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Abstract. We propose a formulation for modeling the squeeze film air damping in micro-plates 
typical of micro-electromechanical devices for micro switch applications. A special finite element is 
developed, in which the nonlinear Reynolds equation for compressible film is used to analyze the air 
pressure field, whereas a standard linear elastic model is used for the displacement field. The 
formulation is based on a finite element discretization of both the pressure and displacement fields. 
The coupled equations of motion are established and, for harmonic oscillations, we show that the 
resulting damping matrix depends on the frequency. The typical dimensions and properties of the 
MEMS device are in the order of hundred micrometers length and some micrometers (3-8 m) thick, 
with a separation from the substrate of also some micrometers (e.g. 3-5 m). For these dimensions, the 
influence of damping owing to the surrounding air cannot be neglected, having an important 
contribution to the quality factor of the device. The influence of plate holes, which are necessary 
because of the fabrication process, determines also the dynamic behavior of the plate. Examples are 
presented, with comparisons to results of the bibliography.  
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1 INTRODUCTION 

The damping effect of the air is usually negligible in macroscopic systems. In MEMS 
(Judy, 2001; Ko, 2007) however, the motion of micro-parts can be affected significantly by 
the surrounding gas, notably in structures like the one depicted in Figure 1, where a 
microplate oscillates normally to the substrate. In this case, the gas is forced to squeeze in and 
out of the space between the surfaces, following the oscillatory motion of the upper plate. The 
“squeeze film” effect is much more important than the drag force of air acting over the 
isolated plate, and thus is the subject of intense research at present (Bao and Yang, 2007; 
Pratap et al. 2007). In order to quickly visualize the physics of the problem, the vibrating 
microplate may be thought of as an equivalent spring-mass-damper system under harmonic 
excitation. The transverse deflection u(x,y,t) of a point on the plate is then given by 
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where m is the equivalent mass of the oscillating structure, cs is the structural damping 
coefficient of the beam which accounts for internal energy losses, and ks is the structural 
spring constant. Also in Eq. (1), fdrive is the external force that excites the beam and ffluid is the 
damping force exerted by the gas present in the space between the microplate and the 
substrate. As it will be shown later, this last term has two components: one is in-phase with 
the velocity, due to the viscous flow of the gas, and the other is in phase with the 
displacement, due to the compression of the gas. The viscous effect directly contributes to the 
damping, while the elastic effect produces a shift in the resonance frequency. Therefore, a 
proper evaluation of ffluid is crucial to improve the accuracy of computation of the dynamics of 
microplates integrated to MEMS. Previous works in the literature considered analytical 
models (Pandey et al. 2007; Veijola, 2004) and numerical calculations (Pandey and Pratap, 
2008; De Pasquale and Veijola, 2008; Nayfeh and Younis, 2004).  

The aim of this work is to discuss the modelling and simulation of the squeeze film air 
damping in MEMS. A special finite element is developed for this purpose. The formulation is 
based on a finite element discretization of both the pressure and displacement fields. The 
paper is organized as follows: Section 2 presents the fluid dynamics problem and analytical 
solutions available. Section 3 describes the numerical formulation of both the squeeze film air 
damping and the dynamics of a flexible microplate. Section 4 discusses the results of 
calculations, with comparisons to results of the bibliography. 

 
 

           
Figure 1: Schematic representation of a vibrating microplate over a substrate. 
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2 ANALYTICAL MODEL 

2.1 Fluid dynamics problem 

In the framework of continuum fluid mechanics, viscous forces are determined from the 
fluid stresses acting on the body surface. Thus the fluid velocity and pressure fields around 
the vibrating plate should be obtained by solving Navier-Stokes equations and the appropriate 
boundary conditions. For the particular case of squeeze film flow of an isothermal and 
compressible fluid, Navier-Stokes equations lead to the nonlinear Reynolds equation, which 
governs the pressure field associated to the 2D flow (x-y plane) generated by the movement of 
one plate in the z-direction (Veijola, 2004; Bao and Yang, 2007; Pratap et al. 2007). Given a 
gas of viscosity  and density  placed in the gap between the surfaces (Figure 1), and 
assuming that no external forces are present (the body force due to gravity is normally 
neglected in MEMS) the Reynolds equation is written: 
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In this expression, P = p0 + p, where p0 is the ambient pressure and p is the deviatoric 
pressure generated by the displacement of the upper plate; h = h0 + z, where h0 is the 
equilibrium gap width and z is the displacement.  

