implementation of the

BEM code is much less than that required for an ad-hoc development starting from scratch.

There are introduced two strategies to reduce the memory requirements of BEM. Both

strategies are based on distinguishing the entries in the BEM matrix contributed by elements

located far away and in the vicinity of the collocation point. As a result, a sparse BEM matrix

is obtained and the system of equations is solved using an iterative solver. The developed code

is verified and assessed solving a benchmark example for the Laplace equation which has

analytical solution (the so-called Motz problem, Motz 1946). The performance of the

algorithm is compared to that of a standard direct BEM solver and assessed in terms of

computing time and memory requirements.

1 BEM IMPLEMENTATION USING THE APPLICATION FRAMEWORK

1.1 Direct BEM formulation

The BEM discrete formulation for a two-dimensional stationary potential problem

discretized using N constant elements is

 1
2

0 , (,)d (), (,)d ()

j j

ij j ij j ij i ij i ij

S S

g q f u g G S f F S δ
∆ ∆

= − = = +∫ ∫x y y x y y (1)

where uj and qj (j = 1,2,…,N) are the values of the potential and the flux in the element ∆Sj

(see Figure 1); G(x,y) and F(x,y) are the well-known potential and the flux Kelvin

fundamental solutions; and x and y stand for the collocation and the field points respectively.

When the problem boundary conditions are replaced into the the equations in Eq. (1), it results

a linear system of equations of the form Ax=b where the matrix A is of dimension N×N and

the vectors x and b are of length N. The vector x contains all the problem unknowns which are

the nodal values of the fluxes, qi, on the boundary S1 (the portion of the model boundary with

prescribed potential, ju , see Figure 1) and the nodal values of the potentials, ui, on the

boundary S2 (the portion of the model boundary with prescribed flux, jq , see Figure 1). For

M. DONDERO, D. SANTIAGO, A.P. CISILINO, S. URQUIZA218

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

further details, the reader is referred to the book by Aliabadi and Wrobel (2002).

Figure 1: Boundary discretization using constants elements.

1.2 BEM implementation using the application framework

The assembly strategy in the SolverGP consists in using “i-j archetypal” assemble-elements

(Urquiza, 2002). Each i-j archetypal assemble-element accounts for the contribution of a

boundary element pair i-j (being i the element containing the collocation point and j the field

element) to the BEM system of equations. Thus, for a problem discretized using N boundary

elements there will be approximately N
2
/2 archetypal assemble-elements. The elemental

matrix for given i-j archetypal element is

0 0 0

0 0 0 0
 and

0 00 0

00 0

ij ij i

ij ij i ii ii i

j ii ii iji ji

i jjji ji

i j

f g u

f g q f g u

u f g qf g

qf g =

≠

 = =

���������

���������������

 (2)

The archetypal element embeds the information of the i and j boundary elements (element

conectivities and node coordinates) so that the fij and gij entries in Eq. (2) can be evaluated.

The elemental matrices contribute to the BEM system by assembling their contributions into

the global matrix which is computed by performing loop over all the archetypal elements. The

number of unknowns for the resulting system of equations is twice the number of equations.

Then, the AF applies a reduction technique which eliminates the equation related to the

known value of ju or jq at each node and leaves the equation for the qj or uj unknown

accordingly. The process results in the system of equations Ax=b introduced in the previous

section.

1.3 Sparse BEM strategies

This work proposes two alternative BEM assembly strategies which aim to reduce the

memory requirements of the standard direct approach. Both approaches consist in iterative

procedures in which a number of coefficients of the matrix A of the BEM system of equations

Ax=b are moved to the to the right hand side (RHS), b, multiplied by the corresponding

values of the unknown (or the value of the boundary conditions) evaluated in the previous

Mecánica Computacional Vol XXVIII, págs. 217-226 (2009) 219

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

iteration (it). In this way the number of non-zero entries in the A matrix is reduced and

consequently the associated memory requirements.

In the first approach (which will be referred in what follows as the R-approach) the A-

matrix coefficients moved to the RHS are selected based on the distance Rij = |xi-xj| between

the collocation and field points i and j, respectively. When the distance Rij for the i-j

archetypal element is minor than a given threshold value R (Rij<R), the elemental matrix (see

Eq. (2)) is assembled in the A
C
 matrix. In contrast, when the distance Rij is greater than

threshold value R (Rij>R), the elemental matrix is assembled in the A
L
 matrix and moved to

the RHS as follows:

{ } { }(1) ()

where 0 , if

 , 0 if .

it itC L

L C
ij ij ij ij

L C
ij ij ji ij

A A A R R

A A A R R

+ = − +

= = <

= = >

A x A x b

 (3)

