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Abstract. The dynamic stability of functionally graded thin-walled beams allowing for shear 
deformability is investigated in this article. The structure is subjected to axial external dynamic 
loading. The analysis is based on a model that has small strains and moderate rotations that are 
formulated through the adoption of a second-order non-linear displacement field. Galerkin’s and 
Bolotin’s methods are employed with the scope to discretize the governing equations and to determine 
the regions of dynamic instability, respectively. Regions of instability are evaluated and are expressed 
in non-dimensional terms. The influence of the longitudinal vibration on the unstable regions is 
investigated. The numerical results show the importance of this effect when the forcing frequency 
approaches to the natural longitudinal frequency, obtaining substantially wider parametric instability 
regions. The effect of shear flexibility and axial inertia for beams with different cross-sections and 
different types of graded material are analyzed as well. 
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1 INTRODUCTION 

Strategic and high technology industries, such as defense, aerospace or automotive 
industries are demanding new and advanced materials in order to increase the leadership in 
high competitive goods. A few decades ago, designers claimed for new materials combining 
in a single specimen, the good properties of different kind of materials. That is, for example, 
the stiffness, electrical conductivity and machinability of metals and the high strength, low 
density and high temperature resistance of ceramics. During the past ten or twelve years these 
kind of advanced materials are becoming no longer experimental specimens in laboratories 
but a well developed reality. Functionally graded materials (FGM) are just an example of 
such advanced materials. In this kind of materials the variation in percentage of the material 
constituents (normally ceramic and metal) can be arranged in such a way to create a new 
material with graded properties in spatial directions. 

Many papers have been devoted to study shells and solids constructed with FGM such as 
the works carried out by Reddy and Chin (1998), Reddy (2000), Praveen and Reddy (1998), 
El-Abbasi and Meguid (2000) and Kitipornchai et al. (2004) among others. There are many 
interesting approaches to analyze slender structures. Each of these approaches offers different 
perspectives and useful modeling alternatives.   

The recent works of Chakraborty et al. (2003), Goupee and Vel (2006) and Ding et al. 
(2007), Xiang and Yang (2008), Yang and Chen (2008) among others can be considered the 
most relevant for functionally graded straight beams. In these papers different laws defining 
the graded properties of the beams have been employed. The gradation laws can be of the 
exponential type or a power law or any other with “ad-hoc” purposes. Many of the 
aforementioned papers introduce a three dimensional or a two dimensional complex model. 
On the other hand, there are quite a few papers devoted to study functionally graded thin-
walled beams.  

The works of Oh et al (2003, 2005), Fazelzadeh et al (2007) and Fazelzadeh and Hosseini 
(2007) are among the few papers devoted to the mechanics of thin-walled beams constructed 
with functionally graded materials. The scope of these papers has been mainly directed 
towards the analysis of rotating beams and secondarily to the analysis of the thermo-elastic 
coupling effects associated with graded properties. The works of Oh et al (2003, 2005) are 
also devoted to the study of dynamic instability of cylindrical spinning beams.  

The dynamic instability of elastic slender structures like beams, rods and columns, induced 
by parametric excitation has been investigated by many researchers. In the work of Nayfeh 
and Mook (1979) one can find extensive sources and literature on these topics. The problems 
of dynamic stability for various structural elements have been thoroughly introduced and 
analyzed by Bolotin (1964). This last treatise provides useful tools for further studies and 
analysis on dynamic instability of slender structures. Some of these tools were employed by 
Machado (2008), and Machado and coworkers (2005, 2007) to study different aspects of 
dynamic instability in thin-walled composite beams.   

In spite of the practical interest and future potential of the thin-walled functionally graded 
beam structures, particularly in the context of aerospace and mechanical applications, the 
most of the contemporary and available research is focused to characterize the dynamic 
response behavior of beams with solid sections or, at least, beams modeled as long conical or 
cylindrical shells (Naj et al, 2008). Under these circumstances, it appears that, to the best of 
authors’ knowledge, there is a lack of research paying attention to the problem of dynamic 
stability of thin-walled beams with graded properties and subjected to axial dynamic 
excitation. With this context in mind, the present paper is devoted to analyze the patterns of 
dynamic stability for a given model of thin-walled beam considering full-shear deformability. 
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The concept of full shear deformability is adopted (Cortínez and Piovan, 2006; Machado et al, 
2007; Piovan and Cortínez, 2007) to mean the inclusion in a unified fashion of shear 
stress/strain effects due to bending (the most common) and warping due to non-uniform 
torsion. Constitutive equations for functionally graded properties are developed and 
appropriately included in the beam model.  

