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Abstract. The aim of this work is to study the influence of the Geometric Conservation Law (GCL)
when numerical simulations are performed on deforming domains with an Arbitrary Lagrangian-Eulerian
(ALE) formulation. This analysis is carried out in the context of the Finite Element Method (FEM) for
the scalar advection-diffusion equation defined on a moving domain.
Solving the problem on a moving mesh using an ALE formulation needs the computation of some geo-
metric quantities, such as element volumes and Jacobians, which involve the nodal positions and veloci-
ties. The so-called Geometric Conservation Law (GCL) is satisfied if the algorithm can exactly reproduce
a constant solution on moving grids.
Not complying with the GCL means that the stability of the time integration is not assured and, thus, the
order of convergence could not be preserved. To emphasize the importance of fulfilling the GCL, nu-
merical experiments are performed in 2D using several mesh movements. In these experiments different
temporal integration schemes have been used .
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1 INTRODUCTION

When dealing with partial differential equations that needs to be solve on moving domains,
like Fluid-Structure Interaction problems (Storti et al., 2009; Garelli et al., 2008), one of the
most used techniques is the so-called Arbitrary Lagrangian Eulerian (ALE) formulation. The
key idea in the ALE formulation is the introduction of a computational mesh which can move
with a velocity independent of the velocity of the material particles. The ALE method were
first proposed in the context of finite difference in works Noh (1964); Hirt et al. (1974), then
it was extended to finite elements in Donea (1983); Hughes et al. (1978) and to finite volumes
in Trepanier et al. (1991). The reformulation of the equation in an ALE scheme introduces
additional terms, which are related to the grid velocity and deformation.
The Geometric Conservation Law (GCL) is directly related with the evolution of the mesh
velocity and the change of the elemental area or volume. This law was introduced by Thomas
and Lombard (1979) and it is a consistency criterion, being that the numerical method must be
able to reproduce exactly a constant solution on a moving domain. In practice the GCL can be
violated, but its relationship with the stability and the accuracy of the numerical scheme have
not been clarified yet. Several works have been done in this direction (Boffi and Gastaldi, 2004;
Formaggia and Nobile, 2004; Étienne et al., 2009) with the aim of establish the importance of
the GCL.
In this paper the analysis is carried out in the context of the Finite Element Method (FEM) for
the scalar advection-diffusion equation defined on a moving domain. The behavior of two well-
know first and second order time advancing schemes, like Implicit Euler and Crank-Nicolson
is analyzed. Several types of movements are imposed on the domain with different degrees of
regularity in the mesh velocity. In the next section an introduction to the problem on moving
domains and to its ALE formulation is given in the context of finite element discretization.

2 ALE FORMULATION OF THE MODEL PROBLEM

The analysis of the GCL compliance can be performed in any kind of problem that is solved
on a moving domain, due to the GCL naturally arises in ALE formulations. Let consider, for
the sake of clarity, the linear advection diffusion model of the type

∂u

∂t
+∇x · (βu)− µ∆u = g for x ∈ Ωt, t ∈ [0,T]

u = u0 for x ∈ Ω0, t = 0

u = uD for x ∈ ∂Ωt, t ∈ [0,T]

(1)

is considered, where β is the convective velocity vector, which satisfy ∇x · β = 0, µ is the
constant diffusivity and ∆ is the Laplacian operator.
To recast the original problem (1) to an arbitrary Lagrangian-Eulerian frame, a set of mapping
At must be defined. At maps, at each time t ∈ ]0, T ], the point ξ = (ξ, η) of a reference domain
Ω0 to a point x=(x,y) on the current domain Ωt.

