Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXVIII, págs. 573-586 (artículo completo) Cristian García Bauza, Pablo Lotito, Lisandro Parente, Marcelo Vénere (Eds.) Tandil, Argentina, 3-6 Noviembre 2009

VIBRACIONES DE PLACAS DELGADAS SUPERELÍPTICAS CON MASAS ADOSADAS

Santiago Maiz^{a,c}, Diana V. Bambill^{a,b}, Carlos A. Rossit^{a,b} y Raúl E. Rossi^a

^aDepartamento de Ingeniería, Instituto de Mecánica Aplicada (IMA), Universidad Nacional del Sur Av. Alem 1253, 8000 Bahía Blanca, Argentina. <u>http://www.uns.edu.ar</u>

^bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina ^cTenarisUniversity, Industrial School, Dr Simini 250, 2804 Campana, Argentina

E-mail: smaiz@uns.edu.ar, dbambill@criba.edu.ar, carossit@crib.edu.ar, rerossi@uns.edu.ar

Palabras clave: Vibración transversal, placas superelípticas, masas puntuales, método de Ritz.

Resumen. En este trabajo se presentan los primeros ocho coeficientes de frecuencia de vibración transversal para placas delgadas, homogéneas e isótropas, con masas puntuales rígidamente adosadas en diversas posiciones. En los modelos analizados se considera el efecto de la inercia rotatoria de la masa. El perímetro de las placas se define con una función superelíptica, cuya potencia se corresponde con la forma del contorno que varía entre una elipse y un rectángulo. Se examinan cuatro relaciones de semiejes para diferentes formas de las placas y cuatro posiciones de la masa.

Para determinar los coeficientes de frecuencia se utiliza el conocido método de Ritz, con una aproximación de las amplitudes del desplazamiento transversal basada en polinomios en coordenadas cartesianas. Se comprueba que se logra buen grado de convergencia al comparar los resultados con los obtenidos con el método de elementos finitos mediante un software profesional, utilizando modelos con elevado número de elementos.

1 INTRODUCCION

En numerosas situaciones tecnológicas, las exigencias de diseño requieren la utilización de placas de diferentes formas en su contorno.

En ese contexto adquiere trascendencia el estudio de las placas superelípticas.

Se denomina así a las placas cuyo perímetro es definido por una función superelíptica con una potencia que se corresponde con su forma, que variará entre rectángulo de vértices redondeados y una elipse:

$$\left[\frac{x}{a}\right]^{2\alpha} + \left[\frac{y}{b}\right]^{2\alpha} = 1 \tag{1}$$

donde *a* y *b* son los semiejes mayor y menor respectivamente y α es un parámetro que define la forma de la placa. En efecto, en caso de que $\alpha=1$, la ecuación (1) representa en general una elipse y como caso particular (a=b) una circunferencia.

Figura 1: Contornos de placas superelípticas correspondientes a valores de $\alpha = 1, 2, 4, 5$ y 10, para a/b = 3/2

Obviamente, valores muy grandes de α aproximarán el contorno al de un rectángulo al reducir significativamente el radio en los vértices.

Se cuenta entonces, con una herramienta que permite un tratamiento unificado para un amplio rango de placas considerando placas circulares, elípticas o rectangulares eligiendo el parámetro adecuado

No son numerosos los trabajos sobre placas superelípticas y aún elípticas en la literatura.

Entre los trabajos sobre placas elípticas merecen consignarse las contribuciones de Sato (1972, 1973, 1976 y 2002) quien investigó profundamente las vibraciones transversales de placas elípticas macizas con distintas condiciones de borde.

Figura 2: Placa superelíptica con masa adosada

En el caso de placas superelípticas, Wang et al. (1994) estudió la vibración y el pandeo de placas superelípticas, mientras DeCapua y Sun,1972 estudiaron las frecuencias de placas ortótropas superelípticas utilizando polinomios como funciones aproximantes en el método de Ritz. Zhou et al. (2004) estudió la vibración tridimensional de placas superelípticas generalizadas, basado en la teoría lineal de la elasticidad utilizando el método de Ritz para derivar la ecuación de frecuencias. Series triplicadas de polinomios de Chebyshev son utilizadas en la formulación de las funciones admisibles.

2 EL MÉTODO DE RITZ

Cuando la placa ejecuta uno de modos normales de vibración, el desplazamiento de la superficie media de la placa w(x, y, t) puede ser representado mediante el producto:

$$w(x, y, t) = W(x, y) e^{i\omega t}$$
⁽²⁾

donde W es una función continua que representa la amplitud de la deformación de la superficie media y ω es la frecuencia circular natural.

Se obtendrá una solución aproximada del problema mediante el método de Ritz. Para ello es necesario utilizar como aproximación para la amplitud W, alguna expresión que satisfaga al menos las condiciones esenciales de borde. En este caso la expresión para W será definida como una sumatoria con coeficientes indeterminados C_i .

$$W(x,y) \cong W_a(x,y) = \sum_{i=1}^{N} C_i f_i(x,y), \qquad (3)$$

en la que f representa funciones continuas:

$$f_i(x,y) = \left[\left(\frac{x}{a}\right)^{2\alpha} + \left(\frac{y}{b}\right)^{2\alpha} - 1 \right]^n \phi_i(x,y)$$
(4)

La expresión en el corchete define el contorno de la placa, el parámetro *n* depende de la vinculación de la placa y los ϕ'_i 's son monomios elegidos de un set de monomios (Fig. 3) de la forma

$$x^{q-p}y^p \tag{5}$$

Entonces, la solución aproximada (3) deviene en:

$$W_{a}(x,y) = \sum_{i=1}^{N} C_{i} f_{i}(x,y) = \left[\left(\frac{x}{a} \right)^{2\alpha} + \left(\frac{y}{b} \right)^{2\alpha} - 1 \right]^{n} \sum_{q=0}^{s} \sum_{p=0}^{q} C_{i} x^{q-p} y^{p} \\ \left(i = \frac{q(q+1)}{2} + (p+1); N = \frac{(s+1)(s+2)}{2} \right)$$
(6)

Que satisface las condiciones de borde de placas libres cuando n=0, simplemente apoyadas cuando n=1 y empotradas cuando n=2.