Equation (2) is valid if the system satisfies the following conditions: (i) laminar and fully 
developed flow, (ii) pressure does not vary in z-direction, and (iii) the fluid does not slip at 
the walls. The first condition implies low Reynolds number, or equivalently, inertial effects 
negligible in comparison to viscous effects. For the squeeze film flow related to vibrating 
plates, this number is defined Re = h0

2/, where  is the angular frequency of oscillation of 
the plate. It is also required a gap width h0 much lower than the length L and the width W of 
the plate (Figure 1), so that border effects can be neglected. The second condition imposes 
that, when the upper plate oscillates out of plane (z-direction), it must describe a small 
amplitude motion in comparison with h0. Finally, the third condition means very low Knudsen 
number; otherwise appropriate corrections should be included. This number is defined Kn = 
/h0, where  is the mean free path of molecules (inversely proportional to P).  

It is worth to add that gas microflows can be treated in the classical framework of 
continuum fluid mechanics if Kn < 0.001 (Gad-el-Hak, 1999; Berli and Cardona, 2009), i.e. 
by using Eq. (2) with the no-slip boundary condition. In the range 0.001 < Kn < 0.1, Eq. (2) is 
still valid, but slip boundary conditions must be applied, such as the classical Maxwell slip-
velocity equation. When Kn > 0.1, the continuum fluid mechanics breaks down, and there is a 
transitional flow region towards the free molecule flow, where statistical approaches are 
required. For example,  = 65 nm for ideal gases at room temperature and normal pressure. 
Therefore, the squeeze film flow in gaps on the order of 2 m should be corrected for the slip 
at the walls. The simplest way to do is by replacing  by the effective viscosity eff = 
/(1+6Kn) in Reynolds equation, and therefore in the related results (Bao and Yang, 2007; 
Pratap et al. 2007). 

2.2 Analytical solutions for the linear Reynolds equation 

If p << p0 and z << h0, Eq. (2) may be linearized as follows,  
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This expression is the base of several analytical solutions reported in the literature. Here we 
consider a rectangular plate of length L (y-direction) and width W (x-direction), as shown in 

Figure 1. The plate undergoes a harmonic vibration of the form tieAyhtyz  )(),( 0  , 

where  is the normalized amplitude and )(y  is the shape of the deflected plate, which is 
considered to vary in the y-direction only. For flexible plates clamped at two opposite edges, 
the exact function )(y  is available, nevertheless it leads to tedious expressions of p(x,y,t) 
(Zhang et al. 2004). For the purposes of this work, an approximate function for the deflection 

of the plate in the first resonance mode is used: 224 )2/()2/()/2()( yLyLLy  . In 
addition, since the flow domain has two edges open and two edges closed, the boundary 
conditions are written as follows, 

 0 yp  at 2/Ly  ; 0p  at 2/Wx  . (4) 

Solving Eq. (3) under these conditions yields (Pandey et al. 2007), 
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where 2222 Wnkn   and 0
2
0

2 12 pha  . It is worth noting that the gas pressure only varies 

in the x-direction (transverse to the open edges). 

