Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXVIII, págs. 467-484 (artículo completo) Cristian García Bauza, Pablo Lotito, Lisandro Parente, Marcelo Vénere (Eds.) Tandil, Argentina, 3-6 Noviembre 2009

VIBRACIÓN TRANSVERSAL DE VIGAS TIMOSHENKO ROTANTES DE SECCIÓN TRANSVERSAL VARIABLE POR EL MÉTODO DE CUADRATURA DIFERENCIAL

Daniel H. Felix^{α}, Diana V. Bambill^{α,β}, Raúl E. Rossi^{α}

^αDepartamento de Ingeniería, Instituto de Mecánica Aplicada, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahía Blanca, Argentina http://www.uns.edu.ar ^βConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina E-mail: dhfelix@criba.edu.ar, dbambill@criba.edu.ar, rerossi@criba.edu.ar

Keywords: vibración transversal, cuadratura diferencial, viga Timoshenko rotante, sección variable.

Resumen. El pre-diseño de piezas rotantes en mecanismos de diversa índole tales como álabes de turbinas, aspas de helicóptero, etc., requiere contemplar el comportamiento dinámico de las mismas. En esta etapa de desarrollo resulta deseable contar con modelos y herramientas de cálculo versátiles que no sean extremadamente refinadas a los fines de no incrementar excesivamente el costo computacional del modelado inicial. Con tal motivo, se presenta el análisis de la viga Timoshenko rotante cuya sección transversal varía en forma continua, utilizando el método de cuadratura diferencial. El considerar la posibilidad de variar la sección transversal en forma continua permite abordar el diseño de una variedad de piezas rotantes considerablemente mayor a la que permite el correspondiente algoritmo de sección constante. Los resultados obtenidos para diversos casos fueron comparados con valores disponibles en la literatura y con resultados determinados mediante la utilización del método de Elementos Finitos. De las comparaciones se observa una muy buena precisión en los valores de frecuencia calculados con el método de cuadratura diferencial.

INTRODUCCIÓN

En el campo de las ingenierías es sabido que existe una gran variedad de aplicaciones relacionadas con el tema del título, como hélices, aspas de helicópteros, turbinas, etc. que pueden ser apropiadamente representadas por medio de una viga cantilever rotante vibrando transversalmente (Sinha, 2005).

El trabajo trata sobre el estudio de las vibraciones libres transversales de una viga rotante cuya sección varía de forma continua. El planteo general propone un modelo de análisis donde es posible considerar más de un tramo, con diferentes leyes de variación de la sección transversal en cada uno. Ver Figura 1 y Figura 2.

La formulación del problema está basada en la teoría de vigas Timoshenko, que considera los efectos de la deformación por corte y de la inercia rotatoria de la viga, por entender que es la teoría adecuada para modelar en forma suficientemente completa el problema abordado Esta teoría genera resultados más precisos que la teoría de vigas Bernoulli-Euler, lo cual resulta especialmente importante en el caso de vigas poco esbeltas y en la determinación de frecuencias superiores (Rossi, Gutiérrez y Laura, 1991; Seon, Benaroya y Wei, 1999).

El análisis se realiza utilizando el método de cuadratura diferencial (MCD), (Felix, Bambill, Rossi, 2009; Felix, Rossi, Bambill, 2008). Se desarrolla el análisis numérico de aplicación al caso de vigas escalonadas, centrífugamente rigidizadas, tomando en cuenta las consideraciones dadas por Banerjee (Banerjee, 2001) en el planteo de las ecuaciones diferenciales gobernantes del problema. Se utiliza el método de cuadratura diferencial (Bellman y Casti, 1971; Bert y Malik, 1996; Karami, Malekzadeh y Shahpari, 2003; Choi, Wu y Chou, 2000; Liu y Wu, 2001) y a fin de corroborar los resultados se comparan con valores obtenidos por los autores utilizando el método de elementos finitos (Rossi, 2007).

El modelo de la viga rotante de sección variable de la Figura 1 contempla la posibilidad tanto de una variación continua de espesor en el plano $\overline{X} - \overline{Y}$ (plano transversal), o en el plano $\overline{X} - \overline{Z}$ (plano de la rotación), y así como en ambos planos simultáneamente.

Figura 1: Viga cantilever rotante de sección variable con tramos

 \overline{X} es el eje de la viga que rota con velocidad angular $\overline{\eta}$. Los ejes \overline{X} e \overline{Y} definen el plano de vibración transversal mientras que el plano de rotación es perpendicular al eje \overline{Y} . El radio \overline{R} del cilindro circular con que se materializa el eje se indicará en lo sucesivo con \overline{R}_{\circ} (el subíndice cero se utiliza para referirse, en particular, a magnitudes de la sección de la viga en la unión con el eje).

Al rotar la viga en una sección de posición \overline{x}_k se genera una fuerza centrífuga que es producida por la masa de la porción de viga que queda a la derecha de esa sección. Por consiguiente, para calcular la fuerza centrífuga debe comenzarse por la sección del extremo libre de la viga rotante.

Figura 2: Tramo k-ésimo con variación continua de sección

De acuerdo con la notación genérica definida en la Figura 2 para el caso de varios tramos, se tiene $\overline{R}_1 = \overline{R}_0$.

1 FORMULACIÓN DEL PROBLEMA

Varios investigadores analizan el caso de vigas Timoshenko rotantes (Lin y Hsiai, 2001; Sinha, 2005), sin embargo los autores no han encontrado en la literatura científica el caso de la vibración transversal de vigas rotantes de sección variable en forma continua utilizando la teoría de vigas Timoshenko, por ese motivo fue necesario deducirla a partir del principio de Hamilton, (Felix, Bambill, Rossi, 2009). A continuación se presentan las ecuaciones que gobiernan el problema.