El funcional de energía que gobierna el problema de la placa vibrante de la Figura 1 es:

$$J(W) = \iint_{A} D\left\{\frac{1}{2}\left(\frac{\partial^{2}W}{\partial x^{2}} + \frac{\partial^{2}W}{\partial y^{2}}\right)^{2} - 2(1-\nu)\left[\frac{\partial^{2}W}{\partial x^{2}}\frac{\partial^{2}W}{\partial y^{2}} - \left(\frac{\partial^{2}W}{\partial x\partial y}\right)^{2}\right]\right\} dxdy$$

$$-\frac{1}{2}\omega^{2}\left\{\rho h \iint_{A} W^{2} dxdy + \left[mW^{2} + J_{x}\left(\frac{\partial W}{\partial x}\right)^{2} + J_{y}\left(\frac{\partial W}{\partial y}\right)^{2}\right]_{(x_{m},y_{m})}\right\}$$
(7)

donde *A* es el dominio de la placa, ν es el coeficiente de Poisson, ρ es la densidad del material de la placa, *h* su espesor uniforme y *m* es la masa concentrada adosada a la placa en la posición x_m , y_m , con inercia rotatoria J_x y J_y con respecto al plano medio de la placa.

$$D = \frac{Eh^3}{12(1-v^2)}$$
, es la rigidez flexional de la placa , con *E* módulo de Young.

Es conveniente normalizar las coordenadas:

$$\xi = \frac{x}{a}, \ \eta = \frac{y}{b} \ y \ \xi_m = \frac{x_m}{a}, \ \eta_m = \frac{y_m}{b}$$
(8)

con lo que:

$$W_{a}(\xi,\eta) = \sum_{q=0}^{s} \sum_{p=0}^{q} \overline{C}_{i} \left[\xi^{2\alpha} + \eta^{2\alpha} - 1 \right]^{n} \xi^{q-p} \eta^{p}$$
(9)

donde $\overline{C}_i = C_i a^{q-p} b^p$.

De acuerdo con el método de Ritz, luego de introducir la expresión aproximada $W_a(\xi,\eta)$, Ec. (9) en la Ec. (7), la integración de $J(W_a)$ conduce a una función cuadrática homogénea de los desconocidos coeficientes de desplazamiento \overline{C}_i . La minimización de dicha función lleva a un sistema de ecuaciones homogéneas de primer orden en los \overline{C}_i :

$$\frac{\partial J(W_a)}{\partial \overline{C}_i} = 0 \quad ; \quad i = 1, 2, 3, \dots, N.$$

$$\tag{10}$$

El sistema de ecuaciones obtenidos puede ser escrito en la forma:

$$\begin{bmatrix} \mathbf{K} - \Omega^2 \mathbf{L} \end{bmatrix} \overline{\mathbf{C}} = \mathbf{0}$$
(11)

Donde $\Omega = \omega ab \sqrt{\frac{\rho h}{D}}$ son los coeficientes de frecuencia naturales de vibración del sistema y **K** y **L** son matrices simétricas cuyos elementos vienen dados por:

(12)

$$k_{ij} = \iint_{\overline{A}} \left[\left(\frac{b}{a} \right)^2 \varphi_{i,\xi\xi} \varphi_{j,\xi\xi} + \left(\frac{a}{b} \right)^2 \varphi_{i,\eta\eta} \varphi_{j,\eta\eta} + v \left(\varphi_{i,\xi\xi} \varphi_{j,\eta\eta} + \varphi_{j,\xi\xi} \varphi_{i,\eta\eta} \right) + 2 \left(1 - v \right) \varphi_{i,\xi\eta} \varphi_{j,\xi\eta} \right] d\xi d\eta$$
$$l_{ij} = \iint_{\overline{A}} \varphi_i \varphi_j d\xi d\eta + MR \varphi_i \left(\xi_m, \eta_m \right) \varphi_j \left(\xi_m, \eta_m \right) + MRr^2 \left[\varphi_{i,\xi} \varphi_{j,\xi} + \frac{a^2}{b^2} \varphi_{i,\eta} \varphi_{j,\eta} \right]_{(\xi_m, \eta_m)}$$

 \overline{A} es el dominio normalizado, *i,j* son enteros (1,2,..., N) , $\varphi_i(\xi,\eta) = \left[\xi^{2\alpha} + \eta^{2\alpha} - 1\right]^n \xi^{q-p} \eta^p$, $M = \frac{m}{m_p}$ es la relación entre la masa concentrada *m* y la masa total de la placa superelíptica, $m_p = \rho abhR$, *r* es el radio de giro $J_x = J_y = ma^2 r^2$, y *R* es el área del dominio normalizado que es $R = \pi$ para $\alpha = 1$ y R = 4 para $\alpha \rightarrow \infty$.

Los coeficientes de frecuencia natural Ω son obtenidos estableciendo la nulidad del determinante de la Ec. (11). La condición de no trivialidad conduce a una ecuación trascendente en Ω .

Como es sabido, las raíces de dicha ecuación constituyen límites superiores de los parámetros de frecuencia.