The purpose of the present investigation is the determination of the regions of dynamic 
instability of thin-walled functionally graded beams subjected to axial excitation. The beams 
are subjected to different types of boundary restrictions. The influence on the unstable regions 
of different modeling features such as shear deformation, natural longitudinal vibration, types 
of constitutive law and load parameter is extensively analyzed. 

2 MODEL DESCRIPTION  

2.1 Equations of motion 

In Figure 1 one can see the structural model for the thin-walled beam. The points of the 
structural member are referred to a Cartesian co-ordinate system { }z,y,x:O  located at the 
centroid where the x-axis is parallel to the longitudinal axis of the beam while y  and z  
correspond to the principal axes of the cross section. The axes  are parallel to the 
principal ones but having their origin at the shear center, i.e. the point C. Besides a 
circumferential co-ordinate system {  is defined in the middle contour of the cross-
section. On the other hand, y

zy ,

}n,s,x:A
0 and z0 are the centroidal co-ordinates measured with respect to 

the shear center.  

 
Figure 1: Structural model. 

The mathematical model for the structure is based on the following hypotheses (Cortinez 
and Piovan, 2002; Machado and Cortínez, 2005): 

a) The cross-section contour is rigid in its own plane. 
b) Shell force and moment resultant corresponding to the circumferential stress σss and the 

force resultant corresponding to the in-thickness strains γns are neglected; 
c) The radius of curvature at any point of the shell is neglected;  
d) Twisting curvature of the shell is expressed according to the classical plate theory, but 

bending curvature is expressed according to the first order shear deformation theory; in fact, 
bending shear strain of the wall is incorporated; 

e) The strains are considered small and the rotations are considered moderate. 
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In order to construct the model for thin walled beams with functionally graded properties 
the following hypothesis are added: 

f) The properties are graded along the wall-thickness e according a prescribed law that is 
uniform around the contour domain S and depends only on the thickness variable n.  

g) Shear effects across the wall-thickness e are neglected. 
 
The laws of variation of the elastic and mass properties along the wall thickness can be 

prescribed in order to bear in mind for different types of material gradation such as metal to 
ceramic or metal (steel) to metal (aluminium). The properties can be defined to vary in 
continuous or layered fashion as well. With these properties it is possible to develop the 
constitutive equations in terms of stress resultants and generalized strains. This allows, in a 
single mathematical structure, the representation of isotropic, ceramic, functional and 
composite beams as well.  

The motion equations for full shear deformable thin-walled beams can be written in the 
following form (Machado et al, 2007):  
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Subjected to the following boundary conditions (at x = 0, L): 
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In Eqs. (1) and (2), the apostrophes mean derivation with respect to the space variable x 
and time, respectively. The variable u is the axial displacement of the cross-section; v and w 
are the lateral displacements of the shear center. θy and θz are bending rotation parameters, φx 
is the twisting angle measured form the shear center and θx is a measure of the warping 
intensity. On the other hand, QX is the axial force; QY and QZ are shear forces; MY and MZ are 
bending moments, B is the bimoment, TSV is the twisting moment due to pure torsion and TW 
is the flexural-torsional moment due to warping torsion. BW is a higher-order stress-resultant 
related to warping torsion that contributes to the torque (Machado and Cortínez, 2005). xQ  is 
the prescribed axial force acting at the boundaries. jM , j = 1,…,7 are the inertial forces. 
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2.2 Constitutive equations in terms of beam stress resultants  

