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Abstract. It is well known that sudden changes in the solution produced by shock waves and contact
discontinuities often appear in compressible flow problems. These features of the flow field require very
small size finite elements to achieve an accurate solution. However, homogeneous refinement of the
whole mesh quickly becomes prohibitive for three dimensional meshes due to computational cost issues.
In these situations, the use of adaptive mesh refinement strategies shows advantageous. An h-adaptive
unstructured mesh refinement strategy to solve both steady and unsteady compressible flow problems by
the finite element method is used in this work. The adaption algorithm is briefly introduced. The main
features of the adapted meshes are the presence of hanging nodes and the controlled geometrical quality
of its elements. Refinement constraints are enforced to guarantee a smooth size distribution amongst
neighbour elements and a posteriori error indicators based on the gradient of the flow variables are used
to track discontinuities through the flow field. The algorithm is implemented in the C++ programming
language together with the STL and Boost libraries. The mesh adaption code is coupled to an SUPG-
FEM flow solver which is run in parallel on a cluster of workstations. The spherical blast wave problem
known as the Taylor-Sedov problem is solved with this code and the flow field is compared to that pro-
vided by the theory.
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1 INTRODUCTION

Transonic and supersonic flow problems are common candidates for being adaptively solved
by the finite element method because their most important features, namely shock waves and
contact discontinuities, usually develop in a very thin region compared to the length scale of
the problem domain. Adaption of the mesh allows to reduce the computational effort because
of the introduction of smaller finite elements only where they are needed, thus reducing the
size of the fluid dynamic problem. Here a mesh enrichment (h-adaptivity) procedure is used to
achieve this goal. The meshes to be adapted are unstructured and made up tetrahedra. Hanging
nodes appear in the refined meshes because no transition elements are used to match zones with
different levels of refinement. Since the strategy was introduced in a series of previous works
(Ríos Rodriguez et al., 2005, 2006, 2008) and was also described in detail in Ríos Rodriguez
(2009), only its main features are highlighted. The developed algorithm and the C++ code de-
rived from it have already been used to solve 2-D, 3-D and axisymmetric inviscid compressible
flow problems.

The mesh adaptation is sequentially performed on a single processor of a Beowulf cluster
(not necessarily the server node) while the solution of the fluid dynamic problem is computed in
parallel. The three dimensional Euler equations are solved with the advection-diffusion module
of the PETSc-FEM code (Storti et al., 1999-2008). This solver implements both the SUPG
formulation introduced by Brooks and Hughes (1980, 1982) to stabilize the advection term and
shock capturing techniques for the treatment of strong shocks. Both the adaption of the mesh
and the solution of the equations are coupled through a driver module which performs suitable
calls to the adaption function or to the equations solver.

The spherical blast wave problem as described by Taylor (1946, 1950a,b) and Sedov (1959)
is solved. The adapted solution is compared to a similar one computed with a fixed mesh and
to that obtained by solving a set of ordinary differential equations which are derived from the
Euler equations by following the Taylor-Sedov assumptions. Conclusions are drawn from the
FEM solution accuracy and the computational costs.

2 ADAPTION STRATEGY

The following are the main features of the adaption strategy:

1. To keep bounded the geometrical quality decrease of the mesh is the main driving force
in the design of the refinement strategy. In this sense, only 1:4 and 1:8 regular refinement
patterns are applied for 2-D and 3-D respectively and no transition elements are used.
However since no regular 1:8 subdivision exists for tetrahedra a refinement scheme that
shows a good between the computational effort and the geometrical quality of the child
elements is chosen. In Ríos Rodriguez (2009) it is shown through numerical experiments
that refining the parent tetrahedron by joining the midpoints (a0, . . . ,a5) of the edges with
new ones and choosing then the shortest diagonal of the inner octahedron (see sequence
a)-b)-c) in figure 2) to get the four remaining tetrahedra is a good refinement strategy.
In those experiments, the geometrical quality of the tetrahedra was measured with both
geometric and algebraic quality metrics such as the dihedral angles and the mean ratio
shape measure introduced by Liu and Joe (1994).