At : Ω0 → Ωt, x(ξ, t) = At(ξ) (2)

The ALE mapping must fulfill some requirements, like surjection, bounded and Lipschitz con-
tinuity. A more detailed description about these requirements can be founded in Donea and
Huerta (2003); Boffi and Gastaldi (2004); Formaggia and Nobile (2004). If the evolution of the
boundary domain is known, several techniques can be used to construct the ALE mapping. The
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current domain can be obtained from a harmonic extension of the boundary (Nobile, 2001) or it
can be considered as an elastic body which is deformed (Gastaldi, 2001).
Now, a brief introduction of the ALE kinematics is done. Therefore, let consider a scalar func-
tion f : Ωt × ]0, T ] defined on the Eulerian frame and the function f̂ := f ◦ At defined on the
ALE frame, where

f̂(ξ, t) = f(At(ξ), t), f̂ : Ω0 × ]0, T ] (3)

being the time derivative in the ALE frame defined as follows

∂f

∂t

∣∣∣∣
ξ

(x, t) =
∂f̂

∂t
(ξ, t), ξ = A−1

t (x). (4)

Likewise the partial time derivative in the Eulerian frame is defined as ∂f
∂t

∣∣
x and the mesh ve-

locity w as

w(x, t) =
∂x
∂t

∣∣∣∣
ξ

(A−1
t , t). (5)

In order to obtain the ALE counterpart of (1) and assuming that u is regular enough, the chain
rule is applied to the time derivatives

∂u

∂t

∣∣∣∣
ξ

=
∂u

∂t

∣∣∣∣
x
+
∂x
∂t

∣∣∣∣
ξ

· ∇xu =
∂u

∂t

∣∣∣∣
x
+ w · ∇xu, (6)

and substituting (6) in (1), the Eulerian time derivative is replaced by the ALE time derivative

∂u

∂t

∣∣∣∣
ξ

− w · ∇xu+∇x · (βu)− µ∆xu = g for x ∈ Ωt, t ∈ [0,T]

u = u0 for x ∈ Ω0, t = 0

u = uD for x ∈ ∂Ωt, t ∈ [0,T].

(7)

To obtain the variational formulation of (7) in a conservative form, the Reynolds transport the-
orem in employed. Let f(x, t) a scalar function over a arbitrary volume Vt, so the material time
derivative of the integral of f(x, t) can be expressed as

d

dt

∫
Vt

f(x, t) dV =

∫
Vt

∂f(x, t)
∂t

dV +

∫
St

f(x, t) w · n dS. (8)

The first term of the r.h.s of (8) represents the spatial time derivative of the volume integral and
the boundary integral represents the flux of the scalar quantity f across the boundary. Now,
using the divergence theorem one obtains

d

dt

∫
Vt

f(x, t) dV =

∫
Vt

(
∂f

∂t

∣∣∣∣
ξ

+ f ∇x · w) dV =

∫
Vt

(
∂f

∂t

∣∣∣∣
x
+∇xf · w + f ∇x · w) dV . (9)

2.1 Weak formulation in the ALE framework

In order to derive the weak formulation a finite element space compatible with ALE mapping
must be defined

H(Ωt) = {ψ : Ωt × ]0, T ] → R : ψ = ψ̂ ◦ A−1
t , ψ̂ ∈ H1

0(Ω0)}, (10)
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and with some mathematical manipulation of (7) and (9) the following weak formulation in
conservative form is reached and reads as follow:
For all t ∈ ]0, T ], find u ∈ H(Ωt) such that

d

dt

∫
Ωt

uψ dΩ +

∫
Ωt

∇xu · ∇xψ dΩ +

∫
Ωt

∇x · [(β − w)u]ψ dΩ =∫
Ωt

g ψ dΩ, ∀ ψ ∈ H(Ωt).