3 MÉTODO DE ELEMENTOS FINITOS

Para el caso de placa superelíptica sin masa, se disponía de valores de comparación obtenidos mediante un conocido código profesional de elementos finitos (Algor, 2008). Para obtenerlos, se utilizó el elemento tipo placa delgada con formulación de Veubeke (1968), disponible en el software Algor. Se diseñaron mallas con elementos cuadriláteros (cuadrados) tanto para el caso de placas rectangulares como en las superelípticas, salvo con los elementos finitos que definen el contorno curvo donde pasan a ser cuadriláteros y triángulos. El número de elementos cuadrados en los modelos de placas rectangulares fue de 40000, 38400, 39200 y 43200 para a/b= 1, 3/2, 2 y 3, respectivamente. Para el caso de placas superelípticas con $\alpha=2$ la cantidad de elementos finitos fue de 37220, 35680, 36440 y 40150, respectivamente; y con $\alpha=5$, 39500, 37920, 38700 y 42640.

4 RESULTADOS NUMÉRICOS

En las Tablas 1, 2 y 3 se indican los valores del coeficiente de frecuencia $\Omega = \omega ab(\rho h/D)^{\frac{1}{2}}$, obtenidos con el método de Ritz para placas empotradas, simplemente apoyadas y libres en todo el contorno, respectivamente, con cuatro relaciones de semiejes: a/b = 1, 3/2, 2 y 3. En las mismas tablas se indican, entre paréntesis, los resultados hallados con el método de elementos finitos. Se comprueba que con ambos métodos aproximados (Ritz y EF) se logra prácticamente el mismo grado de precisión.

Se observa que tanto para el caso de placas empotradas como el de placas libres (Tablas 1 y 3), las frecuencias disminuyen al aumentar el parámetro α . En tanto que en las placas simplemente apoyadas (Tabla 2), al ir incrementando α , primero disminuyen y luego aumentan, lo cual indica que para cada relación de semiejes y cada frecuencia, existe un valor no entero de α con el que se produce el mismo valor de frecuencia que en la placa rectangular. En particular, cuando a/b=1 la frecuencia fundamental en la placa circular ($\alpha=1$) resulta prácticamente coincidente con la de la placa cuadrada (diferencia 0.008%), ambas

simplemente apoyadas.

Por otra parte, comparando los resultados hallados con α =10 y los correspondientes a las placas rectangulares, se comprueba que la placa superelíptica da prácticamente los mismos valores que los de la rectangular que la circunscribe. En efecto, con las placas empotradas (Tabla 1) la máxima diferencia observada es de 0.168% para a/b =3 en la sexta frecuencia. En el caso de placas simplemente apoyadas (Tabla 2) la mayor diferencia, 0.535%, se produce en la frecuencia fundamental con la placa cuadrada (a/b =1). Finalmente, en placas libres la máxima diferencia, 2.03%, se encuentra en la sexta frecuencia cuando a/b =3/2.

		~	~	~	~	~	~	~	
a/b	α	Ω ₁	Ω ₂	Ω ₃	Ω_4	Ω_5	Ω_6	Ω ₇	Ω ₈
1	1	10.216	21.260	21.260	34.877	34.877	39.771	51.030	51.030
	2	9.0959	18.680	18.680	28.174	32.994	34.170	43.160	43.160
	_	(9.0959)	(18.680)	(18.681)	(28.177)	(32.993)	(34.171)	(43.165)	(43.166)
	4	9.0008	18.369	18.369	27.141	32.898	33.148	41.440	41.442
	5	8.9978	18.356	18.356	27.087	32.896	33.089	41.327	41.329
	0	(8.9978)	(18.356)	(18.356)	(27.087)	(32.896)	(33.089)	(41.329)	(41.329)
	10	8.9966	18.349	18.349	27.057	32.897	33.054	41.256	41.256
	rect	8.9963	18.348	18.348	27.054	32.895	33.051	41.250	41.250
	Icci	(8.9965)	(18.349)	(18.349)	(27.056)	(32.896)	(33.052)	(41.253)	(41.253)
	1	11.420	18.981	27.658	29.593	38.023	43.221	50.972	51.570
	2	10.245	16.019	25.183	25.573	31.184	38.601	40.810	47.687
	2	(10.245)	(16.019)	(25.183)	(25.573)	(31.186)	(38.601)	(40.813)	(47.688)
	4	10.133	15.663	24.824	24.998	30.033	37.887	38.887	47.052
3/2	5 10	10.129	15.648	24.807	24.966	29.968	37.839	38.761	47.012
		(10.129)	(15.648)	(24.807)	(24.967)	(29.969)	(37.839)	(38.763)	(47.013)
		10.127	15.640	24.797	24.949	29.930	37.808	38.678	46.989
	rect	10.127	15.639	24.797	24.946	29.927	37.804	38.672	46.986
		(10.127)	(15.639)	(24.797)	(24.947)	(29.929)	(37.806)	(38.675)	(46.987)
	1	13.689	19.749	27.988	34.929	38.498	44.024	51.323	54.969
	2	12.442	16.400	23.166	32.454	32.652	37.029	44.147	44.755
	2	(12.443)	(16.400)	(23.167)	(32.454)	(32.653)	(37.031)	(44.151)	(44.755)
	4	12.298	15.948	22.455	31.769	32.031	35.682	41.915	43.764
2	5	12.292	15.926	22.413	31.711	32.007	35.597	41.756	43.693
	5	(12.292)	(15.926)	(22.414)	(31.711)	(32.007)	(35.598)	(41.758)	(43.689)
	10	12.289	15.914	22.389	31.671	31.993	35.543	41.645	43.653
	root	12.289	15.913	22.385	31.665	31.992	35.538	41.636	43.626
	Tect	(12.289)	(15.914)	(22.386)	(31.667)	(31.992)	(35.540)	(41.640)	(43.629)
	1	18.933	23.863	30.077	37.650	46.652	50.030	57.142	58.141
	2	17.622	20.114	24.233	30.058	37.669	47.064	47.536	51.005
	2	(17.622)	(20.115)	(24.233)	(30.059)	(37.669)	(47.063)	(47.537)	(51.006)
	4	17.415	19.458	23.178	28.744	36.194	45.486	47.032	49.365
3	5	17.404	19.420	23.108	28.649	36.085	45.368	46.994	49.235
	3	(17.404)	(19.420)	(23.109)	(28.649)	(36.077)	(45.351)	(46.994)	(49.235)
	10	17.398	19.396	23.062	28.579	36.013	45.304	46.968	49.140
	maat	17.397	19.394	23.056	28.570	35.974	45.228	46.966	49.132
	rect	(17.397)	(19.395)	(23.057)	(28.572)	(35.976)	(45.231)	(46.967)	(49.133)