The beam forces mentioned in the previous paragraph can be defined in terms of the shell-
stress resultants in the following form: 
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where ωp is the warping function of the contour, ψ is the shear strain at the middle line, 
obtained by means of the Saint-Venant theory of pure torsion for isotropic beams, and 
normalized with respect to twisting angle gradient (Cortinez and Piovan, 2002; Machado and 
Cortinez, 2005). {  and }Z,Y { Z,Y } are the co-ordinates corresponding to points lying on the 
middle line of the wall measured from the shear center and the centroid, respectively. The 
functions r(s) and l(s) are defined as follows: 
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The shell-stress resultants are described as: 
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where ijA , ijB and ijD are modified elastic coefficients, whose definitions can be obtained in 
terms of the longitudinal and transversal moduli and the Poisson coefficient by neglecting the 
hook force and hook moment of the shell (Nss and Mss) as one can see in the Appendix I. On 
the other hand, εxx, and γxs are normal and shear strains of the shell whereas κxx and κxs are the 
normal and transversal curvatures. As one can see there is no elastic coupling between normal 
and shear components. The functions jM , j = 1,…,7 are defined as follows: 
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The dots over the variables intend for derivation with respect to the time, i.e. 
. The inertia coefficients  are such that: ( ) ( ) dt/d •=•& ρ
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In order to clarify some aspects of the present model it should be mentioned that depending 
on the sort of hypotheses invoked into the displacement field employed to develop the model 
(normally first order formulation in displacements), some important terms may disappear as a 
consequence of the algebraic process, leading to incorrect expressions for the equations of 
motion and inaccurate predictions of the dynamic behavior of thin-walled beams. The 
underlined terms of the Eq. (1) are those that disappear in a first order formulation.  

Under certain conditions, it can be shown (Machado et al, 2007) that the stress resultant BW 
can be written in terms of the axial force Qx (see Appendix I) leading to a more affordable 
solution procedure for the dynamic stability problem.   

3 DYNAMIC STABILITY 

3.1 Basic description 

In this section the dynamic stability of a simply supported thin-walled composite beam is 
analyzed considering an axial excitation in the form:  

( ) [ ]t.CosPPtP ds ϖ+=  (8)

where ϖ  is the excitation frequency, Ps = α Pcr, Pd = β Pcr, α is the static load factor, β is the 
dynamic load factor and Pcr is the critical load of the beam. 

When the beam is excited in the axial (longitudinal) direction, and the interaction of this 
movement on the other motions has to be studied, the coupling of these various motions will 
depend on the symmetry of the cross-section analyzed. 

The first differential equation shown in Eq. (1), that corresponds to the longitudinal 
movement can easily solved, disregarding the longitudinal inertia forces, in the following 
form:  

[ ]t.CosPPQ dsx ϖ−−=  (9)

Although longitudinal inertia forces can substantially affect the dynamic stability of a 
beam only in the case where the frequency of the external force is near the longitudinal 
natural frequencies of the beam (i.e., when the longitudinal vibrations have a resonant 
character), however in this section and only for comparative purposes, the solution procedure 
is developed disregarding the longitudinal inertia forces. Once the expressions of the solution 
are attained, the effect of longitudinal inertia forces is afterwards accounted for.   

The remaining differential equations can be discretized by means of the following wave 
functions: 
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where vo(t), wo(t), φxo(t), θyo(t), θzo(t) and θxo(t) are the associated displacement amplitudes 
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which are time dependent and  

,...3,2,1k,
L

k
k ==    πλ  (11)

The formal substitution of Eq. (9) and Eq. (10) into the last six equations of Eq. (1) leads 
to a system of ordinary differential equations, which can be expressed in a compact form by 
using matrix notations as: 
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M, S and K are the mass matrix, geometric stiffness matrix and elastic stiffness matrix, 
respectively. Definitions of constants  are detailed in Appendix I.  E

ijJ
From Eq. (12) one can obtain the solution to different problems. Then, the problem 

concerning the determination of frequencies of free vibration of a beam loaded by a constant 
longitudinal force can be expressed as: 

0P 2
s =−− MSK Ω  (17)

while the problem of the determination of frequencies of free vibration of an unloaded beam 
leads to the following equation: 

02 =− MK Ω  (18)
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and the buckling problem can be analyzed from the following equation: 