2. Starting from a conforming unstructured finite element base mesh, a succession of nested
nonconforming meshes is generated. It is worth to mention that although the adapted
meshes introduce hanging nodes on the edges or faces of an element, constraining the
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solution at these nodes ensures continuity of the numerical solution amongst nearby el-
ements through that edge or face. That is, the flow field variables on hanging nodes are
computed as the average of the flow variables for the nodes that define the edges or faces
(hexaedron) to which these hanging nodes belongs (see figure 1).

3. Coarsening of the base mesh is not allowed.

4. Refinement rules or constraints are applied to ensure uniform element size distribution.

5. Multiple refinement / derefinement levels are allow each time the mesh is updated.

6. Boundary conditions and other properties of the mesh entities are handled by a property
identifier associated to the entities of the base mesh. This property identifier is inherited
from a parent geometrical entity of the mesh to its child during the adaption procedure.
The identifier is defined by the user beforehand and it can describe a set of features of
different “nature” for that entity. For example: the identifier assigned to a face could
mean that a slip boundary condition has to be enforced on that face and also that the face
belongs to a curved surface which defines a particular section of the boundary.

7. The state of the flow variables computed for the last adapted mesh is projected on the new
mesh to restart flow calculation.

8. Adaption of the mesh is only allowed after the solution has been advanced a fixed number
of time steps. That is, the updating frequency of the mesh being used to solve the fluid
dynamic problem is constant throughout the whole simulation. However the time step
size is updated with the same frequency to satisfy the Courant-Friedrich-Lewy (CFL)
condition. In practice it is found that the adaption of the mesh and the boundary conditions
plus the projection of the state takes a small fraction of the total computation time (. 5
per cent) for unsteady three dimensional problems. This leads to choose a high updating
frequency for the mesh (~5 time steps) for not compromising the overall performance of
the adaptive solution procedure. If the time required by the adaption of the mesh were
found to be a greater percentage of the overall computing one then a lower updating
frequency should be chosen. In this case, however, a bigger cost would be transferred to
the flow computation stage since the refined regions of the mesh would need to be wider
to ensure the discontinuities are kept inside these regions until the mesh is updated again.
Choosing a high frequency for adapting the mesh enables to use narrower refined regions
around discontinuities and to further reduce the size of the fluid flow problem.

9. Selection of the regions of the mesh that need to be refined is accomplished by means of
error estimation. For compressible flow problems the gradient of the density or pressure
are commonly used with acceptable results. Gradient reconstruction techniques based on
the Zienkiewicz and Zhu (1987) formulation are also implemented in the code. Recon-
struction of the gradient field at a vertex of the mesh is achieved by a weighted averaging
of the gradient on the patch comprised by all the elements that surround that vertex.

Items 4 and 7 are further explained in the following subsections.
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U(c)=1/2*[U(a)+U(b)] U(e)=1/4*[U(a)+U(b)+
          U(c)+U(d)]
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Figure 1: Solution constraint for a hanging node over an edge or quadrilateral face.

(a) (b) (c)

Figure 2: Tetrahedron refinement sequence.

2.1 Refinement constraints

Besides high geometrical quality elements, a smooth transition in the size of the elements
is also desired since the condition number of the global stiffness matrix in the finite element
method also depends on the size distribution of the mesh elements (Schewchuck, 2002). To
this end, a refinement rule was introduced by Babuska and Rheinboldt (1978) for 2-D meshes.
This rule says that no more than one hanging node should be shared amongst nearby elements
through the common edge to which the hanging node belongs. Figures 3.a) and 3.b) shows that
applying this constraint guarantees that neighbour elements introduced by the refinement of the
mesh will not have very different sizes (irregular nodes are marked as red dots). To this end, the
neighbour element that shares the parent active1 edge of the edge which belongs to the element
selected to be refined has also to be refined. However, this constraint does not take into account
special situations that appear for 3-D meshes, as it is shown in figure 4 for tetrahedral elements.

(a) (b)

Figure 3: Refinement constraint for 2-D meshes.

1It is said that an edge or face is active as long as not all the elements that are neighbour through it are refined.
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(a) (b) (c)

Figure 4: Refinement constraint for 3-D meshes - Orphan edge case.