Tabla 1: Coefficientes de frecuencias $\Omega_i = \omega_i ab(\rho h/D)^{\frac{1}{2}}$ de placas empotradas.

a/b	α	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
1	1	4.9352	13.898	13.898	25.613	25.613	29.720	39.957	39.957
	C	4.6332	12.255	12.255	20.201	24.656	25.311	33.459	33.459
	2	(4.6532)	(12.276)	(12.276)	(20.233)	(24.665)	(25.336)	(33.487)	(33.487)
	4	4.8029	12.183	12.183	19.478	24.496	24.667	31.925	31.925
	5	4.8425	12.217	12.217	19.503	24.492	24.671	31.864	31.864
	5	(4.8429)	(12.218)	(12.218)	(19.505)	(24.493)	(24.671)	(31.867)	(31.867)
	10	4.9084	12.297	12.297	19.647	24.593	24.675	31.959	31.959
	rect	4.9348	12.337	12.337	19.739	24.674	24.674	32.076	32.076
	icci	(4.9349)	(12.337)	(12.337)	(19.740)	(24.675)	(24.675)	(32.078)	(32.078)
	1	5.5215	11.889	18.300	21.195	27.593	33.435	38.541	39.390
	2	5.0989	10.110	16.561	18.644	22.040	30.423	31.044	35.489
	2	(5.1046)	(10.117)	(16.567)	(18.649)	(22.052)	(30.425)	(31.055)	(35.494)
	4	5.2288	10.091	16.358	18.347	21.183	29.433	29.927	34.942
3/2	5	5.2633	10.135	16.371	18.366	21.187	29.377	29.913	34.916
	5	(5.2668)	(10.142)	(16.375)	(18.374)	(21.198)	(29.395)	(29.922)	(34.919)
	10	5.3221	10.233	16.421	18.452	21.301	29.484	29.966	34.929
	rect	5.3460	10.281	16.449	18.506	21.384	29.609	30.020	34.955
		(5.3461)	(10.281)	(16.450)	(18.506)	(21.385)	(29.611)	(30.021)	(34.955)
	1	6.6067	11.821	19.163	23.075	28.741	31.382	40.595	41.507
	2	6.0105	9.7470	16.161	21.236	25.047	25.646	32.610	36.362
	-	(6.0108)	(9.7473)	(16.161)	(21.237)	(25.047)	(25.647)	(32.612)	(36.363)
	4	6.0748	9.6834	15.857	20.929	24.543	24.572	30.755	35.710
2	5	6.1011	9.7254	15.881	20.925	24.539	24.541	30.667	35.680
	C	(6.1011)	(9.7255)	(15.881)	(20.925)	(24.540)	(24.541)	(30.668)	(35.679)
	10	6.1487	9.8216	15.979	20.952	24.607	24.611	30.731	35.723
	rect	6.1685	9.8696	16.038	20.973	24.674	24.674	30.843	35.777
		(6.1686)	(9.8698)	(16.039)	(20.973)	(24.675)	(24.675)	(30.844)	(35.779)
	1	9.0271	13.371	18.967	25.927	32.840	34.330	40.336	44.228
	2	8.2205	10.809	15.123	21.073	28.665	30.874	34.376	37.890
		(8.2206)	(10.809)	(15.123)	(21.073)	(28.665)	(30.874)	(34.377)	(37.890)
	4	8.1703	10.559	14.650	20.431	27.877	30.450	32.973	36.975
3	5	8.1824	10.580	14.659	20.420	27.848	30.423	32.879	36.927
		(8.1830)	(10.582)	(14.661)	(20.421)	(27.845)	(30.424)	(32.881)	(36.922)
	10	8.2114	10.652	14.747	20.494	27.909	30.420	32.859	36.937
	rect	8.2247	10.692	14.804	20.562	27.964	30.431	32.899	37.011
	1001	(8.2247)	(10.692)	(14.805)	(20.562)	(27.965)	(30.432)	(32.899)	(37.013)

Tabla 2: Coeficientes de frecuencias $\Omega_i = \omega_i ab(\rho h/D)^{\frac{1}{2}}$ de placas simplemente apoyadas. ($\nu = 0.3$)