(11)

with the corresponding boundary and initial conditions

u = u0 for x ∈ Ω0, t = 0

u = uD for x ∈ ∂Ωt, t ∈ ]0,T],

With the problem formulated in an ALE framework the next objective is to solve the prob-
lem (11) via the Finite Element Method using a Galerkin formulation. The numerical solution
uh will then be sought in the discrete space Hh(Ωt) and uh is expressed as linear combination
of nodal finite element basis,

uh(x, t) =
∑
i∈N

ψi(x, t)ui(t). (12)

An important difference with the classical finite element formulation for time-dependent prob-
lems is that here the basis are also time-dependent.
So, the finite element semi-discrete approximation of (11) is written as:
For all t ∈ ]0, T ], find uh ∈ Hh(Ωt), such that

d

dt

∫
Ωt

uhψh dΩ +

∫
Ωt

∇xuh · ∇xψh dΩ +

∫
Ωt

∇x · [(β − w)uh]ψh dΩ =∫
Ωt

g ψh dΩ, ∀ ψh ∈ Hh(Ωt).

(13)

with the corresponding discrete boundary and initial conditions

uh = u0h for x ∈ Ω0, t = 0

uh = uDh for x ∈ ∂Ωt, t ∈ ]0,T].

Finally, it must be chosen a suitable time discretization scheme. But, before to do this, the
approximation (13) can be rewritten in a compact form (14), which helps to understand the
term involved in the compliance of the GCL, so that

d

dt
(M(t)U(t)) + (K(t) − A(t,w) − B(t,w))U(t) = G(t), (14)

where
M(t) =

∫
Ωt

ψi(t)ψj(t) dΩ

K(t) =

∫
Ωt

∇xψj(t) · ∇ xψi(t) dΩ +

∫
Ωt

∇x · (βψj(t))ψi(t) dΩ

A(t,w) =

∫
Ωt

∇x · w(t)ψj(t)ψi(t) dΩ

B(t,w) =

∫
Ωt

w(t) · ∇xψj(t)ψi(t) dΩ

G(t) =

∫
Ωt

g(t)ψi(t) dΩ
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2.2 Temporal discretization of the semi-discrete system.

Taken into account the system (14) in a semi-discrete form, a time integration method must
be used in order to get the fully discrete system. In this work the so-called θ−family approxi-
mation is used, obtaining

Mn+1Un+1 −MnUn

∆t
+ (Kn+θ − An+θ − Bn+θ)Un+θ = Gn+θ (15)

where for example the evaluation of Fn+θ = (1− θ)Fn + θFn+1.
For θ = 1 we get the Backward Euler method, which is unconditionally stable in fixed do-
mains and first-order accurate in time (i.e.,O(∆t)). For θ = 0.5 we get the Crank-Nicolson
method, which is unconditionally stable in fixed domains and second-order accurate in time
(i.e.,O(∆t2)). Though, the Crank-Nicolson scheme has no time step restriction for stability,
but it could suffer nonphysical oscillatory response in the solution when the time step exceed a
critical value which is given for the largest eigenvalue of the system.

3 THE GEOMETRIC CONSERVATION LAW

As stated in the section §1 the GCL compliance is interpreted as a consistency criterion for
the numerical method. When the GCL is satisfied the algorithm is able to reproduce a constant
solution on a moving domain independently of the velocity and distortion of the mesh, as it is
shown in next sections.
At the continuous level the ALE formulation is equivalent to the original problem stated in a
fixed domain; but in the discrete form that is not longer true. If in eq. (13) the source term and
the advective velocity are null (g = 0,β = 0) and considering a constant field solution, the
GCL can be written as∫

Ωn+1

ψn+1
i ψn+1

j dΩ−
∫

Ωn

ψn
i ψ

n
j dΩ = Q

(∫
Ωt

ψi(t)ψj(t)∇x · wh(t) dΩ

)
∀i, j ∈ N. (16)