In three dimensions, the neighbourhood through edges and faces as well as the refinement of
orphan edges2 over shared faces have to be taken into account. In figure 4.a) the green-colored
element is selected to be refined. As a consequence an orphan edge (i.e.: the edge defined by the
nodes n1 and n2) on the shared face needs to be refined. It is seen in figure 4.b) that if the two
dimensional constraint were only applied this situation would be allowed. But then a difference
of more than one level of refinement would exists amongst nearby elements in the mesh. Figure
4.c) shows that adding the element that shares the face such that at least one of its orphan edges
has been refined copes with the problem.

2.2 State projection

A new state on the new adapted mesh has to be supplied as an initial condition to restart
the flow computation. When the base mesh is adapted for the first time, linear interpolation of
the flow variables is used to assign the state to the newly created vertices of the refined mesh.
This is enough in order to guarantee conservation of the flow variables if a linear finite element
formulation is used and if the new points are placed in the middle of the edges, or barycenter of
faces or elements.

After the mesh and its corresponding boundary conditions are adapted and an interpolated
state is supplied, the flow calculation is resumed for a fixed number of time steps. The solution
is advanced in time and a new state is computed. Then the error estimator is applied and the
mesh is updated again. For all the adaption steps except for the first one, the state is projected
as follows: given a vertex V in the recently updated mesh (adaption step n) it is required to find
the element in the previously adapted mesh (adaption step n−1) that contains it. This is done
through an approximate nearest neighbour search using the ANN library (Arya and Mount,
2006). The barycenter of the elements that belong to the (n− 1) adaption step are computed
to this end. This approximate search provides a list of k-nearest elements lV = {e1,e2, . . . ,ek}
to vertex V . These elements are candidates for containing V and the value of k is chosen
beforehand. Then, it is possible to find the element that contains vertex V by computing the
volume or area coordinates N(ei)

j , j = 1, . . . ,ne for each one of the candidates at this vertex.
Here ne is the number of nodes per element and j is the index of the local vertex in the element.
If any of the volume coordinates N(ei)

j is less than zero, point V is outside of element ei and the
next element in lV is checked. Only if all the volume coordinates for that element are greater

2Edges that are not obtained by the refinement of another edge are said to be orphans or with no parents.
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than or equal to zero it can be stated that V is inside element ei or over one of its faces or edges.
In this case traversal of lV is interrupted and the state vector is computed as follows

U(n)
V =

Ne

∑
j=1

N(ei)
j (xV ) ·U(n−1)

j (1)

where U(n−1)
j is the state vector defined at local vertex j of the element ei at adaption step n−1,

xV is the coordinate vector of vertex V and U(n)
V is the state vector for vertex V at adaption step

n. Dashed lines in figure 5.a) illustrate the volume coordinates at vertex V while figure 5.b)
shows the situation for the current adaption step.

(a) Vertex position at adaption step
n-1

(b) Vertex position at adaption step n

Figure 5: State projection - Finding vertex position

3 TAYLOR-SEDOV SELF-SIMILAR SOLUTION FOR THE SPHERICAL BLAST
WAVE PROBLEM

The blast wave problem, also known as the Taylor-Sedov problem, describes what happens
if a point-like explosion occurs in a uniform density gas. After a short lapse of time one expects
to find a spherical shock wave traveling radially outward at supersonic speeds with a subsonic
flow behind it. This shock wave comes to an end because the source of pressure (.i.e. the release
of energy) also comes to an end. This allows the rarefaction wave generated in the center of the
explosion to weaken the spherical shock until it becomes a pressure wave. When this kind of
phenomena takes place it is said that a blast wave happens.