a/b	α	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
1	1	5.3583	5.3583	9.0031	12.439	12.439	20.474	21.835	21.835
	2	4.0378	4.9834	7.2392	10.154	10.154	17.046	17.046	18.313
	2	(4.0377)	(4.9831)	(7.2388)	(10.154)	(10.154)	(17.045)	(17.045)	(18.310)
	4	3.5818	4.9097	6.4706	9.2115	9.2117	15.848	15.848	16.846
	5	3.5134	4.9041	6.3464	9.0572	9.0575	15.669	15.670	16.583
	5	(3.5134)	(4.9038)	(6.3463)	(9.0571)	(9.0571)	(15.668)	(15.668)	(16.582)
	10	3.4092	4.8995	6.1507	8.8093	8.8095	15.393	15.394	16.136
	rect	3.3671	4.8990	6.0676	8.7002	8.7002	15.273	15.273	15.922
	icci	(3.3669)	(4.8986)	(6.0671)	(8.6996)	(8.6996)	(15.271)	(15.271)	(15.920)
	1	4.3178	5.3241	10.7143	11.006	11.699	19.337	19.505	20.224
	2	3.8407	4.0079	9.1714	9.3345	9.8669	14.239	16.400	17.907
	2	(3.8407)	(4.0078)	(9.1711)	(9.3333)	(9.8663)	(14.238)	(16.399)	(17.906)
	4	3.5592	3.6610	8.2246	8.6534	9.6554	12.236	15.052	17.145
3/2	5	3.4922	3.6326	8.0728	8.5483	9.6370	11.914	14.836	16.972
	5	(3.4918)	(3.6323)	(8.0715)	(8.5469)	(9.6361)	(11.911)	(14.833)	(16.970)
	10	3.3904	3.5879	7.8305	8.3860	9.6205	11.399	14.479	16.644
	rect	3.3493	3.5689	7.7245	8.3183	9.6189	11.172	14.309	16.472
		(3.3493)	(3.5687)	(7.7241)	(8.3173)	(9.6178)	(11.171)	(14.308)	(16.471)
	1	3.3352	5.2738	8.4605	11.007	13.884	15.756	18.414	21.495
	2	2.9206	3.9632	7.8123	8.6465	12.034	14.762	15.215	16.048
		(2.9207)	(3.9632)	(7.8122)	(8.6462)	(12.032)	(14.762)	(15.214)	(16.046)
	4	2.7629	3.5248	7.5797	7.7746	11.331	13.431	14.001	15.040
2	5	2.7381	3.4598	7.5424	7.6339	11.226	13.214	13.688	14.993
	•	(2.7382)	(3.4598)	(7.5422)	(7.6340)	(11.225)	(13.214)	(13.686)	(14.992)
	10	2.6993	3.3614	7.4088	7.4805	11.067	12.856	13.204	14.898
	rect	2.6829	3.3219	7.3103	7.4508	11.001	12.688	13.000	14.841
		(2.6828)	(3.3217)	(7.3099)	(7.4502)	(11.000)	(12.687)	(12.998)	(14.839)
	1	2.2523	5.2047	5.7688	10.258	10.856	16.324	17.495	19.636
	2	1.9556	3.9010	5.2838	8.1183	10.187	13.111	16.524	18.019
	-	(1.9557)	(3.9008)	(5.2839)	(8.1178)	(10.187)	(13.111)	(16.523)	(18.015)
	4	1.8431	3.4752	5.0809	7.3441	9.9228	11.960	16.096	17.238
3	5	1.8255	3.4129	5.0465	7.2193	9.8799	11.770	16.045	17.078
	-	(1.8256)	(3.4128)	(5.0466)	(7.2193)	(9.8798)	(11.770)	(16.044)	(17.074)
	10	1.7981	3.3191	4.9893	7.0198	9.8070	11.454	15.993	16.799
	rect	1.7865	3.2817	4.9625	6.9329	9.7692	11.304	15.984	16.670
	1000	(1.7867)	(3.2822)	(4.9624)	(6.9325)	(9.7686)	(11.304)	(15.982)	(16.667)

Tabla 3: Coefficientes de frecuencias $\Omega_i = \omega_i ab(\rho h/D)^{\frac{1}{2}}$ de placas libres. ($\nu = 0.3$)

Para estudiar el efecto de una masa concentrada rígidamente adosada, el análisis se realizó para tres relaciones de semiejes, limitando a dos placas superelípticas (α =2 y α =5), empotradas en el contorno. Los cálculos se realizaron mediante el método de Ritz por su mayor celeridad en brindar resultados. En cada caso se adoptaron dos valores de la masa concentrada, expresados mediante la relación con la masa total de la placa: $M = m/m_p$, y dos valores del radio de giro para tener en cuenta la inercia rotatoria de la masa adosada, utilizando el parámetro adimensional $r = (J/M)^{\frac{1}{2}}/a$, donde $J = J_x = J_y$ es el momento de inercia de la masa concentrada.

En la Tabla 4 se dan los primeros ocho valores del coeficiente de frecuencia cuando la