So, a sufficient condition to satisfy the equality (16) is to use a time integration scheme Q (at
least for the ALE term) with degree d · s− 1, where d is the space dimension and s is the order
of the polynomial used to represent the time evolution of the nodal displacement. In this work
a piecewise linear polynomial is used and two-dimensional problem are solved, therefore the
time integration rule Q should integrate exactly a linear polynomial. Demonstrations of this
proposition can be found in Boffi and Gastaldi (2004); Formaggia and Nobile (2004).
As an example, the Backward Euler and the Crank-Nicolson methods are used to integrate
the r.h.s of (16) for a triangle which is deformed between tn and tn+1. The node 1 of the
triangle is fixed, the node 2 has a velocity (w2,x, w2,y) = (1, 0) and the node 3 has a velocity
(w3,x, w3,y) = (0, 1). The length of the sides in tn are Ln

x = Ln
y = 1 and in tn+1 = tn + ∆t are

Ln+1
x = Ln+1

y = 1.1, as shown in Figure (1).
The evaluation of the l.h.s is independent of the integration rule Q, and for the case in which
i = j = 1 in eq. (16) (i.e., only one node integrals are computed for the sake of simplicity),∫

An+1

(ψn+1
1 )2 dA−

∫
An

(ψn
1 )2 dA =

1

6
An+1 − 1

6
An =

0.605

6
− 0.5

6
= 0.0175. (17)

Now introducing the Backward Euler method, the r.h.s of (16) is approximated as∫ tn+1

tn

∫
Ωt

ψi(t)ψj(t)∇x · wh(t) dΩ ≈ ∆t

∫
Ωtn+1

ψn+1
i ψn+1

j ∇x · wn+1
h dΩ, (18)
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Figure 1: Deformation of a triangle during a time step.

where the ∇x · wh is approximated with the same basis used in uh,

∇x · wh =
3∑

i=1

∂ψi

∂xj

(x, t)wi,j(t), j = 1..2, (19)

being for this case

∇x · wn
h =

3∑
i=1

∂ψi

∂xj

n

wn
i,j = (1 + 1) = 2

∇x · wn+1
h =

3∑
i=1

∂ψi

∂xj

n+1

wn+1
i,j =

(
1

1.1
+

1

1.1

)
= 1.8

_

18 .

wherewith

∆t

∫
Atn+1

(ψn+1
1 )2∇x · wn+1

h dA = ∆t
An+1

6
∇x · wn+1

h = 0.1
0.605

6
1.818 = 0.01833. (20)

If the Crank-Nicolson method is used as integration rule for the r.h.s of (16)∫ tn+1

tn

∫
Ωt

ψi(t)ψj(t)∇x · wh(t) dΩ ≈

≈ ∆t

2

(∫
Ωtn+1

ψn+1
i ψn+1

j ∇x · wn+1
h dΩ +

∫
Ωtn

ψn
i ψ

n
j ∇x · wn

h dΩ

)
=

=
∆t

2

(
An+1

6
∇x · wn+1

h +
An

6
∇x · wn

h

)
=

0.1

2

(
0.605

6
1.8

_

18 +
0.5

6
2

)
= 0.0175.

(21)

In this example it is evident that the Backward Euler time integrator do not satisfy the iden-
tity (16). So, an error in the temporal integration (in the ALE term) is introduced and it is due
to the lack of compliance with the GCL. Moreover, it behaves as an elemental source or sink
when solving transient problems and depending on whether the element expands or shrinks.
The magnitude of this error decreases with the reduction of the time step and the mesh velocity
(see section §4.1).

Several propositions have been made in other works in order to have temporal θ-integrators
complying the GCL. One of these modifications consists of using a temporal integration rule of
higher order for ALE terms. But this alternative is less desirable from the programming point
of view and it may be more convenient to treat all terms equally.
In the next section the problem introduced in §2 is used to verify the GCL with the two temporal
schemes proposed. Then, a numerical analysis is carried out regarding the effect in the FEM so-
lutions when complying or not the GCL. Finally, using the method of ‘Manufactured Solution’
(Roache, 1998; Roy, 2004) a convergence analysis is performed on a moving domain.
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4 NUMERICAL TEST