La fuerza centrífuga en un elemento diferencial de viga, generada por la rotación, es:

$$dF = \overline{\eta}^2 \left(R_k + \overline{x}_k \right) dm \,, \tag{1}$$

donde *dm* es la masa del elemento diferencial de viga rotante, y las magnitudes geométricas son las que se indican en la Figura 2.

El esfuerzo axil originado por dicha fuerza se expresa:

$$d\overline{N}_{k}(\overline{x}_{k}) = \overline{\eta}^{2} \rho \left(\overline{R}_{k} + \overline{x}_{k}\right) A_{k}(\overline{x}_{k}) d\overline{x}_{k}$$
(2a)

donde ρ es la densidad del material y $A_k(\overline{x}_k)$ es el área de la sección de la viga en la posición \overline{x}_k .

Integrando (2a) resulta:

$$\overline{N}_{k}(\overline{x}_{k}) = \overline{\eta}^{2} \rho \int_{\overline{x}_{k}}^{L_{k}} (\overline{R}_{k} + \overline{x}_{k}) A_{k}(\overline{x}_{k}) d\overline{x}_{k} + \overline{N}_{k+1}$$
(2b)

O bien:

$$\overline{N}_{k}(\overline{x}_{k}) = \overline{\eta}^{2} \rho \left(\overline{R}_{k} \int_{\overline{x}_{k}}^{t_{k}} A_{k}(\overline{x}_{k}) d\overline{x}_{k} + \int_{\overline{x}_{k}}^{t_{k}} A_{k}(\overline{x}_{k}) \overline{x}_{k} d\overline{x}_{k} \right) + \overline{N}_{k+1}$$
(2c)

Obviamente, $\overline{N}_{k+1} = \overline{F}_{k+1}$ (ver Figura 2).

Las integrales en la ecuación (2c) son propiedades geométricas de la viga que se definen mediante las siguientes funciones:

$$V_k(\overline{x}_k) = \int_0^{\overline{x}_k} A_k(\overline{x}_k) d\overline{x}_k ; \Phi_k(\overline{x}_k) = \int_0^{\overline{x}_k} A_k(\overline{x}_k) \overline{x}_k d\overline{x}_k$$
(3a,b)

Con lo cual se tiene como expresión del esfuerzo normal:

$$\overline{N}_{k}(\overline{x}_{k}) = \overline{\eta}^{2} \rho \Big(\overline{R}_{k} V_{k}(L_{k}) + \Phi_{k}(L_{k}) - \overline{R}_{k} V_{k}(\overline{x}_{k}) - \Phi_{k}(\overline{x}_{k}) \Big) + \overline{N}_{k+1}$$

$$\tag{4}$$

Los esfuerzos de corte y de momento flector que se producen durante la vibración transversal de la viga se expresan del siguiente modo:

$$\overline{Q}_{k}^{*}(\overline{x}_{k},t) = \overline{N}_{k}(\overline{x}_{k})\frac{\partial\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}} + \kappa GA_{k}(\overline{x}_{k})\left(\frac{\partial\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}} - \overline{\psi}_{k}(\overline{x}_{k},t)\right)$$
(5a)

$$\overline{M}_{k}^{*}(\overline{x}_{k},t) = EI_{k}(\overline{x}_{k})\frac{\partial\overline{\psi}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}}$$
(5b)

donde I_k es el momento de inercia de la sección transversal, $\overline{w}_k(\overline{x}_k,t)$ y $\overline{\psi}_k(\overline{x}_k,t)$ son respectivamente el desplazamiento transversal y el giro de la sección, ambos en función de la posición \overline{x}_k y del tiempo t, E es el módulo de elasticidad, G el módulo de elasticidad transversal, y κ el factor de corte utilizado para definir el área de corte efectiva de la sección.

Separando la variable temporal y considerando una ley de variación armónica para t, se tiene:

$$\overline{w}_{k}(\overline{x}_{k},t) = \overline{W}_{k}(\overline{x}_{k})e^{i\omega t}; \quad \overline{\Psi}_{k}(\overline{x}_{k},t) = \overline{\Psi}_{k}(\overline{x}_{k})e^{i\omega t}$$
(6a,b)

$$\overline{Q}_{k}^{*}(\overline{x}_{k},t) = \overline{Q}_{k}(\overline{x}_{k})e^{i\omega t}; \quad \overline{M}_{k}^{*}(\overline{x}_{k},t) = \overline{M}_{k}(\overline{x}_{k})e^{i\omega t}$$
(6c,d)

Al reemplazar las ecuaciones (6a-d) en (5a-b), se obtienen las amplitudes de los esfuerzos de corte y momento flector:

$$\overline{Q}_{k}(\overline{x}_{k}) = \overline{N}_{k}(\overline{x}_{k}) \frac{d\overline{W}_{k}(\overline{x}_{k})}{d\overline{x}_{k}} + \kappa GA_{k}(\overline{x}_{k}) \left(\frac{d\overline{W}_{k}(\overline{x}_{k})}{d\overline{x}_{k}} - \overline{\Psi}_{k}(\overline{x}_{k})\right)$$
(7a)

$$\overline{M}_{k}(\overline{x}_{k}) = EI_{k}(\overline{x}_{k}) \frac{d\Psi_{k}(\overline{x}_{k})}{d\overline{x}_{k}}$$
(7b)