582

-											
α	a/b	т	r	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
			0.00	7.1702	18.680	18.680	26.228	28.174	32.994	43.160	43.160
		0.1	0.01	7.1702	18.673	18.674	26.228	28.174	32.994	43.151	43.151
	1		0.05	7.1702	18.508	18.509	26.228	28.174	32.994	42.894	42.894
			0.00	5.3313	18.680	18.680	23.019	28.174	32.994	43.160	43.160
		0.3	0.01	5.3313	18.659	18.660	23.019	28.174	32.994	43.133	43.133
			0.05	5.3313	18.153	18.154	23.019	28.174	32.994	41.918	41.918
			0.00	8.0327	16.019	22.188	25.183	31.184	38.601	40.230	40.810
		0.1	0.01	8.0327	16.015	22.188	25.151	31.184	38.574	40.230	40.770
2	15		0.05	8.0327	15.921	22.188	24.350	31.184	37.894	39.715	40.230
2	1.0		0.00	5.9178	16.019	20.438	25.183	31.184	37.843	38.601	40.810
		0.3	0.01	5.9178	16.007	20.438	25.088	31.184	37.843	38.519	40.690
			0.05	5.9178	15.718	20.438	22.481	31.184	36.327	37.241	37.843
			0.00	9.6127	16.400	20.434	32.454	32.652	37.029	39.413	44.147
	2	0.1	0.01	9.6127	16.397	20.434	32.354	32.634	37.029	39.413	44.042
			0.05	9.6127	16.323	20.434	29.432	32.185	37.029	39.413	41.611
	-		0.00	6.9387	16.400	19.317	32.454	32.652	37.029	37.353	44.147
		0.3	0.01	6.9387	16.391	19.317	32.148	32.597	37.029	37.353	43.828
			0.05	6.9387	16.161	19.317	23.374	31.204	37.029	37.353	39.155
			0.00	7.0287	18.356	18.356	25.608	27.087	32.896	41.327	41.329
		0.1	0.01	7.0287	18.349	18.349	25.608	27.087	32.896	41.316	41.317
	1		0.05	7.0287	18.185	18.185	25.608	27.087	32.896	41.003	41.004
	•		0.00	5.1940	18.356	18.356	22.623	27.087	32.896	41.327	41.329
		0.3	0.01	5.1940	18.336	18.336	22.623	27.087	32.896	41.293	41.294
			0.05	5.1940	17.835	17.835	22.623	27.087	32.896	40.035	40.036
			0.00	7.8773	15.648	21.587	24.807	29.968	37.839	38.761	40.112
		0.1	0.01	7.8773	15.644	21.587	24.777	29.968	37.811	38.721	40.112
5	1.5		0.05	7.8773	15.551	21.587	24.005	29.968	37.110	37.701	40.112
Ũ			0.00	5.7707	15.648	19.942	24.807	29.968	37.820	37.839	38.761
		0.3	0.01	5.7707	15.636	19.942	24.716	29.968	37.754	37.820	38.639
			0.05	5.7707	15.353	19.942	22.221	29.968	35.564	35.603	37.820
			0.00	9.4384	15.926	19.698	31.711	32.007	35.597	38.528	41.756
		0.1	0.01	9.4384	15.923	19.698	31.692	31.915	35.597	38.528	41.649
	2		0.05	9.4384	15.853	19.698	29.176	31.246	35.597	38.528	39.425
	-		0.00	6.7793	15.926	18.662	31.711	32.007	35.597	36.656	41.756
		0.3	0.01	6.7793	15.917	18.662	31.655	31.725	35.597	36.656	41.435
			0.05	6.7793	15.702	18.662	23.394	30.293	35.597	36.656	37.505

masa se aplica en el centro de la placa.

Tabla 4: Coeficientes de frecuencias $\Omega_i = \omega_i ab(\rho h/D)^{\frac{1}{2}}$ de placas superelípticas empotradas y con una masa concentrada con inercia rotatoria, adosada en (0,0).

En las Tablas 5, 6 y 7 se transcriben los resultados para otras tres posiciones de la masa, en puntos de coordenadas (x=a/2, y=0), (x=0, y=b/2), (x=a/2, y=b/2), respectivamente.

α	a/b	т	r	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
			0.00	8.2248	15.264	18.680	27.866	28.174	34.102	40.046	43.160
		0.1	0.01	8.2243	15.264	18.677	27.864	28.165	34.097	40.046	43.145
	1		0.05	8.2140	15.264	18.620	27.802	27.937	33.965	40.046	42.737
	1		0.00	6.6803	13.069	18.680	26.142	28.174	34.097	39.431	43.160
		0.3	0.01	6.6797	13.068	18.673	26.134	28.147	34.082	39.431	43.114
			0.05	6.6655	13.055	18.488	25.905	27.402	33.593	39.428	41.566
			0.00	9.0544	13.435	22.936	25.183	31.184	37.333	40.810	44.764
		0.1	0.01	9.0542	13.435	22.933	25.172	31.150	37.318	40.768	44.750
2	15		0.05	9.0477	13.435	22.861	24.858	30.252	36.895	39.734	44.357
2	1.0		0.00	6.9348	12.307	22.015	25.183	31.184	36.572	40.810	43.321
		0.3	0.01	6.9346	12.307	22.007	25.151	31.081	36.541	40.684	43.257
			0.05	6.9287	12.292	21.772	23.656	28.409	35.358	37.892	41.357
			0.00	10.544	14.148	21.156	32.002	32.454	37.029	43.826	44.147
		0.1	0.01	10.544	14.148	21.154	31.989	32.423	36.933	43.786	44.037
	2		0.05	10.540	14.146	21.102	30.621	31.660	34.605	42.025	42.821
	2		0.00	7.6049	13.627	20.612	31.734	32.454	37.029	42.849	44.147
		0.3	0.01	7.6048	13.626	20.605	31.700	32.354	36.733	42.734	43.820
			0.05	7.6026	13.609	20.434	23.875	30.689	33.568	39.990	40.821
			0.00	8.0884	14.989	18.356	27.087	27.544	33.081	38.657	41.329
		0.1	0.01	8.0880	14.989	18.353	27.079	27.541	33.076	38.657	41.319
	1		0.05	8.0776	14.989	18.294	26.870	27.479	32.957	38.654	41.046
	•	0.3	0.00	6.5186	12.900	18.356	25.821	27.087	33.081	38.206	41.329
			0.01	6.5180	12.900	18.349	25.813	27.062	33.067	38.205	41.298
			0.05	6.5041	12.885	18.157	25.590	26.395	32.637	38.194	40.273
			0.00	8.8581	13.140	22.524	24.807	29.968	36.845	38.761	42.688
		0.1	0.01	8.8579	13.140	22.521	24.795	29.935	36.829	38.730	42.675
5	1.5		0.05	8.8517	13.139	22.447	24.443	29.116	36.389	37.984	42.358
-			0.00	6.7139	12.126	21.675	24.807	29.968	36.110	38.761	41.179
		0.3	0.01	6.7137	12.126	21.666	24.771	29.869	36.079	38.667	41.122
			0.05	6.7083	12.111	21.429	23.173	27.651	34.919	36.714	39.687
			0.00	10.220	13.848	20.627	31.264	32.007	35.597	41.756	42.173
		0.1	0.01	10.220	13.847	20.625	31.250	31.969	35.502	41.678	42.140
	2		0.05	10.217	13.845	20.570	29.875	30.909	33.720	40.383	41.355
	_		0.00	7.3043	13.425	20.149	31.068	32.007	35.597	40.903	41.756
		0.3	0.01	7.3042	13.425	20.143	31.032	31.883	35.311	40.815	41.528
			0.05	7.3026	13.408	19.970	23.595	29.998	33.084	38.774	39.568