Taylor and Sedov analysis assumes a self-similar solution for the blast wave problem, which
means that the solution profiles for the density ρ , velocity u and pressure p keep their shape
in time and depend only on a single parameter ξ that is defined as the ratio between the radial
coordinate r measured from the center of the explosion and the spherical shock wave position
R. Taylor and Sedov formulate the following relationship between the physical variables and
the self-similar profiles for the velocity U(ξ ), density Ω(ξ ) and pressure P(ξ )

u = ṘU(ξ ), ρ = ρ0Ω(ξ ), p = ρ0Ṙ2P(ξ ) (2)

This solution holds as long as the mass swept up by the spherical shock front is much greater
than the mass of the explosive material and as long as the shock wave can be considered strong
(see Thorne (2002)). The equations for the self-similar solutions are derived from the Euler
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equations in radial coordinates. The latter can be reduced to a system of ordinary differential
equations if it is further assumed that the density shows a power law dependence in space
and time and if the shock front position obeys to a power law in time. Then the ODE’s are
numerically integrated with a forth order Runge-Kutta method assuming the following boundary
conditions immediately behind the shock front (at ξ = 1)

U =
2

γ +1
, Ω =

γ +1
γ−1

, P =
2

γ +1
(3)

The self-similar computed profiles plotted against the similarity parameter are shown in fig-
ure 6. It is seen that the pressure in the center of the blast wave is almost half the maximum
pressure immediately behind the shock and it is fairly uniform within the blast wave. It can also
be seen that most of the ambient gas mass processed by the shock wave is compressed within a
thin spherical shell immediately behind the shock which moves slightly slower than the shock
itself (u' 0.83Ṙ if γ = 1.4). Finally the velocity profile is almost linear in the blast wave, with
the fluid being at rest in the center of the explosion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

ξ=r/R

U(ξ) 
Ω(ξ)
P(ξ)

Figure 6: Self-similar profiles for the spherical blast wave problem (γ = 1.4).

By a simple dimensional analysis it can be found that

R(t) ∝

(
Ex

ρ0

)1/5

t2/5 (4)

where Ex is the energy released by the explosive material. The constant of proportionality Q
that allows to equate both sides of eq.(4) can be computed by numerical integration of the total
energy profile for a given time instant

Ex =
∫ R

0

(
p

γ−1
+

ρu2

2

)
4πr2dr (5)

Changing to variable ξ and substituting u, p and ρ from eqs.(2) in the integral of eq.(5),
taking into account that Ṙ = 2

5
R
t , then replacing Ex given by eq.(5) into eq.(4) and finally

solving for Q it is found
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Q =
(

16π

25

∫ 1

0

(
P(ξ )
γ−1

+
Ω(ξ )U(ξ )2

2

)
ξ

2dξ

)−1/5

(6)

4 FINITE ELEMENT SOLUTION

The numerical problem is solved on a spherical domain of radius Rext = 5m. The following
initial conditions are assumed: the ambient gas (air) is at rest and the pressure and density
are constants equal to p0 = 101325Pa and ρ0 = 1.225kg/m^3 respectively. It is assumed that
the energy released by the explosive instantly raises the pressure to pblast = 105 · p0 in a small
spherical region of radius Rblast ' 0.25m. The initial explosion is not simulated in this work
but it is considered to be a constant volume thermodynamic evolution. The pressure fixation at
the surface of the spherical domain is the only boundary condition prescribed. This condition is
adequate as long as the shock wave does not reach this boundary.

Tetrahedral elements are used to subdivide the problem domain. Finite elements of smaller
size are prescribed towards the center of the sphere. The resulting mesh has 421.000 tetrahedra
and 76.500 vertices approximately. This mesh is used for both simulations, namely as the base
mesh for the adaptive simulation and as the only mesh for the non-adaptive one.

The Euler equations are solved in parallel with 15 processors of a cluster of workstations and
a Backward-Euler scheme is used for time integration. The magnitude of the density gradient
is chosen as the error indicator for the adaptive simulation since the flow field generated by the
blast wave is dominated by a strong shock and an expansion wave,

c1 ≤
‖ ∇iρ ‖ ·hi

maxi(‖ ∇iρ ‖ ·hi)
(7)

c1 is a constant set beforehand by the user of the adaption code, hi is a measure for the size
of the element and ‖ ∇iρ ‖ is the magnitude of the density gradient computed for that element.
A c1 ' 0.15 value is used in the simulations. An updating frequency of 10 time steps is chosen
and a maximum of 2 levels of refinement is prescribed. The final time for both simulations is
equal to t f ' 0.001s.