Por otra parte, las dos ecuaciones de movimiento que resultan de aplicar la teoría de vigas Timoshenko a una viga rotante de sección variable son:

$$\frac{\partial Q_k^*(\overline{x}_k, t)}{\partial \overline{x}_k} = \rho A_k(\overline{x}_k) \frac{\partial^2 \overline{w}_k(\overline{x}_k, t)}{\partial t^2}$$
(8a)

$$\overline{Q}_{k}^{*}(\overline{x}_{k},t) - N_{k}(\overline{x}_{k}) \frac{\partial \overline{w}_{k}(\overline{x}_{k},t)}{\partial \overline{x}_{k}} + \frac{\partial \overline{M}_{k}^{*}(\overline{x}_{k},t)}{\partial \overline{x}_{k}} + \rho I_{k}(\overline{x}_{k})\overline{\eta}^{2}\overline{\psi}_{k}(\overline{x}_{k},t) = \rho I_{k}(\overline{x}_{k}) \frac{\partial^{2}\overline{\psi}_{k}(\overline{x}_{k},t)}{\partial t^{2}}$$
(8b)

que en término de los corrimientos se expresan:

$$\frac{d\overline{N}_{k}(\overline{x}_{k})}{d\overline{x}_{k}}\frac{\partial\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}} + \overline{N}_{k}(\overline{x}_{k})\frac{\partial^{2}\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}^{2}} + \kappa GA_{k}(\overline{x}_{k})\left(\frac{\partial^{2}\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}^{2}} - \frac{\partial\overline{\psi}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}}\right) + \kappa G\frac{dA_{k}(\overline{x}_{k})}{d\overline{x}_{k}}\left(\frac{\partial\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}} - \overline{\psi}_{k}(\overline{x}_{k},t)\right) = \rho A_{k}(\overline{x}_{k})\frac{\partial^{2}\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{t}^{2}} + \kappa A_{k}(\overline{x}_{k})G\left(\frac{\partial\overline{w}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}} - \overline{\psi}_{k}(\overline{x}_{k},t)\right) + EI_{k}(\overline{x}_{k})\frac{\partial^{2}\overline{\psi}_{k}(\overline{x}_{k},t)}{\partial\overline{x}_{k}^{2}} + \rho I_{k}(\overline{x}_{k})\overline{\eta}^{2}\overline{\psi}_{k}(\overline{x}_{k},t) = \rho I_{k}(\overline{x}_{k})\frac{\partial^{2}\overline{\psi}_{k}(\overline{x}_{k},t)}{\partial\overline{t}^{2}}$$
(9a)
$$(9a)$$

Derivando respecto a la posición y al tiempo las expresiones (6a-b), se tiene:

$$\frac{\partial \overline{w}_{k}(\overline{x}_{k},t)}{\partial \overline{x}_{k}} = \frac{d \overline{W}_{k}(\overline{x}_{k})}{d \overline{x}_{k}} e^{i\omega t}; \quad \frac{\partial^{2} \overline{w}_{k}(\overline{x}_{k},t)}{\partial \overline{x}_{k}^{2}} = \frac{d^{2} \overline{W}_{k}(\overline{x}_{k})}{d \overline{x}_{k}^{2}} e^{i\omega t}; \quad \frac{\partial^{2} \overline{w}_{k}(\overline{x}_{k},t)}{\partial t^{2}} = -\omega^{2} \overline{W}_{k}(\overline{x}_{k}) e^{i\omega t};$$

$$\frac{\partial \overline{\psi}_{k}(\overline{x}_{k},t)}{\partial \overline{x}_{k}} = \frac{d \overline{\Psi}_{k}(\overline{x}_{k})}{d \overline{x}_{k}} e^{i\omega t}; \quad \frac{\partial^{2} \overline{\psi}_{k}(\overline{x}_{k},t)}{\partial \overline{x}_{k}^{2}} = \frac{d^{2} \overline{\Psi}_{k}(\overline{x}_{k})}{d \overline{x}_{k}^{2}} e^{i\omega t}; \quad \frac{\partial^{2} \overline{\psi}_{k}(\overline{x}_{k},t)}{\partial t^{2}} = -\omega^{2} \overline{\Psi}_{k}(\overline{x}_{k}) e^{i\omega t};$$
(10a-f)

Las expresiones (6a-d) junto con las (10a-f), son utilizadas para eliminar la variable temporal en las ecuaciones rectoras (8a,b), resultando:

$$-\frac{dQ_k(\overline{x}_k)}{d\overline{x}_k} = \rho A_k(\overline{x}_k) \omega^2 \overline{W}_k(\overline{x}_k)$$
(11a)

$$-\overline{Q}_{k}(\overline{x}_{k}) + N_{k}(\overline{x}_{k}) \frac{d\overline{W}_{k}(\overline{x}_{k})}{d\overline{x}_{k}} - \frac{d\overline{M}_{k}(\overline{x}_{k})}{d\overline{x}_{k}} - \rho I_{k}(\overline{x}_{k})\overline{\eta}^{2}\overline{\Psi}_{k}(\overline{x}_{k}) = \rho I_{k}(\overline{x}_{k})\omega^{2}\overline{\Psi}_{k}(\overline{x}_{k})$$
(11b)

y haciendo lo propio con las ecuaciones (9a,b) se tiene:

$$-\frac{d\bar{N}_{k}(\bar{x}_{k})}{d\bar{x}_{k}}\frac{d\bar{W}_{k}(\bar{x}_{k})}{d\bar{x}_{k}} - \bar{N}_{k}(\bar{x}_{k})\frac{d^{2}\bar{W}_{k}(\bar{x}_{k})}{d\bar{x}_{k}^{2}} - \kappa G A_{k}(\bar{x}_{k})\left(\frac{d^{2}\bar{W}_{k}(\bar{x}_{k})}{d\bar{x}_{k}^{2}} - \frac{d\bar{\Psi}_{k}(\bar{x}_{k})}{d\bar{x}}\right) - \kappa G A_{k}(\bar{x}_{k})\left(\frac{d\bar{W}_{k}(\bar{x}_{k})}{d\bar{x}_{k}} - \bar{\Psi}_{k}(\bar{x}_{k})\right) = \rho A_{k}(\bar{x}_{k})\omega^{2}\bar{W}_{k}(\bar{x}_{k});$$