The second approach (from now on referred as the N-approach) incorporates an auxiliary

matrix, A
G

, into the BEM system of equations. This new matrix accounts for the contribution

of a number of clusters of BEM neighbor elements which influences are condensed in a sparse

mode (see

Figure 2). The BEM elements clusters are G
C
 = {E1, … , Er, … , En}, where Er is the element

which condenses the group influence, and ‘n’ is the number of elements in the group. In other

words, every element into the cluster G
C
 is considered to have the same value of u and q,

which is assigned to the element Er . Using this approach the global system of equations is:

{ } { }

1

(1) ()

where 0 , if E E

 , 0 if E E

 if E E and 0 if E E

n

it itC G L G

L C C
ij ij ij i j

L C C
ij ij ij i j

E

G G
ij ij j r ij j r

j E

A A A

A A A

A A A

+

=

 + = − + +

= = ∧ ∈

= = ∧ ∉

= = = ≠∑

A A x A A x b

G

G (4)

The above strategies are implemented into the framework during the system matrix

assembly. In this way the matrix A can be stored in a sparse format, resulting in a memory

requirement reduction when compared to the dense matrix of the standard direct BEM. It is

worth mentioning, that the above introduced strategies in contrast to other acceleration

techniques (fast multipole, panel clustering, wavelets, etc.) keep the precision of the direct

BEM (no extra approximations are done) but they solve the linear system of equations

iteratively.

Figure 2 shows a schematic representation of the sparse A matrix on the left and the

corresponding geometry discretized with 20 constant BEM elements on the right. Here the A

matrix obtained with the N-approach is shown, in which A
C
 matrix, A

G
 matrix and A

L
 matrix

are represented with different colors. The A
L
 matrix is given by A

L
 = A - A

C
 - A

G
, i.e. the

white blocks in

Figure 2.

M. DONDERO, D. SANTIAGO, A.P. CISILINO, S. URQUIZA220

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 2: Matrix and geometry representations for the N-approach for N=20 and n=5.

2 NUMERICAL EXAMPLE AND VALIDATION

The Motz problem (Motz, 1946) is used to validate the proposed implementations. The

problem geometry and boundary conditions are depicted in Figure 3. The problem presents the

challenge of possessing a singularity at x=y=0, where the boundary conditions suddenly

change from u=0 to ∂u/∂y=0. An analytical solution to the problem is given in terms of the

series expansion

 ()[](2 1)/2

1

(,) cos 2 1 / 2
j

j

j

u r r jθ α θ
∞

−

=

= −∑ (5)

where the origin of the polar system is in the location of the singularity (see Figure 3). The

coefficients αj are tabulated in the literature (Georgiou, 1996).

-1

0

1

1

0

y

x

r

θ

2 0∇ =uu
0

x

∂ =
∂

u
0

y

∂ =
∂

u
0

y

∂ =
∂

u 0=

u 500=

Figure 3: The Motz problem: geometry, governing equations and boundary conditions.

The performance of the standard direct BEM to solve the Motz problem was assessed for a

model discretized using a 240-element discretization (case 1). Figure 4 depicts the computed

solution which exhibits an error less than less that 0.5% relative to the analytical solution.

The same problem was solved using both strategies described in Section 1.3. For the R-

 G
C
 = {E1, … , Er, … , En}

n

N

BEM geometry representation “A” matrix representation

A
G

A
C

BEM element

BEM node

Er

Er

Mecánica Computacional Vol XXVIII, págs. 217-226 (2009) 221

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

approach the threshold value R was chosen to range from 0.4 to 1, while for the N-approach

the number of elements in the group was set to n=5, 10, 20 and 40. The BEM system of

equations was solved using Gauss factorization for the case 1, including the direct BEM case

(dense A matrix) and both sparse BEM strategies. Computer runs were performed in an Intel

Core 2 Duo at 1.66 GHz PC with 2GB of RAM.

Results are reported in Table 1 and Figure 5. Table 1 reports the memory requirements and

the solution status for the different analysis. Figure 5 shows a log-log plot of the evolution of

the relative error with respect to the analytical solution as a function of the number of

iterations.

It can be seen that the solution for the R-approach is convergent for R ≥ 0.5 and the results

are coincident with those of the direct implementation. In contrast, for values of R<0.5, the

solution diverges (see Figure 5). For the N-approach, the convergence is achieved for all the

values of n.

Figure 4: Left: Contour plot of potential field for case 1. Right: plots of the analytical and BEM solutions for the

potential and flux fields versus node number along the boundary (see arrows and node numbers in the left figure).

R-approach N-approach

R Memory (KB) Convergence n Memory (KB) Convergence

0.40 424 Not achieved 5 1151 Achieved

0.45 471 Not achieved 10 922 Achieved

0.50 519 Achieved 20 836 Achieved

0.70 711 Achieved 40 865 Achieved

1.00 1008 Achieved

Direct BEM 2194 - -

Table 1: BEM memory requirements and convergence for the case 1.