0Ps =− SK  (19)

3.2 Principal parametric resonance 

The unstable boundaries for the thin-walled composite beam subjected to an axial periodic 
load are studied in this section. In the classification of parametric resonance, if ϖ is the 
excitation frequency and Ωi the natural frequency of the ith mode, parametric resonance of 
“first kind” is said to occur when ϖ/2Ω  ≈ 1/r, r = 1,2,…while parametric resonance of the 
“second kind” is said to occur when ϖ/(Ωk± Ωj)  ≈ 1/ r, r = 1,2,…(k ≠ j). In both cases the 
situation where r =1 is generally the only one of practical importance. Usually the parametric 
resonance of the first kind is termed “parametric resonance”, whereas the second kind is 
referred as “combination resonance”, because it involves two different frequencies. In this 
paper the study is only concentrated in the case of parametric resonance.    

Finding the boundaries of the regions of instability reduces to the determination of the 
conditions under which the differential equation (12) of the system has periodic solutions with 
period 2π/ϖ and 4π/ϖ (Bolotin, 1964). For the principal region, which is a half sub-harmonic, 
one looks for a solution with a period which is twice the forcing frequency: i.e., 4π/ϖ. 

The condition for the existence of solutions can be expressed in the following infinite 
determinant form (Bolotin, 1964). 
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The boundaries of the instability regions lying near the frequency ϖ = 2Ω  can be 
determined with sufficient accuracy considering the first leading diagonal term: 

( ) 0PP 2
4
1

d2
1

s =−±− MSK ϖ  (21)

3.3 Influence of forced and parametrically excited vibrations 

In the previous sections the longitudinal force in the beam is assumed equal to the external 
force acting at the end of the beam and therefore the longitudinal vibrations are neglected. 
Such an assumption is acceptable in certain bounds when the exciting frequency is small in 
comparison with the frequency ωL of the free longitudinal vibrations. However for beams 
with small slenderness ratio or particular lamination sequence, the frequency at which a 
parametric resonance occurs, can be the same order as the natural frequency of the 
longitudinal vibrations. With the aim to include this effect in the analysis is necessary to 
substitute the constitutive expression corresponding to the axial force Qx into the first 
differential equation in Eq (1) and solving for the displacement u, that is: 
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+
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Adopting the corresponding boundary condition, i.e. the first of Eq. (2), the solution to the 
Eq. (22) can be represented as: 
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where: 
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Substituting the expression (23) into the remaining six differential equations given in the 
Eq. (1) and applying the same methodology previously explained, the equation (21) can be 
expressed in the following form: 
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Now, solving Eq. (24) one can obtain the main regions of instability considering the 
influence of the longitudinal vibration.  

4 APPLICATIONS AND NUMERICAL RESULTS 

The scope of the section is to apply the aforementioned model in order to study the 
dynamic stability of simply-supported thin-walled composite beams with graded properties. 
The influence of longitudinal vibrations and the effect of shear deformation on the regions of 
instability are analyzed. When the beam is excited in the axial (longitudinal) direction, the 
interaction of this movement will depend on the symmetry of the cross-section analyzed. 
Different bisymmetrical cross-sectional shapes and beam lengths are considered to perform 
the numerical analysis. Variation of the volume fraction of ceramic through the thickness for 
the different values of volume fraction index is considered. 

Among the many ways to characterize the law for graded material in this paper a simple 
gradation based in a power-law is employed. The Eq. (26) shows the law of variation of the 
elastic and mass properties along the wall-thickness e. This law of variation   

( ) ( )
K

MCM e2
en2n ⎟

⎠
⎞

⎜
⎝
⎛ +

−+= PPPP  (26)

where, P(n) denotes a typical material property (i.e., density ρ or Young’s modulus E or 
Poisson coefficient ν). Sub-indexes C and M define the properties of the material of the outer 
surface (normally ceramic) and inner surface (normally metallic). The exponent K, which is 
connected to the ratio of constituents in volume, can have different values that may vary 
between zero (i.e., a full metallic phase) or infinity (i.e., a full ceramic phase). Figure 2 shows 
an example of properties gradation across the thickness for different values of the exponent K. 
Once the Young’s modulus and Poisson coefficient are defined, it is possible to obtain the 
shear modulus and the elastic coefficient for a plane stress state (see Appendix I). The elastic 
and mass properties of the material constituents for Steel, Alumina, Aluminium and Silicon 
Carbide are summarized in Table 1.  