Tabla 5: Coeficientes de frecuencias $\Omega_i = \omega_i ab(\rho h/D)^{\frac{1}{2}}$ de placas superelípticas empotradas y con una masa concentrada con inercia rotatoria, adosada en (0.5*a*,0).

α	a/b	т	r	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
			0.00	8.2247	15.264	18.680	27.866	28.174	34.103	40.046	43.160
		0.1	0.01	8.2242	15.264	18.678	27.863	28.165	34.098	40.046	43.145
	1		0.05	8.2139	15.264	18.621	27.802	27.937	33.966	40.046	42.737
	I		0.00	6.6801	13.069	18.680	26.141	28.174	34.098	39.431	43.160
		0.3	0.01	6.6795	13.068	18.674	26.134	28.147	34.083	39.431	43.114
			0.05	6.6653	13.054	18.489	25.905	27.401	33.594	39.428	41.567
			0.00	9.3065	16.019	19.187	25.476	31.184	35.432	38.601	44.841
		0.1	0.01	9.3047	16.018	19.186	25.475	31.177	35.426	38.590	44.811
2	15		0.05	9.2625	15.987	19.184	25.451	31.000	35.214	38.305	43.766
-	1.0	0.3	0.00	7.6324	15.684	16.019	25.474	31.184	33.867	38.601	44.461
			0.01	7.6297	15.683	16.015	25.471	31.164	33.838	38.568	44.374
			0.05	7.5646	15.648	15.918	25.373	30.531	32.166	37.597	39.259
			0.00	11.263	16.400	20.521	26.926	32.652	37.029	39.068	44.593
		0.1	0.01	11.258	16.399	20.519	26.924	32.646	37.023	39.065	44.589
	2		0.05	11.127	16.375	20.463	26.874	32.473	36.862	38.954	44.312
	_		0.00	9.0910	16.400	17.567	25.545	32.652	37.029	38.091	44.589
		0.3	0.01	9.0830	16.397	17.567	25.526	32.632	37.010	38.074	44.579
			0.05	8.8814	16.324	17.538	24.660	32.012	32.901	36.498	38.863
			0.00	8.0884	14.989	18.356	27.087	27.544	33.081	38.657	41.327
		0.1	0.01	8.0880	14.989	18.354	27.079	27.541	33.077	38.657	41.317
	1		0.05	8.0776	14.989	18.294	26.870	27.479	32.957	38.655	41.044
		0.3	0.00	6.5186	12.900	18.356	25.821	27.087	33.081	38.206	41.327
			0.01	6.5180	12.900	18.349	25.813	27.062	33.067	38.206	41.296
			0.05	6.5040	12.885	18.157	25.590	26.395	32.637	38.194	40.271
			0.00	9.1645	15.648	18.860	24.924	29.968	33.982	37.839	43.842
		0.1	0.01	9.1627	15.647	18.860	24.923	29.962	33.978	37.828	43.812
5	1.5		0.05	9.1199	15.616	18.857	24.898	29.814	33.832	37.548	42.828
			0.00	7.4747	15.478	15.648	24.924	29.968	32.653	37.839	43.337
		0.3	0.01	7.4720	15.477	15.644	24.921	29.951	32.630	37.806	43.247
			0.05	7.4072	15.443	15.548	24.821	29.434	31.509	36.855	38.812
		~ 4	0.00	11.102	15.926	19.891	26.551	31.711	35.597	37.383	43.212
		0.1	0.01	11.097	15.925	19.889	26.550	31.704	35.592	37.382	43.210
	2		0.05	10.965	15.903	19.830	26.503	31.535	35.473	37.317	43.084
		0.0	0.00	8.9269	15.926	17.179	25.050	31.711	35.597	36.612	43.178
		0.3	0.01	8.9188	15.923	17.178	25.031	31.691	35.582	36.600	43.173
			0.05	8.7183	15.855	17.159	24.273	31.103	34.027	35.215	37.822

Tabla 6: Coeficientes de frecuencias $\Omega_i = \omega_i ab(\rho h/D)^{\frac{1}{2}}$ de placas superelípticas empotradas y con una masa concentrada con inercia rotatoria, adosada en (0,0.5*b*).