$$-\kappa G A_{k}(\bar{x}_{k})\left(\frac{d\bar{W}_{k}(\bar{x}_{k})}{d\bar{x}_{k}} - \bar{\Psi}_{k}(\bar{x}_{k})\right) - EI_{k}(\bar{x}_{k})\frac{d^{2}\bar{\Psi}_{k}(\bar{x}_{k})}{d\bar{x}_{k}^{2}} - EI_{k}(\bar{x}_{k})\frac{d^{2}\bar{\Psi}_{k}(\bar{x}_{k})}{d\bar{x}_{k}^{2}} - EI_{k}(\bar{x}_{k})\omega^{2}\bar{\Psi}_{k}(\bar{x}_{k});$$

$$(12a)$$

$$E\frac{dI_{k}(\bar{x}_{k})}{d\bar{x}_{k}}\frac{d\bar{\Psi}_{k}(\bar{x}_{k})}{d\bar{x}_{k}} - \rho I_{k}(\bar{x}_{k})\bar{\eta}^{2}\bar{\Psi}_{k}(\bar{x}_{k}) = \rho I_{k}(\bar{x}_{k})\omega^{2}\bar{\Psi}_{k}(\bar{x}_{k});$$

$$(12b)$$

recordando que $G = E/2(1+\nu)$, con ν coeficiente de Poisson.

471

Resta determinar la forma adimensional de las ecuaciones vistas. En primer lugar se definen las formas adimensionales de la variable espacial y del radio del eje:

$$x = \frac{\overline{x_k}}{L_k}; \quad X_0 = \frac{R_0}{L}$$
(13a,b)

Se establecen las siguientes relaciones para expresar en forma adimensional las propiedades geométricas de cada tramo de la viga de sección variable:

$$A_{k}(\overline{x}_{k}) = A_{k}(0)a_{k}(x); \ V_{k}(\overline{x}_{k}) = L_{k}A_{k}(0)v_{k}(x); \ \Phi_{k}(\overline{x}_{k}) = L_{k}^{2}A_{k}(0)\phi_{k}(x)$$
(14a-c)

$$I_{k}(\overline{x}_{k}) = I_{k}(0)b_{k}(x); \ l_{k} = \frac{L_{k}}{L}; \ r_{k}^{2} = \frac{I_{k}(0)}{A_{k}(0)}; \ s_{k} = \frac{L}{r_{k}};$$
(15a-d)

$$a'_{k}(x) = \frac{da_{k}(x)}{dx}; b'_{k}(x) = \frac{db_{k}(x)}{dx}; l_{k} = \frac{L_{k}}{L}; s_{k} = \frac{L}{r_{k}}; N_{k+1} = \frac{\overline{N}_{k+1}}{EA_{k}(0)}.$$
 (16a-e)

Haciendo lo propio con los desplazamientos y giros, y sus derivadas se tiene:

$$W_{k} = \frac{\overline{W}_{k}}{L_{k}}; \ \frac{dW_{k}}{dx} = \frac{d\overline{W}_{k}}{d\overline{x}_{k}}; \ \frac{d^{2}W_{k}}{dx^{2}} = L_{k} \frac{d^{2}\overline{W}_{k}}{d\overline{x}_{k}^{2}}$$
(17a-c)

$$\Psi_{k} = \overline{\Psi}_{k}; \frac{d\Psi_{k}}{dx} = L_{k} \frac{d\overline{\Psi}_{k}}{d\overline{x}_{k}}; \frac{d^{2}\Psi_{k}}{dx^{2}} = L_{k}^{2} \frac{d^{2}\overline{\Psi}_{k}}{d\overline{x}_{k}^{2}}$$
(18a-c)

Mientras que la forma adimensional de los esfuerzos resulta:

$$N_{k+1} = \frac{\overline{N}_{k+1}}{EA_k(0)}; \ N_k(x) = \frac{\overline{N}_k(\overline{x}_k)}{EA_k(0)}; \ Q_k(x) = \frac{\overline{Q}_k(\overline{x}_k)}{EA_k(0)}; \ M_k(x) = \frac{L_k}{EI_k(0)}\overline{M}_k(\overline{x}_k);$$
(19a-d)

Al establecer la forma adimensional de las ecuaciones rectoras se obtiene la expresión de los coeficientes de frecuencia natural:

$$\Omega^2 = \frac{\rho A_o}{E I_o} L^4 \omega^2 \tag{20}$$

y del parámetro adimensional que define la velocidad de rotación de la viga:

$$\eta^2 = \frac{\rho A_0}{E I_0} L^4 \overline{\eta}^2 \tag{21}$$

Mientras que la forma adimensional de los esfuerzos internos en la viga rotante:

.

$$N_{k}(x) = \eta^{2} \frac{l_{k}^{2}}{s_{1}^{2}} \left(R_{k} v_{k}(1) + \phi_{k}(1) - R_{k} v_{k}(x) - \phi_{k}(x) \right) + N_{k+1}$$
(22a)

$$Q_k(x) = \left(N_k(x) + \frac{\kappa}{2(1+\nu)}a_k(x)\right)\frac{dW_k(x)}{dx} - \frac{\kappa}{2(1+\nu)}a_k(x)\Psi_k(x)$$
(22b)

$$M_{k}(x) = b_{k}(x) \frac{d\Psi_{k}(x)}{dx}$$
(22c)