In the following examples, that are associated with the cross-sections shown in Fig. 3, the 
system equations are uncoupled (because of the by-symmetry: y0 = z0 = 0). Therefore, there 
are three main modes of vibration corresponding either to bending or to torsion. In these 
cases, the lowest frequency corresponds to the lateral flexural mode (y-direction), while the 
highest vibration frequency corresponds to the twist mode. In all the results presented below, 
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the value of the static load parameter is adopted α = 0.5, and the excitation frequency ϖ  is 
scaled with the lowest frequency value of parametric resonance (i.e. the case when the value 
of the frequency associated to the first mode is doubled, or 12Ωϖ = ). 

 
Figure 2: Example of properties gradation across the thickness. 

Property Steel Alumina Aluminium Silicon Carbide 
Young Modulus [GPa] 206 393 67 302 

Poisson Coefficient 0.30 025 0.33 0.17 
Density [Kg/m3] 7800 3960 2700 3200 

Table 1: Properties of Aluminium and Silicon Carbide. 

 
Figure 3: Cross-sectional cases to be evaluated. 

4.1 Instability regions for different gradation intensity 

The first example considered corresponds to a box section with the following geometrical 
properties: L = 0.2 m, h/L= 0.05, b/h = 0.5 and e/h = 0.15. The metallic material analyzed is 
aluminium and the fraction of the ceramic material is Silicon Carbide.  

The first two instability regions corresponding to flexural vibration modes are shown in the 
Figure 4, for different values of volume fraction index K. The excitation frequency ϖ is scaled 
with the lowest frequency value of parametric resonance corresponding to K = 10. The natural 
frequencies in Hz are shown in Table 2, considering the dynamic load parameter β = 0. The 
frequency referred to the unloaded beam (α = 0) is denoted by ω and Ω  is the frequency 
when the beam is subjected to a static load (α = 0.5). It is observed that the widest unstable 
region corresponds to the first mode (or to the main frequency of parametric resonance), 
while the smallest region belongs to the second mode (or second frequency of parametric 
resonance). The size of the unstable regions increases as decreases the value of volume 
fraction index K. The torsional parametric regions are very small and they are far away from 
the main unstable region. Besides, the influence of the longitudinal inertia is negligible in all 
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the cases analyzed, due to the exciting frequency is small in comparison to the frequency ωL 
of the free longitudinal vibrations. This behavior can be observed from the frequencies 
relation shown in Table 2. It can be noted from Table 2, that the vibration frequency values 
(ω) decrease for a given static load parameter. This decrease is about 30% for the first 
flexural mode, 10% for the second vertical mode and 0.5% for the torsional mode. This effect 
keeps constant for the three cases of K analyzed. Figure 5 shows the variation of the vibration 
frequency values in function on the static load, corresponding to the first flexural mode and 
for different values of volume fraction index K. The higher value of static load, when the 
frequency value is Ω = 0, correspond to the value of buckling load. In this case, the critical 
load of the beam corresponding to the flexural mode can be easily obtained by means of the 
following expression (as explained by Machado and Cortínez, 2005): 

2

2
E
33

E
55

E
55

E
33

2

2
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L
JJ

JJ
L

P
π

π

+
=  (27)

 
Figure 4: Comparison of the unstable regions for different values of K. 

 
Figure 5: Variation of frequency values versus the static load for different values of K. 
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K Modes ωi Ωi ωL

 1 521.14 368.5  
10 2 840.89 756.04 7095.21 

 3 7632.03 7622.76  
 1 725.46 512.97  

1 2 1172.20 1054.26 9885.46 
 3 10860.40 10847.80  
 1 795.38 562.42  

1/3 2 1306.18 1179.18 11118.83 
 3 11843.10 11829.60  

Table 2: Natural frequencies for a box beam (Hz), L = 0.2m. 