To further investigate the performance of the N-approach, the problem was discretized

using larger number of elements: 2.400 elements (case 2) and 12.000 elements (case 3). In

every case the system of equations was solved using the Jacobian pre-conditioned GMRES

iterative solver provided by the SPARSEKIT, Saad (1994). Computer runs were performed in

an AMD PhenomX4 at 2GHz PC, with 2GB of RAM.

 0

 100

 200

 300

 400

 500

 0 40 80 120 160 200 240

P
ot

en
tia

l,
u

Node number

Analytical solution
BEM solution

-2500

-2000

-1500

-1000

-500

 0

 500

F
lu

x,
 q

0 40 80

200 160 120

240

M. DONDERO, D. SANTIAGO, A.P. CISILINO, S. URQUIZA222

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

 0.001

 0.01

 0.1

 1

 10

 1 10 100

R
el

at
iv

e
E

rr
or

Iteration

R=1.0
R=0.7
R=0.5

R=0.45
R=0.4

n=5
n=10
n=20
n=40

Figure 5: Log-log plot of the relative error vs. iteration number for both approaches (case 1).

The resulting memory requirements, execution times and relative error (up to the 10
th

iteration) with respect to the analytical solution for cases 2 and 3 are reported in Table 2. For

the case 2, good agreement with the direct BEM solution for all n values was found using only

10 iterations. Memory reduction was important for all n values and for both cases. It can be

inferred from the analysis of the results in Table 2 that the optimal value for the parameter n in

the case 2 is in the range 50 < n < 100 (with a memory reduction up to 93%), while in the case

3 the optimal value for n is around 125 (with a memory reduction up to 97%). It is worth to

note that the memory requirement for the SolverGP is proportional to the parameter Nzero in

Eq. (6). This difference is due to the auxiliary data structures used by SolverGP.

Case 2 Case 3

N Memory

(MB)

Time (s)

(
a
)

Relative error

(10
-2

) (
b
)

n Memory

(MB)

Time (s)

(
a
)

Relative error

(10
-2

) (
b
)

5 77 11.5 0.098 50 233 124 0.093

10 42 6.9 0.11 80 173 100 0.16

20 24 4.9 0.14 100 158 93 0.21

50 15 3.3 0.33 125 149 87 0.27

80 15 3.1 0.64 250 167 79 0.58

100 15 3.1 0.89 400 221 78 1.11

200 23 3.3 1.04

400 40 4.3 1.15

Direct BEM 222 50 0.093 Direct BEM 5.500(
c
)

 (a) Time per iteration, (
b
) Relative error after 10 iterations, (c) Insufficient RAM memory available.

Table 2: Memory requirements, execution time and relative error for different strategies.

The optimum value for n can be computed analytically. The number of non-zero

coefficients (Nzero) in the matrix A is (see

Figure 2)

 �
2

of non-zeros in # of non-zeros in

(1) (2 1)
C G

Nzero n Nz Nz Nz n= + − ⋅ ⋅ −
A A

���������
 (6)

where Nz = N/n, and N is the total number of BEM elements. Then, for a fixed value of N,

Mecánica Computacional Vol XXVIII, págs. 217-226 (2009) 223

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

there exists an optimal value of n that minimizes the memory requirements, given by

2

3

(1)(2)
0

dNzero N n n n N

dn n

− + −= = . (7)

The positive root of the quadratic equation in the right hand side of Eq. (7) is the number

that will minimize the memory requirement. This is

1 1 8

2
opt

N
n

− + += . (8)

If N is maintained big enough so that 1N >> , then the optimum value of n can be

approximated by

 2optn N≈ . (9)

Thus, for case 2 the optimum value nopt ≈ 69, and for the case 3, nopt ≈ 155. These values

for nopt are in agreement with those observed in the memory requirements in Table 2. This is

so because the memory required by SolverGP is proportional to the number non-zero

coefficients in A, as mentioned before.

Besides, the memory requirement relative to a direct BEM for a given N can be computed

using

2

() 1 3 2
Relative Storage (%) 100 4 1 100

22

optNzero n N
N

N NN

= ⋅ = − − ⋅

. (10)

Then, if 1N ≫ , then the Relative Storage can be approximated by

8

Relative Storage (%) 100
N

≈ ⋅ . (11)

For the case 2, the memory used by the solver, with n=80, is the 6.8% of the direct BEM,

and the Relative Storage approximated by the Eq. (11) is 5.8%, showing that this measure is a

good estimation of the memory saving. For the case 3, the Relative Storage approximation is

2.58%.

0.1

1

10

100

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

N

R
el

at
iv

e
st

o
ra

g
e,

 %

Figure 6: Memory requirements log-log plot for the N-approach.