2.3 Damping force over the microplate 

The force exerted by the fluid, ffluid, is obtained by integrating the pressure over the whole 
plate surface. Then the elastic and viscous components of the force are obtained by separating 
the real and imaginary parts of ffluid. Considering )cos()( 0 tAhtz  , one has 

 dttdzctzktf )()()( vefluid  , (6) 

with the following expressions for the elastic and viscous damping coefficients, respectively, 
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In these expressions, 0
2
0

212 phW   is the so-called “squeeze number” (Bao and Yang, 

2007; Pratap et al. 2007), which characterize the relative importance of each contribution to 
the force. At low frequencies the viscous component of the force dominates, then reaches a 
maximum and finally decreases at high frequencies. In contrast, the elastic component of the 
force, which is associated to the compressibility of the gas, always grows with . The 
crossover of the force components takes place at c = 2[1+(W/L)2]. Basically, if <<c, the 
force is purely viscous (damping effect); if >>c, the force is purely elastic (spring effect); 
if  c, the combination of both effects significantly influence the dynamics of the 
oscillating plate. 

It is useful to analyze the damping coefficients in the absence of compressibility effects. 

Introducing 0  into Eqs. (7) and (8) yields, respectively, 0e k  and 3
0v )/( hWLc  . 
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This result shows that the ratio W/h0 is a key factor to control the squeeze film damping. On 
the other hand, having accurate values of h0 is critical to attain reliable quantitative 
calculations, mainly because h0 cannot be directly measured. The fabrication tolerance of 
MEMS is around 0.15 m. Therefore, for a gap h0  2 m, the uncertainty in the calculation 
of fluidf  may be 25%.  

3 NUMERICAL MODEL 

This section presents the numerical formulation of the squeeze film air damping of 
microplates. The non-linear Reynolds equation for compressible film is used to analyze the 
air pressure field, whereas a standard linear elastic model is used for the displacement field. 
The formulation is based on a finite element discretization of both the pressure and 
displacement fields. The coupled equations of motion are established and, for harmonic 
oscillations, we show that the resulting damping matrix depends on the frequency. 

3.1 Dynamic equilibrium of the elastic plate 

The weak form of the dynamic equilibrium of the plate is 

 0 
totS

jj
V

jj
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V

ijij dStudVbudVuudV   , (9) 

where u is the vector of mechanical displacements; b, the vector of applied volumetric forces 
and t, the vector of applied surface tractions. In this expression, the first term represents the 
variation of the energy of deformation; the second, the variation of the kinetic energy. Stot is 
the total surface of the plate including the superior and inferior faces of the plate.  

Considering the particular geometry of the microsystem (Figure 1), the applied traction 
forces are defined on the superior and inferior faces of the plate, tsup = -nsuppsup, tinf = -ninfpinf, 
and the body applied forces are negligible, b = 0. The vectors nsup and ninf are the outer 
normals to the plate surface and we have uTnsup = uTninf = uTn. Using the assumption that the 
pressure on the superior face is constant (psup = p0, pinf = p0+p), the contribution of surface 
loads can thus be represented by a single surface integral. The variation of the energy of 
deformation is expressed with respect to the 6x1 strain and stress vectors  and . Moreover, 
if one only considers the vertical contribution of the displacement to the kinetic energy, the 
weak form of the dynamic equilibrium takes the final form, 

 0TTT   SV
s

V
pdSdVdV  nuuu  . (10) 

Let us consider the finite element interpolation formulae, u(x,y,z,t) = Q(x,y,z)q(t), p(x,y,z,t) 
= R(x,y,z)p(t), where q = [u1

T… uN
T]T is the nx1 vector of nodal displacements (n = 3N), p = 

[p1…pm]T is the nx1 vector of nodal pressures, and Q (resp. R) is the 3xn (resp. 1xm) vector 
of interpolation functions. Using the strain-displacement relation  = Bq, and the constitutive 
relation  = C, the weak form becomes, 

 0)(T  GpKqqMq  , (11) 

with the definitions 

 .,     , TTT  
SVV
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3.2 Dynamic equilibrium of the compressible film 

