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Abstract. In this paper we develop a Lagrangean finite element model for simulating waterhammer 

events in pipes; our finite element model includes the capability to consider different non-miscible 

fluids (liquids and gases), naturally conserving the mass of the different components and continuously 

distinguishing the interface between them. It is also possible to include in the model changes in the 

pipeline section (expansions and contractions).We also consider the interaction between the fluid and 

the supporting structure. 
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1 INTRODUCTION 

The generation of pressure waves in pipes containing fluids and/or gases is a topic that is 

frequently encountered in the design of industrial installations. We name as waterhammer 

(Parmakian, 1963; Streeter, 1998) the dangerous pressure build-up that is due to the rapid 

opening or closing of valves; hence, the pipes and valves have to be designed with enough 

strength to resist the maximum fluid pressure induced by this phenomenon. In other cases the 

waterhammer is controlled and used for the rapid activation of security devices. 

In any case, in order to have the required insight on the possible activation of waterhammer 

events and on its consequences, it is necessary to use a computational tool able to reliably 

model the phenomenon, predict the loads acting on the pipeline components and supporting 

structure and provide information on the effect of the different design parameters. 

In this paper we present a new finite element model for simulating waterhammer problems. 

We develop a dynamic model of the fluid contained inside the pipes using a Lagrangean 

description of motion (Dvorkin and Goldschmit, 2005) and we also consider the interaction 

between the fluid pressure waves and the supporting structure. Our finite element model 

includes the capability to consider different non-miscible fluids (liquids and gases), naturally 

conserving the mass of the different components and continuously distinguishing the interface 

between them. It is also possible to include in the model changes in the pipeline section 

(expansions and contractions). 

The friction between the fluids and the pipes is modeled considering a static and a dynamic 

component. This is necessary because we need to model very short time intervals where the 

consideration of fully developed flows is not possible. For the case of only one fluid we 

validate our results using experimental results obtained from the literature (Marcinkiewicz et 

al., 2008; Vardy and Brown, 2003; Vardy and Brown, 2004). For the case of non-miscible 

fluids we verify our results showing that they converge when the analysis meshes are refined. 

In our model we use explicit time integration and in each step we recalculate the value of 

Δt to produce stable and accurate results. 

In comparison with the more traditional method of characteristics (Parmakian, 1963), 

where an Eulerian description of motion is used, the present formulation allows for the 

consideration of several non-miscible fluids. 

 

2 THE FLUID MODEL 

2.1 Fluid elements and constitutive equations 

The finite element model of the fluid (liquid or gas) inside a pipe is developed with 1D 

elements as shown in Fig. 1; a ram flow is assumed and at each node we have only one 

displacement d.o.f. 

 

 
Figure 1: The fluid element 
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At a time “t” the pressure inside the element is calculated using the constitutive equations 

shown in Table 1 where  and  are the element volume at times “t” and “0” 

respectively, 

 

Liquid alt. 1  

Liquid alt. 2  

Gas  

 
Table 1: Constitutive equations used in the model 

 

For different fluids, the values of κ and  are obtained from the technical literature. 

The position of the nodes inside the piping system is tracked and the fluid volumes at times 

“t” and “0” are calculated taking into account the location of each node at the corresponding 

time: either in a cylindrical zone or in an expansion or in a contraction. 

 

2.2 Time integration 

For the time integration of the fluid equilibrium equations we use the explicit time stepping 

algorithm in Eqn. 1. 

For the equilibrium at time “t+Δt” we use, 

 

 

 

(                                        (1) 

 

                                                   . 

 

 

In the above equations, 

 

,  and  are the nodal displacements, velocities and accelerations at time τ; 

 is the mass matrix which, as it is normally done in explicit methods, is a lumped mass 

matrix; 

 is the nodal vector of external forces acting at time τ which includes the friction forces 

to be discussed in the next subsection; 

 is the nodal vector of internal forces equivalent to the elements pressure, function 

of the displacements at time τ. 

In the step  we need to fulfill the stability condition (Bathe, 1996), 

 

                                      (2) 

 

where  is the waves propagation speed at time t. Since both terms on the r.h.s. of Eqn. 2 are 
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function of time and are also different for each element in the model, the value of Δt is 

updated for each time step calculating for each element the value that satisfies the equality 

and then selecting the minimum one. 

Considering the circumferential flexibility of a pipe with initial mid-radius “ ”, wall 

thickness “e” (assumed constant) and Young modulus “E” we calculate at every node,  

 

     (3) 

 

and we use the above diameter in the t+Δt equilibrium equations. 

       

 

2.3 Friction fluid / pipes 

 

2.3.1. Static friction 

These models are based on the assumption of fully developed flows which is not applicable 

for modeling waterhammer events. 

For the shear stresses on the wall the static friction model uses the Darcy-Weisbach 

formula (Streeter et al., 1998), 

 

           (4) 

 

where  is the fluid density and  is the fluid velocity. The coefficient  is obtained as a 

function of the flow Re, the wall asperity and the pipe diameter (Streeter et al., 1998). 

 

2.3.2. Dynamic friction 

The available dynamic friction models can be classified in two groups: 

 The models where the shear stresses are calculated as a function of the actual flow 

conditions; e.g. the Brunone model (Marcinkiewicz et al., 2008) 

 The models where the shear stresses are calculated as a function of the flow history; 

e.g. the Vardy-Brown model (Vardy and Brown, 2003; Vardy and Brown, 2004). 