M. DONDERO, D. SANTIAGO, A.P. CISILINO, S. URQUIZA224

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The evolution of the Relative Storage with the number of elements, N, is shown in Figure

6. It can be seen that for problems with more than 10
5
 unknowns a reduction of two or more

orders of magnitude in the memory requirement is achieved. This improvement increases with

N letting this strategy be a candidate to solve large-scale problems with BEM.

Figures Figure 7 and Figure 8 depict the relative error versus the number of iterations for

the cases 2 and 3 respectively. The green lines correspond to the values of n closer to nopt. In

both cases and for all values of n studied, a stable convergence to the direct BEM solution is

observed. It can also be seen that the lower the value of n, the greater the convergence speed,

nevertheless, for values smaller than nopt the memory requirement increases. In spite of the

fact that the convergence speed is slower for values of n closer to nopt, each iteration takes a

shorter time, what results in the same relative error with respecto to the direct BEM for a

similar total time.

 0.001

 0.01

 0.1

 1

 10

 1 10 100

R
el

at
iv

e
E

rr
or

Iteration

n= 5
n= 10
n= 20
n= 50
n= 80

n=100
n=200
n=400

Figure 7: Log-log plot of the relative error vs. iteration number for case 2.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100

R
el

at
iv

e
E

rr
or

Iteration

n= 50
n= 80

n=100
n=125
n=250
n=400

Figure 8: Log-log plot of the relative error vs. iteration number for case 3.

Mecánica Computacional Vol XXVIII, págs. 217-226 (2009) 225

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

3 CONCLUSIONS

This work introduced an effective implementation of a BEM solver using the SolverGP

Application Framework for discrete methods. In this way the effort needed for the

implementation of the BEM solver is much less than that required for an ad-hoc development

from scratch.

Two strategies are introduced in order to reduce the memory requirements of the direct

BEM. Both approaches consist in iterative procedures in which a number of coefficients of

the fully-populated BEM system matrix are moved to the to the right hand side multiplied by

the corresponding values of the unknowns in the previous iteration. In the R-approach the

coefficients are selected using a criterion based on the distance between the collocation and

field points, while the N-approach consists in a condensation procedure for clusters of

elements. The analysis of an example showed that the N-approach has a better convergence

behavior than the R-approach.

For large problems (10
5
 unknowns) the N-approach allows for reductions of two orders of

magnitude in the memory requirement when compared to the standard direct BEM. This

makes of it a good a candidate to solve large-scale problems. On the other hand, and although

effective to reduce the memory requirements, the N-approach requires longer execution times

than the standard direct BEM in order to achieve the same level of accuracy. However, these

execution times are of the same order of direct BEM. Actual work is devoted to investigate

different strategies to improve the convergence of the iterative solver and to further reduce the

memory requirements. Further developments aim to extend the N-approach sparse BEM

strategy to transient heat problems and three dimensions.

Finally it is worth noting that although the actual implementation is based on the classical

direct BEM formulation, the Application Framework SolverGP possesses the potential for the

implementation of accelerated BEM formulations such as Fast Multipole, Adaptive Cross

Approximation and Hierarchical Matrices.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the UNMdP, CONICET and grant PICT 1154

(2007) of the ANPyCT of the República Argentina.

REFERENCES

Aliabadi M.H, Wrobel L.C., 2002. “The Boundary Element Method”, Wiley, Chichister, UK.

Georgiou, G.C.: A singular function Boundary Integral Method for the Laplace equation.

Com. Num. Meth. In Eng. 12, 127-134 (1996)

Motz, H.: The treatment of singularities in relaxation methods. Q. Appl. Math. 4, 371 (1946)

Saad, Y., SPARSEKIT: a basic tool kit for sparse matrix computation (version2). University of

Illinois. http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html, 1994.

Santiago, D., Lombera, G., Cassanelli, A., Urquiza, S., de Vedia, L.: Numerical Modeling of

Welded Joints by the “Friction Stir Welding” Process. Mat. Res. 7 (4), 569-574 (2004)

Santiago, D., Lombera, G., Urquiza, S.: Modelado numérico del proceso “Resin Transfer

Moulding” (RTM). Mecánica Computacional XXVI, 931-937 (2007)

Urquiza, S.A., Venere, M.J.: An application framework architecture for FEM and other

related solvers. Mecánica Computacional XXI, 3099-3109 (2002.)

Urquiza, S.A., Blanco, P., Venere, M.J., Feijoo, R.A.: Multidimensional Modelling for the

Carotid Artery Blood Flow. Comp. Meth. App. Mech. Eng., 195, 4002-4017 (2006)

M. DONDERO, D. SANTIAGO, A.P. CISILINO, S. URQUIZA226

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