α	a/b	т	r	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
			0.00	8.8082	15.354	18.680	23.754	31.933	32.994	38.488	43.160
		0.1	0.01	8.8078	15.353	18.680	23.754	31.931	32.988	38.483	43.148
	1		0.05	8.7981	15.338	18.672	23.743	31.877	32.840	38.357	42.804
	1		0.00	7.9217	11.923	18.680	22.325	31.464	32.994	37.844	43.160
		0.3	0.01	7.9207	11.923	18.679	22.320	31.456	32.977	37.831	43.124
			0.05	7.8971	11.923	18.654	22.207	31.189	32.391	37.333	41.520
			0.00	9.8953	14.498	21.082	25.390	28.169	36.957	38.741	45.829
		0.1	0.01	9.8943	14.496	21.082	25.388	28.168	36.949	38.734	45.800
2	15		0.05	9.8686	14.448	21.080	25.330	28.138	36.714	38.529	44.669
2	1.0		0.00	8.6913	12.283	18.884	25.383	27.639	36.175	38.709	45.367
		0.3	0.01	8.6885	12.283	18.881	25.377	27.632	36.148	38.686	45.268
			0.05	8.6203	12.273	18.791	25.166	27.332	34.512	36.842	39.827
		0.1	0.00	11.939	15.044	21.315	27.780	32.624	33.920	41.067	44.719
			0.01	11.935	15.039	21.313	27.778	32.617	33.919	41.063	44.707
	2		0.05	11.845	14.928	21.256	27.729	32.429	33.875	40.899	44.363
	2		0.00	9.9694	13.654	19.597	25.886	32.623	33.647	40.614	44.718
		0.3	0.01	9.9606	13.654	19.594	25.863	32.602	33.640	40.596	44.680
			0.05	9.7339	13.636	19.509	24.691	31.465	32.542	34.655	40.908
			0.00	8.6712	14.775	18.356	23.045	30.873	32.896	37.304	41.328
		0.1	0.01	8.6708	14.775	18.356	23.045	30.870	32.890	37.299	41.319
	1		0.05	8.6614	14.766	18.348	23.027	30.804	32.732	37.156	41.059
		0.3	0.00	7.6650	11.551	18.356	21.886	30.441	32.896	36.781	41.328
			0.01	7.6642	11.551	18.355	21.881	30.432	32.878	36.766	41.300
			0.05	7.6438	11.551	18.330	21.760	30.150	32.269	36.264	40.207
			0.00	9.7231	14.020	20.415	24.895	27.400	35.784	37.909	44.712
		0.1	0.01	9.7220	14.018	20.415	24.893	27.399	35.776	37.903	44.675
5	15		0.05	9.6962	13.979	20.413	24.835	27.370	35.529	37.730	43.416
Ũ			0.00	8.3589	11.974	18.460	24.894	27.015	35.151	37.902	44.123
		0.3	0.01	8.3564	11.974	18.456	24.887	27.009	35.122	37.882	44.004
			0.05	8.2958	11.968	18.352	24.681	26.787	33.766	36.586	38.808
			0.00	11.677	14.542	20.643	26.877	31.736	33.237	39.648	43.576
		0.1	0.01	11.674	14.538	20.642	26.875	31.729	33.236	39.644	43.563
	2		0.05	11.578	14.451	20.600	26.817	31.544	33.215	39.520	43.176
	-		0.00	9.5048	13.400	19.133	25.126	31.735	33.067	39.317	43.561
		0.3	0.01	9.4969	13.399	19.130	25.104	31.714	33.063	39.303	43.520
			0.05	9.2953	13.388	19.032	24.164	31.002	32.534	34.646	39.672

Tabla 7: Coeficientes de frecuencias $\Omega_i = \omega_i ab(\rho h/D)^{\frac{1}{2}}$ de placas superelípticas empotradas y con una masa concentrada con inercia rotatoria, adosada en (0.5*a*,0.5*b*).

5 CONCLUSIONES

El concepto de placa superelíptica permite un tratamiento unificado para un amplio rango de placas considerando desde placas circulares a cuadradas (a=b), y desde elípticas a rectangulares $(a\neq b)$ mediante una adecuada elección del parámetro α .

El método de Ritz con las funciones base propuestas, demuestra ser una herramienta eficiente en la determinación de un gran número de frecuencias naturales de placas cuyo contorno presenta una variada gama de geometrías y distintas condiciones de borde, con el

agregado de masas inerciales traslacionales y rotacionales adosadas.

La cantidad de frecuencias a determinar, puede incrementarse simplemente tomando un número adecuado de términos N en la sumatoria de aproximación (6).

Se señala que para *N*=136, el tiempo computacional insumido en el cálculo de las primeras ocho frecuencias en cada caso analizado fue de escasos segundos utilizando una PC estándar.

El ahorro de tiempo de la formulación presentada es significativo frente a la utilización de códigos de elementos finitos que requieren modelar el dominio de la placa, cada vez que consideramos una geometría diferente para su contorno. Esto es importante en la etapa de diseño de la estructura resistente.

6 AGRADECIMIENTOS

Los autores agradecen a la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur por su auspicio para la realización de este trabajo.

REFERENCIAS

- ALGOR Professional Software, V23, *Linear Mode Shapes and Natural Frequencies Module*, 2008.
- DeCapua, N.J. and Sun, B.C., Transverse vibration of a class of orthotropic plates. *Journal of Applied Mechanics*—ASME 39: 613–615: 1972
- Sato K., Free flexural vibrations of an elliptical plate with edge restrained elastically, *The Japan Society of Mechanical Engineers*, 260-264, 1976.
- Sato K., Free flexural vibrations of an elliptical plate with free edge, *The Journal of the Acoustical Society of America* 54, 547-550, 1973.
- Sato K., Free flexural vibrations of an elliptical plate with simply supported edge, *The Journal of the Acoustical Society of America* 52, 919-922, 1972
- Sato K., Vibration and Buckling of a Clamped Elliptical Plate on Elastic Foundation and under Uniform In-Plane Force, *Theor Appl Mech Jpn* 51:49-62, 2002.
- Veubeke B. Fraejis de, A conforming finite element for plate bending. *International Journal of Solids and Structures*, 4: 95-108, 1968
- Wang, C.M., Wang, L. and Liew, K.M., Vibration and buckling of super elliptical plates. *Journal of Sound and Vibration* 171: 301–314, 1994.
- Zhou, D., Lo, S.H., Cheung, Y.K. and Au, F.T.K., 3-D vibration analysis of generalized super elliptical plates using Chebyshev-Ritz method, *International Journal of Solids and Structures*, 41: 4697-4712, 2004.

586