4.1 Constant solution test

As stated in the previous section, a code that satisfy the GCL must be able to reproduce
a constant solution. The problem (13) is solved in an unit square domain with a source term
g = 0, β = 0 and µ = 0.1, so that

ut − 0.1∆u = 0 for x ∈ Ωt, t ∈ [0,T],

u0 = 1 for x ∈ Ω0, t = 0,

u = 1 for x ∈ ∂Ωt, t ∈ [0,T],

(22)

being the domain deformed according to the following rule

xn+1 = xn + 0.125 sin(πt) sin(2π xn). (23)

Figure (2) shows the reference domain and the deformed domain for t = 0.5 where the maxi-
mum deformation occurs. The problem is solved using piecewise linear triangles for the spatial

Figure 2: Reference and deformed domains.

discretization, a piecewise linear interpolation of the mesh movement and for the time integra-
tion the Backward Euler and Crank-Nicolson schemes are considered with ∆t =0.2, 0.1, 0.05,
0.025. Figure (3) reports the error ||uh − u||L2(Ωn) for three periods of oscillation, which must
remain close to zero (in machine precision (≈ 10−14)) over time for a GCL compliant scheme.
An error is introduced when using the Backward Euler scheme due to lack in GCL compli-
ance. We can see in Figure (3) that the error ||uh − u||L2(Ωn) grows linearly in time and roughly
behaves proportional to time step and mesh velocity. This test was performed with different
mesh movements with similar results. In Figure (4) the solution in t = 6 [s] is shown for both
integration schemes. The error with respect to the constant solution are localized in the zones
of the domain where the element deformation is higher, like in the center and the corners.
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Figure 3: L2-norm of the error for Backward Euler (BE) and Crank-Nicolson (CN) schemes.

Figure 4: The solution in t = 6[s] for the Backward Euler (BE) and Crank-Nicolson (CN) schemes.

4.2 Stability analysis

With the aim of check the stability of the schemes under analysis the following problem is
considered

ut − 0.01∆u = 0 for x ∈ Ωt, t ∈ [0,T],

u0 = 1600x(1− x)y(1− y) for x ∈ Ω0, t = 0,

u = 0 for x ∈ ∂Ωt, t ∈ [0,T],

(24)

which is deformed according to the following rule

At(ξ) = x(ξ, t) = (2− cos(20πt))ξ. (25)

This problem was first proposed by Boffi and Gastaldi (2004); Formaggia and Nobile (2004),
where it is demonstrated that the solution has a monotone decreasing L2−norm in time for the
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continuous case. The problem is solved for ∆t =0.02, 0.01, 0.001, 0.0001 and the L2−norm
plotted as a function of time for a simulation of 0.4 [s]. When the Backward Euler is used

Figure 5: The L2−norm of the solution uh for the Backward Euler (BE) and Crank-Nicolson (CN) schemes.

the L2−norm of the solution uh has a strict monotone decay, but the method introduce an
extra numerical diffusion increasing the rate of decay. If the Crank-Nicolson method is used,
no extra diffusion is added but it produces oscillations in the L2−norm of the solution uh.
These oscillations appear when the advective-like ALE term is introduced in the pure diffusion
problem stated in a fixed domain (24). That can be easily seen if the mesh Péclet number is
computed based on the mesh velocity, which can be derived from (25),

wt(ξ) =
dx
dt

= 20π sin(20πt)ξ. (26)

Therefore, the maximum velocity is obtained in t = ( n
10

+ 1
40

)[s], with n = 0, 1, 2... and for the
nodes near the top right corner of the domain. Taking the maximum mesh size for this time, the
mesh Péclet number is,

Peh =
|wmax| · h

µ
=

2 ·
√

2 · 20π · 0.05

0.01
= 888.6 (27)

For this Péclet, it is necessary the stabilization of ALE equations, for instance using SUPG
formulations.