 

The Brunone model 

The Brunone model uses, 

 

(5) 

 

where 
t
D is the inner pipe diameter and, 

 

;    and   

 

If Re<2320 use in the above Re=2320. 

 

The Vardy-Brown model 

The Vardy-Brown model uses, 
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          (6) 

 

where μ is the fluid dynamic viscosity and, 

 

 

 

 

                    

 

In the above equation ν is the kinematic viscosity. 

The Vardy-Brown model is computationally more expensive than the Brunone model. 

 

3 FLUID-STRUCTURE INTERACTION 

3.1 Fluid loads on the structure 

The fluid introduces loads on the structural components due to the action of the 

internal/external pressure on the curved pipes (Dvorkin and Toscano, 2001), as it is shown in 

Fig. 2. 

 
Figure 2: Loads due to the action of the internal/external pressure on curved pipes 

 

Using the principle of momentum conservation in Fig. 3 we get, 

 
Figure 3: Momentum conservation in a curved pipe 

 

                            (7) 

 

In the above equation F is the load that the structure inputs on the fluid (the load that the 
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fluid inputs on the structure is –F ) and m is the mass of the fluid inside the pipe section. 

 

3.2 Solution technique for the FSI 

The displacements, velocities and accelerations calculated using Eqns. 1 are referred to a 

coordinate system that moves together with the pipes (non-inertial coordinate system) 

To couple the dynamic behavior of the fluid with the dynamic behavior of the structure we 

go through the following sequence: 

 

 We know at time “t” the displacements velocities and accelerations of the nodes in 

the fluid model ( )fluid and of the nodes in the structural model 

( )structure. 

 Mapping the fluid nodes on the structural model we transfer the loads (friction + 

pressure loads) that the fluid imposes on the structure. 

 We solve for the ( )structure using also an explicit time 

stepping algorithm. 

 We input on each fluid model node “k” the inertia forces

; where the fluid mass that is lumped at node “k” and  

is the pipe direction. 

 Using the loads previously discussed and the above mentioned inertia forces we 

solve for ( )fluid 

4 NUMERICAL EXAMPLES 

In the problems that follow we model the opening and closing of valves, it is important to 

notice that: 

 When the valve operation time tends to zero the numerical results become quite 

noisy; however, very good results are obtained for actual valve operational times 

(in the order of 1/100 sec). A cosine function is used to simulate the opening of the 

valve. 

 In our Lagrangean model the valve has to be modeled attached to a node rather than 

to a point fixed in space. 

The steel Young modulus was considered in the examples that follow  

4.1 Validation of the friction models implementation 

The experimental results were published in (Marcinkiewicz et al., 2008). The analyzed 

case is depicted in Fig. 4. 

 

 
Figure 4: Waterhammer experiment. The valve is closed at t=0; the pipe dimensions are 

L=100m; ID=0.016m and OD=0.018m. Fluid: water (blue) 
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In the following figures where we analyze the model results we use,  

 

   

 

The comparison between the experimental results and our numerical results obtained using 

100 elements is presented in Fig. 5. 

 
  

Figure 5: Normalized pressure at the valve. Comparison of calculated and experimental results 

 

For both models the agreement between the numerical results and the experimental data is 

excellent; however the Vardy-Brown model provides better results. 

In Fig. 6 and Fig. 7 we compare for the Brunone and Vardy-Brown models the results 

obtained using our finite element model and the method of characteristics (MOC) 
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Figure 6: Normalized pressure at the valve. Comparison of Brunone model calculated with FEM and MOC 

formulations 

 

 
Figure 7: Normalized pressure at the valve. Comparison of Vardy-Brown friction model calculated with FEM 

and MOC formulations 

 

In this case with only one fluid, the results obtained with our finite element model and with 

the MOC are coincident for both friction models. 
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4.2 Modeling non-miscible fluids 

In Fig. 8 we present the physical problem to be analyzed.  

 

 
Figure 8: Non-miscible fluids test. The valve is opened at t=0.02; the water pipeline dimensions are 

L=100m; ID=0.0893m and OD=0.01143m. Fluid: air (red), water (blue) 

 

In Fig. 9 we show how the finite element model converges when we refine the water line 

mesh. 

 

 

Figure 9: Water line mesh refinement results for Dp2 (we use 13 nodes to model the air and Lv=0) 

 

In Fig. 10 to Fig. 12 we show the convergence when the air section of the model is refined. 
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Figure 10: Air mesh refinement results for Dp0 

 

 
Figure 11: Air mesh refinement results for Dp2 
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Figure 12: Air mesh refinement results for the interface position 

 

We see from the above results that our model provides convergent results. 

It is important to notice that the air elements are quite short and, in accordance, the time 

steps need to be quite small to fulfill the stability condition in Eqn. 2. 

5 CONCLUSIONS 

In this paper we developed a Lagrangian finite element model for simulating waterhammer 

events. The motivation for using a Lagrangian formulation was to include the capability to 

model the behavior of pipes containing non-miscible fluids. 

For the case of only one fluid (water) we have validated our finite element model 

comparing its results with experimental results. 

For the case of non-miscible fluids we have verified the model showing that it converges 

when the analysis meshes are refined. 

In a forthcoming paper we are going to present the verification of the model for cases in 

which the FSI is considered and expansions / contractions are included in the pipeline. 
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