4.2 Instability regions: influence of longitudinal vibration  

The second example corresponds to a box section with the following geometrical 
properties L = 0.5 m, h/L= 0.1, b/h = 0.5 and e/h = 0.1. The material properties are the same 
as the previous example. The regions of dynamic instability for the first two frequencies of 
vibration excited parametrically (Ω1 and Ω2) are shown in the Figure 6. The first region corresponds to 
the flexural mode in the lateral direction, while the second flexural mode is in vertical direction. The 
third region that appears in the figures represents the influence of the longitudinal vibration, 
which in this case is near to the parametric unstable boundaries. Comparative results are shown 
in Figure 6, between the unstable regions obtained by disregarding and considering the influence of 
the longitudinal vibration. It can be observed that the size of the unstable region is hardly the same for 
both models. In this example, the influence of the volume fraction index K was considered as in 
the previous example. However, the dynamical behavior observed for the three cases studied 
(K = 10, K = 1 and K = 1/3) was very similar, as in the previous case. Therefore, the unstable 
regions presented in Figure 6 correspond to a volume fraction index K=1.  

 

 
Figure 6: Unstable dynamic regions, (─) considering and (---) neglecting longitudinal inertia, for K=1. 

 
The relation between the natural and the parametric excited frequencies values can be 

observed from Table 3, considering the dynamic load parameter β = 0. The variation of the 
frequency values in function of the static load is the same as the previous first example, where 
the first flexural mode presents the higher decrease (about 30%). 
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K Modes ωi Ωi ωL

 1 400.48 283.18  
10 2 651.72 587.51 2838.08 

 3 2924.39 2910.19  
 1 558.49 394.92  

1 2 909.42 819.94 3954.19 
 3 4175.46 4156.13  
 1 617.69 436.78  

1/3 2 1017.09 919.35 4447.23 
 3 4609.14 4588.08  

Table 3: Natural frequencies for a box beam (Hz), L = 0.5 m. 

4.3 Instability regions: influence of longitudinal vibration; more parametric analysis 

In this example the influence of the longitudinal inertia is analyzed for a box section with 
the geometrical properties L = 0.5 m, h/L= 0.15, considering two different relations of b/h = 
{0.5, 0.75} and e/h = {0.15, 0.05}. The material properties are the same as the previous 
examples and the volume fraction index considered is K=1. The regions of dynamic 
instability for the first two frequencies of vibration excited parametrically (Ω1 and Ω2) are 
shown in the Figures 7 and 8, for b/h = 0.5, e/h = 0.15 and b/h = 0.75, e/h = 0.05, respectively. 
Figures 7 and 8 show comparative results between the unstable regions obtained by 
considering (solid line) and disregarding (dashed line) the influence of the longitudinal 
vibration. It can be observed that the larger size correspond to the main unstable region (2Ω1) 
in comparison with the second (2Ω2) and third (ωL) unstable region. The influence of the 
longitudinal inertia enlarges the unstable parametric regions. Therefore, its discard results, 
inadvertently, in a less critical behavior than in the case of its incorporation. The interaction 
of forced and parametrically excited vibrations is more noticeable for the second cross-section 
analyzed (Figure 8). It is due to the nearness of the longitudinal frequency value with the 
excited parametrically frequency values. The natural frequencies in Hz are shown in Table 4, 
for the unloaded beam α = 0 and for α = 0.5, considering the dynamic load parameter β = 0.  

 

 
Figure 7: Unstable dynamic regions, (─) considering and (---) neglecting longitudinal inertia, 

 for b/h = 0.5, e/h = 0.15. 
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Figure 8: Unstable dynamic regions, (─) considering and (---) neglecting longitudinal inertia, 

 for b/h = 0.75, e/h = 0.05. 
 

K Modes ωi Ωi ωL

1 834.38 590.00  
2 1324.43 1187.98 3954.19 b/h = 0.5  

e/h = 0.15 
3 4346.94 4304.79  
1 1113.94 787.69  
2 1359.66 1110.63 3954.19 b/h = 0.75 

e/h = 0.05 3 4391.99 4318.46  

Table 4: Vibration frequencies for a box beam (Hz), L = 0.5m and h/L = 0.15. 