Las condiciones de borde consideradas son empotramiento, con desplazamiento y giro nulos en la unión de la viga cantilever con el eje de rotación, y las condiciones de borde libre, esfuerzo de corte y momento flector nulos, en el extremo de la viga, $\overline{x} = L$ en el caso de un único tramo:

$$\overline{W}\Big|_{\overline{x}=0} = 0 \ ; \ \overline{\Psi}\Big|_{\overline{x}=0} = 0$$
 (23a,b)

$$\overline{Q}\Big|_{\overline{x}=L} = 0 \; ; \; \overline{M}\Big|_{\overline{x}=L} = 0$$
 (24a,b)

Cuya forma adimensional resulta:

$$W|_{x=0} = 0 \; ; \; \Psi|_{x=0} = 0$$
 (25a,b)

$$Q|_{x=1} = 0$$
; $M|_{x=1} = 0$ (26a,b)

Con el fin de no hacer demasiado extenso este trabajo, se ha omitido la transcripción de las denominadas ecuaciones análogas de cuadratura diferencial, que se obtienen a partir de las ecuaciones diferenciales y las condiciones de borde, al aplicar el algoritmo del método (Felix et al, 2008).

2 RESULTADOS NUMÉRICOS

Previamente al cálculo de frecuencias de los modelos resueltos en este estudio, se realizó un análisis de la convergencia en ambos métodos numéricos, comprobándose que con un mallado irregular de 15 puntos en el MCD se obtienen resultados muy precisos, similares a los hallados con una malla de 2000 elementos finitos.

Los resultados numéricos se presentan en tablas, para una viga de sección rectangular variable linealmente compuesta de un solo tramo, k = 1. En la sección de empotramiento el área transversal es $h_0 \times d_0$ y en la sección del extremo libre $h \times d$, con variación continua entre ellas a lo largo de la viga.

En la Tabla 1 se muestran los primeros cinco coeficientes de frecuencia en función de la velocidad de rotación de la viga de sección constante. Para cada velocidad de rotación de la viga se presentan tres conjuntos de frecuencias calculados de distinta manera.

Los valores de la primera fila de cada velocidad η (MCD) se obtuvieron con un algoritmo del método de cuadratura diferencial basado en la formulación descripta en el trabajo, que tiene en cuenta la obtención de las ecuaciones gobernantes del problema a partir del principio de Hamilton.

Los valores de la segunda fila (MCD*) son menos precisos según lo descripto por Banerjee y corresponden a una variante de la ecuación (12b) en la que no se incluye el término $\rho I_k(\bar{x}_k) \bar{\eta}^2 \bar{\Psi}_k(\bar{x}_k)$. Este término que aparece cuando se obtienen las ecuaciones diferenciales gobernantes aplicando el principio de Hamilton, no es tenido en cuenta en el algoritmo de elementos finitos que se disponía para el cálculo. La inclusión de este término fue destacada por Banerjee, quien en su trabajo (Banerjee, 2001) pone de manifiesto la importancia de incluir en la ecuación (9b) el término en el que interviene el cuadrado de la velocidad angular para lograr más precisión en los resultados, especialmente para velocidades de rotación altas. La buena concordancia de los valores de la segunda fila (MCD*) con los coeficientes de frecuencia de la tercera fila, calculados por el método de elementos finitos (MEF), se debe a que ambos algoritmos de cálculo están basados en sistemas de ecuaciones equivalentes.

η	MÉTODO	Ω_1	Ω_{2}	$\Omega_{_3}$	$\Omega_{_4}$	Ω_5
	MCD	3,294548	15,68690	34,90780	54,71968	74,39287
0	MCD*	3,294548	15,68690	34,90780	54,71968	74,39287
	MEF	3,294548	15,68690	34,90781	54,71978	74,39263
	MCD	3,455389	15,85386	35,12185	54,98314	74,66778
1	MCD*	3,459390	15,85765	35,12400	54,98505	74,66974
	MEF	3,459390	15,85765	35,12401	54,98514	74,66947
	MCD	4,527498	17,12534	36,76877	57,00463	76,71342
3	MCD*	4,553721	17,15818	36,78808	57,02230	76,73290
	MEF	4,553721	17,15818	36,78809	57,02235	76,73256
	MCD	6,094033	19,39361	39,76616	60,63970	80,00313
5	MCD*	6,144841	19,47981	39,81971	60,69207	80,07002
	MEF	6,144841	19,47981	39,81972	60,69210	80,06983
	MCD	8,738670	23,93187	45,89134	67,67402	84,60421
8	MCD*	8,822803	24,13606	46,03122	67,83810	84,82934
	MEF	8,822803	24,13606	46,03123	67,83813	84,82938
	MCD	10,57471	27,35483	50,53727	72,29233	87,35824
10	MCD*	10,68040	27,66400	50,76336	72,60773	87,69666
	MEF	10,68040	27,66400	50,76337	72,60776	87,69673
	MCD	12,43876	30,91535	55,32289	75,96808	90,76697
12	MCD*	12,56673	31,35572	55,66464	76,52769	91,18879
	MEF	12,56673	31,35571	55,66466	76,52773	91,18884

Tabla 1: sección rectangular; $X_0 = 0$; $s_0 = 20/\sqrt{3}$; $h = h_0$; $d = d_0$; v = 0,3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

En la Tabla 2 se muestran los primeros cinco coeficientes de frecuencia en función de la velocidad de rotación de la viga con variación continua. Se supone una variación lineal para el ancho de la sección $d = 0.5 d_0$, manteniéndose constante la altura $h = h_0$.