The squeeze film between the flexible plate and the support is modeled by using the 
nonlinear Reynolds equation (2), and boundary conditions (4). The weak form of the 
equilibrium condition is given by, 
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After integration by parts, one obtains 
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Using un T/  th  and the finite element interpolation formulae, this expression becomes, 
after normalization,  

 0)(T  qHAppEp  , (15) 

with the definitions 
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3.3 Coupled equations 

In summary, if a structural damping contribution is considered, the coupled equations of 
motion are, 

 0 GpKqqCqM  , (17) 

 0)(),()(  qpHpqpApqE  , (18) 

which can be written as 
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In the particular case z<<h0 and p<<p0, the matrices E, A and H would be constant, the model 
would be linear, and we would have H = GT.  

Considering a harmonic behavior of the system, we get 

 )()()( 1 ssss qHAEp  , (20) 

with s, the Laplace variable. The pressure variables can then be eliminated from the structural 
equations 

 0)())(( 2  ssss qKDM , (21) 
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with the frequency damping matrix (for C 0 ) 

 HAEGD 1)()(  ss . (22) 

Note that for very low frequencies, with 0s  , the squeeze flow contribution is a pure 
damping resulting:  
 1

0
lim ( )
s
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D GA H  

On the other hand, at the high frequency limit with s  , the squeeze flow contribution is a 
pure stiffness resulting:  

 11
lim ( )
s

s
s




D GE H  

and we observe that the squeeze film effect induces a stiffening of the micro-structure. 

4 RESULTS 

We describe below some preliminary results of computations. Further results with 
applications will be given in the oral presentation.  

Consider a rectangular plate with comparable side lengths W = 2a and 2L b  as shown in 
Fig. 2. The boundary conditions for the squeeze film problem are 
 ( , ) 0; ( , ) 0p a y p x b     
Let us suppose the plate is oscillating rigidly in the vertical direction, with very small 
amplitude of motion. Dimensions of the plate are length 300 mL   and width W = 50 m. 

The plate is separated from the substrate by an air gap of 0 5 mh  . The air pressure is  
2

0 100000 N/mp   and viscosity is 51.8 10 Pa s    , with air assumed incompressible. Only 

one quarter of the plate is modeled for symmetry reasons, with a mesh of 150 100b an n    

rectangular bilinear elements.  
 

Oscillating rigid plate

Substrate
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z sin( t)

h0

w
L

 
 

Figure 2: Rigid plate problem 
 
Since the amplitude of motion z<<h0, and p<<p0, then the matrices E, A and H are constant, 
with H = GT. The damping coefficient due to vertical motion of the plate can be computed as:  

   1
( ) ( )T T T

R R R Rd i i i     Φ D Φ Φ H E A HΦ  

where RΦ  is the rigid body mode of the plate with components of vertical displacement equal 

to one.  
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Figure 3: Damping component of the damping coefficient for the rigid plate problem 
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Figure 4: Stiffness component of the damping coefficient for the rigid plate problem 

 
Figures 3 and 4 show the real and imaginary components of the damping coefficient as a 

function of the frequency of excitation. We may see that for low frequencies of excitation, the 
damping coefficient is pure damping, while for high frequencies this coefficient is practically 
a stiffness component.  

These values can be compared to limit values obtained from the bibliography (Bao and 
Yang, 2007). The coefficient of the damping force at 0   can be written as:  

 )(
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h
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where  = W/L and   1 0.58    . In this case, 6
v 4.878 10  Ns/mc   . On the other hand, 

the coefficient of the damping force at    can be written as: 
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giving e 300 N/mk  . 
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5 CONCLUSIONS 

A finite element model for the analysis of squeeze film flow in MEMS has been presented. 
The element has been tested in a simple configuration for which analytical results exist. 
Comparisons have been made for limit cases of very low and very high frequencies of 
excitation, displaying a very good agreement.  

Future research will be addressed to making further testing, and integrating the element 
completely in a finite element code specialized for MEMS analysis, to be able to represent 
other forces that are important in this kind of problems.  
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