4.4 Instability regions: influence of shear flexibility 

The influence of shear deformation on the dynamic behavior is analyzed in this example. 
The geometrical properties corresponding to a box beam are L = 0.5 m, h/L= 0.15, b/h = 0.5 
and e/h = 0.1. The material properties are the same as the previous examples. In Table 5, 
natural frequencies are given considering two models: the present theory (Model I) and 
neglecting shear flexibility (Model II). The shear deformation effect reduces the vibration 
frequency values. The same behavior is observed for the two cases analyzed (K=1 and 
K=1/3). The effect of shear flexibility on the unstable regions is shown in Figure 9, for a 
volume fraction index K=1. It is observed that the width of the regions does not change for 
both models. However, when shear deformation is neglected the unstable region moves 
toward the right, originated by an increase in the parametric frequency values. 

 
ωi ΩiK Modes 

Model I Model II Model I Model II 
1 817.06 850.96 577.75 625.20 
2 1315.75 1386.52 1184.26 1263.20 1 
3 4177.29 4177.34 4135.66 4135.70 
1 904.75 940.19 639.75 689.43 
2 1472.88 1549.39 1329.05 1414.18 1/3 
3 4611.46 4611.53 4565.99 4566.06 

Table 5: Shear deformation effect on natural frequencies (Hz). 
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Figure 9: unstable dynamic regions, (─) considering and (- - -) neglecting shear deformation, for K=1. 

 
4.5 Instability regions: circular beam 

The example considered is a circular section with the geometrical properties L = 0.2 m, 
R/L= 0.15 and e/R = 0.05. The metallic material analyzed is steel and the fraction of the 
ceramic material is Alumina. Instability regions are shown in Figure 10, considering a volume 
fraction index K=1. The influence of the interaction between the forced vibration and the 
parametrically excited vibrations on the unstable regions is analyzed in the figure. The 
unstable boundaries obtained by disregarding this interaction are drawn in dashed lines. It is 
observed that the widest unstable region corresponds to the first and second flexural mode (or 
to the first and second frequencies of parametric resonance), while the smallest region 
corresponds to the torsional mode (or to the third frequency excited parametrically). In this 
case, the natural frequency corresponding to the longitudinal mode ωL is next to the first 
parametric resonance frequency 2Ω1 .  

 
K Modes ωi Ωi ωL

 1 5693.40 4028.07  
10 2 5693.40 4028.07 10951.4 

 3 13656.30 13020.0  
 1 6138.16 4342.76  

1 2 6138.16 4342.76 11766.6 
 3 14817.61 14135.30  
 1 6337.92 4484.09  

1/3 2 6337.92 4484.09 12141.45 
 3 15327.10 14624.50  

Table 6: Natural frequencies for a circular beam (Hz). 

The influence of the longitudinal inertia enlarges the first region to the right, which seen to 
be composed by two regions. The first unstable region (2Ω1  and 2Ω2) is smaller when the 
interaction of the forced vibration is omitted, predicting a less critical behavior. However, the 
third unstable region (2Ω3) is larger when the interaction of the forced vibration is omitted, 
predicting a more conservative behavior. The interaction of forced and parametrically excited 
vibrations is the same for the three material configurations analyzed (K). This behavior can be 
seen from Table 6, where the natural frequencies are shown for the case of the dynamic load 
parameter β = 0. The frequencies referred to the unloaded beam (α = 0) are denoted by ω and 
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by Ω when the beam is subjected to a static load (α = 0.5). 
 

 
Figure 10: Unstable dynamic regions, (─) considering and (---) neglecting longitudinal inertia, for K=1. 

5 CONCLUSIONS 
 

The dynamic stability behavior of functionally graded thin-walled beams subjected to 
axial external force is investigated considering the influence of non conventional effects. The 
material properties of the functionally graded beam are assumed to vary continuously through 
the thickness, according to a simple power law distribution of the volume fraction of the 
constituents. The formulation is based on the context of a rational small strain and moderate 
rotation theory of thin-walled beams. The dynamic stability analysis of a simply supported 
beam subjected to an axial periodic force system is performed by employing the Hill’s 
method of infinite determinants developed by Bolotin. The effects of shear deformation, 
volume fraction index and the interaction between forced and parametrically excited 
vibrations on the boundaries of the unstable regions are investigated. 