η	MÉTODO	Ω_1	Ω_2	$\Omega_{_3}$	Ω_4	Ω_5
	MCD	3,622605	14,62155	31,48133	50,74792	71,39292
0	MCD*	3,622605	14,62155	31,48133	50,74792	71,39292
	MEF	3,622605	14,62155	31,48134	50,74790	71,39168
	MCD	3,782290	14,79039	31,67864	50,98760	71,67762
1	MCD*	3,784492	14,79241	31,68010	50,98877	71,67855
	MEF	3,784492	14,79241	31,68010	50,98875	71,67740
	MCD	4,855190	16,07745	33,20927	52,85486	73,89841
3	MCD*	4,869894	16,09445	33,22203	52,86535	73,90691
	MEF	4,869894	16,09445	33,22203	52,86536	73,90634
	MCD	6,432021	18,38052	36,05011	56,35216	78,06620
5	MCD*	6,460829	18,42285	36,08419	56,38100	78,09035
	MEF	6,460829	18,42285	36,08419	56,38104	78,09051
	MCD	9,090544	23,02834	42,07378	63,85231	86,98153
8	MCD*	9,138335	23,11876	42,15575	63,92627	87,04970
	MEF	9,138335	23,11876	42,15574	63,92622	87,04997
	MCD	10,93149	26,58505	46,85246	69,82719	93,92557
10	MCD*	10,99117	26,71171	46,97644	69,94591	94,05201
	MEF	10,99117	26,71175	46,97649	69,94581	94,05172
	MCD	12,79901	30,35048	52,00170	76,22367	100,6494
12	MCD*	12,87053	30,51654	52,17659	76,40540	100,9360
	MEF	12,87053	30,51664	52,17682	76,40550	100,9355

Tabla 2: sección rectangular; $X_0 = 0$; $s_0 = 20/\sqrt{3}$; $h = h_0$; $d = 0.5d_0$; v = 0.3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

En las Tablas 3 y 4, se muestran los primeros cinco coeficientes de frecuencia en función de la velocidad de rotación de la viga con variación continua, imponiendo otras variaciones continuas para el área de la viga. Tabla 3, varía la altura de la viga y Tabla 4 varían ambas, altura y ancho de la sección de la viga. En todas estas tablas, de 1 a 4, se adoptó el valor $X_0 = 0$

η	MÉTODO	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
	MCD	4,006087	16,79014	35,77047	55,54489	75,26102
0	MCD*	4,006087	16,79014	35,77047	55,54489	75,26102
	MEF	4,006087	16,79014	35,77048	55,54496	75,26056
	MCD	4,140706	16,92634	35,94132	55,75311	75,47758
1	MCD*	4,144462	16,92965	35,94332	55,75491	75,47949
	MEF	4,144462	16,92965	35,94333	55,75497	75,47904
	MCD	5,080812	17,97618	37,26937	57,36843	77,11114
3	MCD*	5,107398	18,00509	37,28739	57,38504	77,13010
	MEF	5,107398	18,00509	37,28739	57,38508	77,12974
	MCD	6,536223	19,89695	39,74275	60,35189	79,83120
5	MCD*	6,590724	19,97348	39,79275	60,40067	79,89642
	MEF	6,590724	19,97349	39,79276	60,40070	79,89626
	MCD	9,084782	23,87892	44,98779	66,44761	83,73584
8	MCD*	9,178275	24,06092	45,11801	66,59582	83,96873
	MEF	9,178275	24,06092	45,11802	66,59585	83,96877
	MCD	10,87938	26,97169	49,10960	70,79036	85,86462
10	MCD*	10,99761	27,24617	49,31911	71,06976	86,22974
	MEF	10,99761	27,24617	49,31912	71,06980	86,22980
	MCD	12,70978	30,25105	53,47012	74,59918	88,42236
12	MCD*	12,85307	30,63902	53,78560	75,10200	88,88513
	MEF	12,85307	30,63902	53,78561	75,10203	88,88521

Tabla 3: sección rectangular; $X_0 = 0$; $s_0 = 20/\sqrt{3}$; $h = 0.5h_0$; $d = d_0$; v = 0.3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

η	MÉTODO	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
	MCD	4,348612	15,57593	32,30308	51,45836	72,00222
0	MCD*	4,348612	15,57593	32,30308	51,45836	72,00222
	MEF	4,348611	15,57593	32,30309	51,45836	72,00157
	MCD	4,484975	15,71776	32,46607	51,65360	72,23294
1	MCD*	4,487136	15,71964	32,46745	51,65473	72,23384
	MEF	4,487366	15,71964	32,46746	51,65473	72,23325
	MCD	5,439266	16,80938	33,73875	53,18375	74,04314
3	MCD*	5,454731	16,82533	33,75096	53,19384	74,05136
	MEF	5,454731	16,82533	33,75096	53,19386	74,05106
	MCD	6,916944	18,80140	36,13622	56,08986	77,48824
5	MCD*	6,948943	18,84163	36,16900	56,11767	77,51149
	MEF	6,948943	18,84163	36,16900	56,11769	77,51159
	MCD	9,493467	22,92634	41,34192	62,47386	85,05679
8	MCD*	9,548707	23,01334	41,42112	62,54505	85,12066
	MEF	9,548707	23,01335	41,42114	62,54503	85,12072
	MCD	11,29973	26,14354	45,56189	67,68534	91,17141
10	MCD*	11,36950	26,26561	45,68159	67,79861	91,28277
	MEF	11,36950	26,26566	45,68170	67,79864	91,28261
	MCD	13,13810	29,58572	50,17647	73,37750	97,59501
12	MCD*	13,22220	29,74545	50,34474	73,54763	97,79986
	MEF	13,22220	29,74554	50,34498	73,54789	97,79982