4.3 Convergence analysis

In the next numerical test the accuracy of the Backward Euler and the Crank-Nicolson
schemes is analyzed. The following problem is solved in an unit square

ut − 0.1∆u = f for x ∈ Ωt, t ∈ [0, π],

u0 = sin(πx) · sin(πy) for x ∈ Ω0, t = 0,

u = 0 for x ∈ ∂Ωt, t ∈ [0, π],

(28)

being the domain deformed according to the following rule:

At(ξ) = x(ξ, t) = (1.25− 0.25 cos(t))ξ (29)
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The forcing term f is determined using the method of manufactured solutions (MMS), which is
a general procedure that can be used to construct analytical solutions. For this case, the forcing
term is chosen in such a way that the exact solution u(ξ, t) is

u(ξ, t) = (1 + 2 sin(t)) · sin(πξ) · sin(πη). (30)

The initial solution of the problem is shown in Figure (6). The rate of convergence of the

Figure 6: Initial solution of the problem (28).

schemes is computed by taking a sequence of decreasing time steps, ranging from ∆t = 0.4 to
∆t = 0.003125 and the L2−norm of the error is computed at time t = 2.0 [s]. In Figure (7) the
rate of convergence for the Backward Euler and Crank-Nicolson is plotted. It is clearly shown

Figure 7: Rate of convergence of the Backward Euler and Crank-Nicolson.

in Figure (7) that both schemes have a rate of convergence similar to those expected in fixed
domains. Figure (8) shows a sequences of images corresponding to the solution at different
times.
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Figure 8: Solution of the problem (28).

5 CONCLUSIONS

In this paper an introduction of formulation of linear advection diffusion problem in an ALE
framework is given. In this context, the Geometric Conservation Law arises and states the
possibility of a code to simulate a constant solution on a moving domain. When this law is not
satisfied an extra numerical error is introduced. This error manifests as elemental sources or
sinks in the domain and it is closely related to the time step and the mesh velocity.
Also, it is important to consider the effect of the advective term added to the problem when
using an ALE frame of reference. This term can be unsettling or cause nonphysical oscillations
of the solution. Finally, a numerical convergence test is carried out for two θ-time integration
rules.
This work will be extended to three-dimensional problems where high order schemes like two
point Gaussian quadrature rule or multistep method are needed to obtain a GCL compliant code.
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Lausanne, 2001.

W.F. Noh. A time-dependent, two space dimensional, coupled Eulerian- Lagrange code. Meth-
ods in Computational Physics., 3 (1964) 117—179:117–179, 1964.

P.J. Roache. Verification of codes and calculations. AIAA, 36:5 (1998):696–702, 1998.
C.J. Roy. Verification of euler/navier-stokes codes using the method of manufactured solutions.

J. Numer. Methods Fluids, 44:6 (2004):599–620, 2004.
M. Storti, N. Nigro, R.R. Paz, and D.L. Dalcı́n. Strong coupling strategy for fluid structure

interaction problems in supersonic regime via fixed point iteration. Journal of Sound and
Vibration, 30:859–877, 2009.

P.D. Thomas and C.K. Lombard. Geometric conservation law and its applications to flow com-
putations on moving grids. AIAA, 17:1030–1037, 1979.

J.Y. Trepanier, M. Reggio, H. Zhang, and R. Camarero. A finite-volume method for the euler
equations on arbitrary lagrangian-eulerian grids. Computers and fluids., 20:4 (1991) 399—
409:399–409, 1991.

S. Étienne, A. Garon, and D. Pelletier. Perspective on the geometric conservation law and
finite element methods for ale simulations of incompressible flow. Journal of Computational
Physics, 228:7 (2009):2313–2333, 2009.

L. GARELLI, R.R. PAZ, M.A. STORTI1488

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	Introduction
	ALE formulation of the model problem
	Weak formulation in the ALE framework
	Temporal discretization of the semi-discrete system.

	The Geometric Conservation Law
	Numerical test
	Constant solution test
	Stability analysis
	Convergence analysis

	Conclusions