From the numerical results obtained, it is found that the regions of instability dynamic are 
generally wider for the first frequency of parametric resonance. Besides, the size of the 
unstable regions can vary depending on the volume fraction index K, observing that it 
increases as decreases the value of K. The interaction between the forced vibration and the 
parametrically excited vibrations on the unstable regions is considerable when the excitation 
frequency is the same order than the frequency value of the free longitudinal vibration. 
Moreover, the influence of the longitudinal inertia enlarges the main parametric regions. This 
effect keeps constant for the three material configurations analyzed. On the other hand, the 
shear deformation effect reduces the vibration frequency values and this effect remains 
constant as increase the dynamical load parameter. The refuse of transverse shear leads to an 
overprediction of the resonance behavior, in the sense of the shift of the domain of instability 
toward larger excitation frequencies. Finally, in a future work the effect of temperature-
dependent will be considered on the instability behavior of functionally graded thin-walled 
beams. 
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APPENDIX I: CONSTITUTIVE LAW 

The constitutive laws for functionally graded structures are obtained by employing the 
assumptions of plane stress state in the thickness of the walls and a general transverse 
isotropy along the hook co-ordinate. Thus, once the longitudinal (E) and transversal elasticity 
modulus (G) and the Poisson’s coefficient (ν) are given in a certain functional form, then the 
stresses in the wall can be described in the following form: 
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where, En, Gn and νn are the effective longitudinal modulus, transversal modulus and Poisson 
coefficient at a given co-ordinate in the thickness, respectively. These entities are defined 
according to certain gradation law that can be defined by means of a power law form or 
exponential form or any other that fits experimental data. The symbols exx, ess and exs intend 
for longitudinal, hook and tangential strains, respectively; and can be represented in terms of 
the shell strains as:  

xsxsxsssssssxxxxxx nenene κγκεκε +=+=+=  (I.3)

where εxx, εss and γxs are longitudinal, hook and tangential shell strains, respectively and κxx, 
κss and κxs are the corresponding curvatures. 

Now employing the conventional definitions for shell-stress-resultants given by: 
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and integrating along the shell thickness e, one obtains the following expression: 
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where:  
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Now assuming that  and 0Nss ≅ 0M ss ≅  and rearranging εss and κss in the remaining 
equations one obtains the modified constitutive law for shell forces and moments as it is given 
in the Eq. (5): 
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where 6666 AA = , 6666 BB = , 6666 DD =  and 

( )
( )

(
2
111111

11
2
12

2
12111211121111

111212121211121112
2
12111111

11
2
12

2
12111211121111

BAD
/DBDABBD2DD

/DBADBADBABBBB
/DABABBA2AA

−=
−−+=

−−++=
−−+=

∆
∆

∆
∆

)  (I.8)

In order to obtain an expression of the generalized forces in terms of the generalized 
strains, one has to consider that the shell strains of Eq. (I.7) can be expressed in the following 
form (Machado et al, 2007): 
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where the generalized strains εDi, i = 1,…,9 are given as follows (Machado et al., 2007): 
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Now taking into account the definition of the forces given in the Eq. (3) and employing the 
definitions of shell forces and strains given in Eqs (I.7), (I.9) and (I.10) one gets: 

∆EJF =  (I.11)
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where the vectors of generalized forces F and generalized strains ∆ are: 
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The matrix J of rigidity coefficients is given by: 
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In the case of doubly symmetric thin-walled beam whose graded properties are distributed 
uniformly in the hook direction one can obtain the following matrix JE: 
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From the previous expressions one can obtain BW in terms of Qx by neglecting the effect of 
higher order strains in terms of the twisting angle gradient (Machado et al, 2007), leading to  

E
11

E
19

XW J
JQB =  (I.17)

This form is substituted in Eqs. (1) and (2), thus simplifying the problem. 
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