Tabla 4: sección rectangular; $X_0 = 0$; $s_0 = 20/\sqrt{3}$; $h = 0.5h_0$; $d = 0.5d_0$; v = 0.3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

η	MÉTODO	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
	MCD	3,294548	15,68690	34,90780	54,71968	74,39287
0	MCD*	3,294548	15,68690	34,90780	54,71968	74,39287
	MEF	3,294548	15,68690	34,90781	54,71978	74,39263
	MCD	3,663597	16,08853	35,43851	55,37773	75,07741
1	MCD*	3,667359	16,09229	35,44067	55,37965	75,07940
	MEF	3,667359	16,09229	35,44068	55,37974	75,07907
	MCD	5,794693	18,95352	39,29288	60,10992	79,58354
3	MCD*	5,814956	18,98495	39,31204	60,12848	79,60675
	MEF	5,814956	18,98495	39,31205	60,12850	79,60638
	MCD	8,537050	23,51027	45,56114	67,40764	84,56416
5	MCD*	8,573629	23,59100	45,61482	67,47042	84,65142
	MEF	8,573629	23,59100	45,61483	67,47044	84,65140
	MCD	12,92310	31,55324	56,59745	77,00843	92,09888
8	MCD*	12,98443	31,75036	56,74625	77,26712	92,27773
	MEF	12,98443	31,75037	56,74627	77,26715	92,27778
	MCD	15,91290	37,09305	63,90506	80,24733	98,63044
10	MCD*	15,99251	37,40788	64,15710	80,72315	98,89225
	MEF	15,99250	37,40784	64,15711	80,72320	98,89236
	MCD	18,92599	42,50526	70,63572	82,01919	103,0446
12	MCD*	19,02618	42,98663	71,02508	82,74481	103,4776
	MEF	19,02617	42,98633	71,02488	82,74495	103,4779

En las Tablas siguientes, de 5 a 8, se consideró $X_0 = 1$ y se tomaron variaciones de la sección transversal semejantes a las Tablas 1 a 4.

Tabla 5: sección rectangular; $X_0 = 1$; $s_0 = 20/\sqrt{3}$; $h = h_0$; $d = d_0$; v = 0,3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

η	MÉTODO	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
	MCD	3,622605	14,62155	31,48133	50,74792	71,39292
0	MCD*	3,622605	14,62155	31,48133	50,74792	71,39292
	MEF	3,622605	14,62155	31,48134	50,74790	71,39168
	MCD	3,988197	15,02132	31,96717	51,34923	72,11179
1	MCD*	3,990276	15,02332	31,96861	51,35040	72,11273
	MEF	3,990276	15,02332	31,96862	51,35038	72,11166
	MCD	6,133315	17,89190	35,56975	55,84289	77,49268
3	MCD*	6,144704	17,90762	35,58209	55,85325	77,50132
	MEF	6,144704	17,90762	35,58209	55,85328	77,50144
	MCD	8,918232	22,52718	41,68500	63,55856	86,70310
5	MCD*	8,938637	22,56399	41,71708	63,58712	86,72952
	MEF	8,938638	22,56399	41,71706	63,58713	86,73052
	MCD	13,38180	30,94937	53,24790	78,12760	102,2666
8	MCD*	13,41499	31,02566	53,32498	78,20832	102,4285
	MEF	13,41499	31,02575	53,32511	78,20817	102,4280
	MCD	16,43042	36,99017	61,65189	88,24970	105,9416
10	MCD*	16,47237	37,09817	61,77167	88,40948	106,3328
	MEF	16,47237	37,09836	61,77221	88,40998	106,3329
	MCD	19,50898	43,18141	70,23020	96,83483	108,7715
12	MCD*	19,56019	43,32677	70,40719	97,22285	109,2025
	MEF	19,56018	43,32672	70,40765	97,22370	109,2033

Tabla 6: sección rectangular; $X_0 = 1$; $s_0 = 20/\sqrt{3}$; $h = h_0$; $d = 0.5d_0$; v = 0.3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

η	MÉTODO	$\overline{\Omega}_1$	$\overline{\Omega}_{2}$	$\overline{\Omega}_{3}$	$\overline{\Omega}_4$	Ω_5
	MCD	4,006087	16,79014	35,77047	55,54489	75,26102
0	MCD*	4,006087	16,79014	35,77047	55,54489	75,26102
	MEF	4,006087	16,79014	35,77048	55,54496	75,26056
	MCD	4,323547	17,12486	36,20366	56,07748	75,81367
1	MCD*	4,327137	17,12815	36,20566	56,07929	75,81562
	MEF	4,327137	17,12815	36,20567	56,07935	75,81514
	MCD	6,287544	19,57304	39,42250	60,00669	79,56399
3	MCD*	6,308874	19,60086	39,44039	60,02403	79,58673
	MEF	6,308874	19,60086	39,44040	60,02405	79,58641
	MCD	8,958715	23,62905	44,88009	66,42208	83,84679
5	MCD*	8,998756	23,70088	44,93012	66,47918	83,93722
	MEF	8,998756	23,70088	44,93013	66,47920	83,93722
	MCD	13,32624	31,08519	54,98329	75,95264	89,83437
8	MCD*	13,39426	31,25888	55,12080	76,19039	90,02615
	MEF	13,39426	31,25888	55,12082	76,19042	90,02621
	MCD	16,32631	36,37117	61,96685	79,54657	96,03326
10	MCD*	16,41466	36,64537	62,20062	80,00948	96,27289
	MEF	16,41465	36,64530	62,20058	80,00953	96,27303
	MCD	19,35833	41,64357	68,60344	81,41911	101,7579
12	MCD*	19,46942	42,05793	68,97282	82,13712	102,1592
	MEF	19,46940	42,05757	68,97246	82,13725	102,1594