4.1 Numerical results

In comparing the position of the shock front to that given by eq.(4) it is taken into account
that the FEM solution profiles will approximate the shape of the theoretical ones just after a
few time steps, since the initial condition for the flow variables does not conform to the self-
similar profiles of the theory. Bearing this in mind, figure (7) shows the shock wave position
as a function of time for both the simulations and the analytical solution given by eq.(4). It can
be stated that although there is a good agreement for the first time instants, the adaptive and
non-adaptive simulations lug behind the analytical one by almost 15% and 13% respectively at
t = 0.00045s. The analytical solution is computed with a value Q' 1.1653 for the constant in
eq.(6) as given by Hutchens (2000).

The solution profiles along the radius behave like those given by the self-similar theoretical
solution. Figure 8.a) shows that the pressure within the blast wave is fairly uniform and has a
value that is half the maximum reached immediately behind the shock (notice that the pressure
axis is in logarithmic scale). The Mach number within the blast wave is depicted in figure
8.b). It can be seen that it is fairly subsonic in the whole domain, as it is expected for the flow
produced by a supersonic unsteady strong shock wave traveling through a gas at rest (actually,
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Figure 7: Shock wave position as a function of time.

the shock wave travels roughly at an average speed of 3000m/s for the simulated final time
t f ). The density profiles in figure 8.c) show, as well as the other variables, that the entire flow
field is better resolved for the adaptive solution because no spurious oscillations appear in the
expansion region behind the shock wave and the latter is sharply defined. Finally, figure 9.a)
depicts a cut of the mesh on a plane of symmetry at t = 0.645ms while figure 9.b) shows the
corresponding pressure field and isolines. The mesh has ~2.34 million tetrahedra and 4.28e+5
vertices.

4.2 Mesh adaption cost

Clock time for the adaption of the mesh and the equations solution is measured for the
simulation. The adaption time tadapt is defined as that required to realize all the necessary tasks
to adapt the mesh, namely the error indication computation, the refinement of the elements, the
boundary conditions update, the state projection, the time step size computation and the writing
to disk of all the files required by the solver. On the other hand, the solution time tsol takes
into account both the time required to advance the solution and the overhead incurred to restart
the flow computation. Overall time is then defined as tall = tadapt + tsol . Figure 10 shows that
the ratio tadapt/tall keeps almost constant and equal to 0.04, which enables to state that, for this
particular problem, the adaption of the mesh takes just a small fraction of the solution time.
The overall time of the simulation is 71 hours and 16 minutes. Given that the biggest effort is
involved in the solution of the flow equations, maybe a higher updating frequency for the mesh
could have been used.

5 CONCLUSIONS

The mesh adaption strategy introduced in Ríos Rodriguez (2009) was used to solve the spher-
ical blast wave problem, improving the sharpness of the shock front and removing the spurious
oscillations in the expansion which are present in the non-adapted mesh solution. The behaviour
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(a) Mesh cut

(b) Pressure field and isolines

Figure 9: Adapted mesh and pressure field on a plane of symmetry at time t = 0.645ms.
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Figure 10: Relative cost for the mesh adaption at the 3-D Taylor-Sedov problem.

of the flow field variables agrees rather well with the theoretical results from the Taylor and Se-
dov self-similar solution. Although the shock wave position is not accurately predicted this
cannot be ascribed to the adaption of the mesh since the non-adapted solution also shows a sim-
ilar lack of precision. It is thought that this is due to the lack of precision of the time integration
scheme used to solve the flow equations.

The overhead introduced by the adaption of the mesh is just a small percentage of the time
required to compute the flow, thus allowing to greatly reduce the computational effort. If we
were to solve the problem with a fixed mesh and a similar precision (in fact, if each tetrahe-
dron of the base mesh used for the simulations and then their corresponding sons were refined
following the 1:8 pattern used by the adaption procedure), a fixed mesh made up of 26.9 mil-
lion would have been required!!!. So it is concluded that true benefits are achieved because of
adapting the mesh, namely an accuracy improving and a reduction in the computational effort.
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