Tabla 7: sección rectangular; $X_0 = 1$; $s_0 = 20/\sqrt{3}$; $h = 0.5h_0$; $d = d_0$; v = 0.3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

η	MÉTODO	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
	MCD	4,348612	15,57593	32,30308	51,45836	72,00222
0	MCD*	4,348612	15,57593	32,30308	51,45836	72,00222
	MEF	4,348611	15,57593	32,30309	51,45836	72,00157
	MCD	4,668029	15,91728	32,71106	51,95722	72,59605
1	MCD*	4,670100	15,91914	32,71244	51,95835	72,59696
	MEF	4,670099	15,91914	32,71245	51,95835	72,59643
	MCD	6,661011	18,41690	35,78277	55,73919	77,10507
3	MCD*	6,673436	18,43177	35,79462	55,74917	77,11340
	MEF	6,673436	18,43177	35,79462	55,74920	77,11358
	MCD	9,385618	22,57997	41,14580	62,41793	85,06112
5	MCD*	9,408819	22,61521	41,17676	62,44544	85,08597
	MEF	9,408820	22,61522	41,17676	62,44544	85,08650
	MCD	13,84456	30,35850	51,61848	75,51070	99,87905
8	MCD*	13,88301	30,43157	51,69258	75,58608	99,98933
	MEF	13,88302	30,43167	51,69278	75,58617	99,98911
	MCD	16,91113	36,02673	59,40351	85,00632	105,5168
10	MCD*	16,95992	36,12961	59,51774	85,14489	105,8991
	MEF	16,95993	36,12974	59,51819	85,14551	105,8993
	MCD	20,01570	41,88036	67,45640	93,93965	107,5816
12	MCD*	20,07538	42,01779	67,62343	94,23109	108,0934
	MEF	20,07536	42,01763	67,62352	94,23178	108,0939

Tabla 8: sección rectangular; $X_0 = 1$; $s_0 = 20/\sqrt{3}$; $h = 0.5h_0$; $d = 0.5d_0$; v = 0.3. MCD y MCD* con mallado irregular de 15 puntos; MCD* no incluye el término de Banerjee. MEF con 2000 elementos.

3 CONCLUSIONES

Tal como es previsible, se observa el efecto rigidizador de la fuerza centrífuga al aumentar la velocidad de rotación. La disminución de material de la viga a medida que se aleja del eje de rotación produce un incremento en las frecuencias naturales del sistema, algo que resulta más notorio cuando se disminuye el ancho de la sección transversal que cuando se reduce la altura.

En todas las Tablas presentadas es posible observar la diferencia que se genera en los coeficientes de frecuencia cuando se incorpora en la formulación el término que se denominó "término de Banerjee". Este término, que como se mencionara, involucra el coeficiente del cuadrado de la velocidad de rotación, afecta en todos los casos reduciendo en un pequeño porcentaje los valores obtenidos de frecuencia natural de la viga que rota, y su inclusión se considera una mejora en el modelo matemático de la viga rotante.

4 AGRADECIMIENTOS

Este trabajo se desarrolló en el Departamento de Ingeniería bajo el auspicio de la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur y del CONICET.

REFERENCIAS

- Banerjee J. R. Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beam. *Journal of Sound and Vibration* 247:97-115. 2001
- Bellman R. and Casti. J. Differential quadrature and long-term integration. J. Math. Anal. App, 34, 235-238. 1971.
- Bert C. W. and Malik. M. Differential quadrature method in computational mechanics: A review. *Applied Mechanics Review* 49;1-28. 1996.
- Choi, S. T. Wu J. D. and Chou Y. T. Dynamic analysis of a spinning Timoshenko beam by the differential quadrature method. *American Institute of Aeronautics and Astronautics* 38:51-856.2000
- Felix, D. H., Rossi, R. E, Bambill, D. V., Vibraciones transversales por el método de cuadratura diferencial de una viga Timoshenko rotante, escalonada y elásticamente vinculada", *Mecánica Computacional* XXVII:1957-1973, 2008.
- Felix, D. H., Bambill, D. V., Rossi, R. E, Análisis de vibración libre de una viga Timoshenko escalonada, centrífugamente rigidizada, mediante el método de cuadratura diferencial, *Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería* 25:2, en prensa, 2009.
- Karami, G. Malekzadeh P., Shahpari S. A. A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. *Engineering Structures* 25:1169-1178. 2003.
- Lin S. C. and Hsiao K. M.. Vibration analysis of a rotating Timoshenko beam. *Journal of Sound and Vibration* 240:303-322. 2001.
- Liu G. R. and Wu T. Y. Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. *Journal of Sound and Vibration* 246:461-481.2001.
- Rossi, R. E. Gutierrez R. H. and Laura P. A. A.. Dynamics of transversely vibrating beams using four engineering theories. J. Acoust Soc. Am, 89:2456-2458. 1991.
- Rossi R. E. Introducción al análisis de Vibraciones con el Método de Elementos Finitos. Edit. EdiUNS, Universidad Nacional del Sur, Bahía Blanca, Argentina. 238 pp. IBSN 978-987-

1171-71-2.2007

- Seon, M. H., Benaroya H. y Wei T.. Dynamics of transversely vibrating beams using four engineering theories. *Journal of Sound and Vibration* 225:35-988. 1999.
- Sinha. S. K. Non-Linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free end. *International Journal of Non-Linear Mechanics* 40: 113-149. 2005.