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Abstract. In this work, steady creeping three dimensional flow of a viscous and incompressible fluid
around closed rigid bodies with sharp corners and edges is numerically solved using a Galerkin scheme
applied to a modified Power-Miranda boundary integral equation. The related double surface integrals
that account the pairwise interaction among all boundary elements are quadruple and they are computed
on flat simplex triangles using the scheme proposed by Taylor (D. J. Taylor, IEEE Trans. on Antennas
and Propagation, 51(7):1630–1637 (2003)). As a numerical example, the creeping steady flow around the
unit cube considering different orientations with respect to the unperturbed fluid velocity, covering issues
on the surface traction exponents close to the edges and vertices and compared against semi-analytical
computations.
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1 INTRODUCTION

Stokes flow around rigid bodies with sharp corners and edges are frequently encountered,
among other applications, in Micro-Electro-Mechanical Systems (MEMS), e.g. see Wang
(2002) or Méndez et al. (2008). As it is known, the presence of geometric discontinuities such
as corners and edges is associated with the singular behavior of the stress and traction fields in
both hydrodynamics and elasticity problems, e.g. see Kozlov et al. (2001).
The surface tractions at a sharp corner, such as a three dimensional (3D) vertex, are at least
as singular as those encountered at the edges, since a point near the vertex of a polyhedral
surface is also in the neighborhood of an edge. Nevertheless, Mustakis and Kim (1998) have
already shown that boundary integral equation techniques can be appropiate for solving these
flow cases.
In the present work, the Power and Miranda (1987) boundary integral equation is adapted for
Stokes flow around rigid bodies with sharp corners and edges, and it is numerically solved using
the so called Galerkin Boundary Element Method (GBEM) or Variational Boundary Element
Method (VBEM), e.g. see Paquay (2002); D’Elı́a et al. (2008) with a full numerical quadrature
of the related weakly singular double surface integrals (Taylor, 2003a; D’Elı́a et al., 2009).
As a sharp body, a unit cube is considered in the numerical examples, for which the traction
coefficient close to the edges and corners are plotted, considering different orientations with
respect to an unperturbed fluid velocity, covering issues on the surface traction exponents close
to the edges and vertices with comparisons against semi-analytical computations.

2 GOVERNING EQUATIONS

For the creeping flow around a closed, rigid and piecewise smooth body surface S, the Power
and Miranda (1987) alternative that allows the determination of a net force and torque on a
closed body surface S by solving the modified boundary integral equation is written as∫

S

dSy{K[ψ(x)−ψ(y)] + Pψ(y)} = −u(x) for x ∈ S; (1)

where ψ is a surface density potential and u(x) is the unperturbed incoming flow velocity.
The differential element is denoted as dSy = dS(y), while the integration and field points are
y = (y1, y2, y3) and x = (x1, x2, x3), respectively.
The double-layer surface kernel K = K(x,y) is a tensor of rank 2. It is due to the surface
density of stresslets over the body surface (Ladyzhenskaya, 1969; Pozrikidis, 1996, 1997), and
it is given by

Kij(x,y) = − 3

4πµ

ri rj rk

r5
nk(y) ;

with r = x− y and r = ‖x− y‖2;
(2)

where µ is the dynamic fluid viscosity, while nk = nk(y) is the unit surface normal at the
integration point y. For smooth surfaces, this kernel has the key property∫

S

dSyKij(x,y) =
1

2µ
δij for x ∈ S; (3)

where δij is the Kronecker delta.
The “sourcelet” kernel P = P(x,y) is due to stokeslet and rotlet sources although instead of the
concentred ones at the body centroid, as in the original formulation of the Power and Miranda
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(1987) alternative, in this work they are placed as surface source densities. In any case, they
give rise to a force and a torque when the combined kernel is integrated over a closed surface
that encloses it. Their approach is an extension to the steady Stokes equation of the Mikhlin
results on the exterior Dirichlet problem for the Laplace equation (Mikhlin, 1965, 1970). A key
idea of the Power-Miranda scheme is adopting the strength of the “sourcelet” kernel P linearly
dependent upon the surface density potential ψ(y), i.e.,

P(x,y) = C(x,y)ψ(y) ; (4)

where the coupled matrix C = C(x,y), after some algebra, can be written as

C =
1

8πµR3

∫
S

dSy(S + R) ; (5)

with its stokeslet part

S =

(r1r1 + r2) r1r2 r1r3
r2r3 (r2r2 + r2) r2r3
r3r1 r3r2 (r3r3 + r2)

 ; (6)

and its rotlet one

R =

(r2r2 + r3r3) −r1r2 −r1r3
−r2r1 (r3r3 + r1r1) −r2r3
−r3r1 −r3r2 (r1r1 + r2r2)

 ; (7)

since they are placed as surface layer densities instead of concentred ones. Reordering terms in
Eq. (1), ∫

S

dSy{(P−K︸ ︷︷ ︸
A

)ψ(y) + Kψ(x)} = −u(x) for x ∈ S; (8)

that is ∫
S

dSy{Aψ(y) + Kψ(x)} = −u(x) for x ∈ S; (9)

where A = A(x,y) is the difference between both kernels A = P − K. Then, the Power-
Miranda alternative can be written as the boundary integral equation

I(x;ψ(x)) + u(x) = 0 for x ∈ S; (10)

with the integral operator

I(x;ψ(x)) =

∫
S

dSy{Aψ(y) + Kψ(x)} with x ∈ S; (11)

where the solution field is the surface density potential ψ(x).

3 NUMERICAL FORMULATION

3.1 Surface density potential computation

It should be noted that Eq. (10) is an indirect boundary integral equation (Power and Wrobel,
1995; Kim and Karrila, 1989) since it does not give directly the surface traction. Instead, a
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surface density potential is obtained. In this work, this boundary integral equation is numerically
solved using a Galerkin technique (Paquay, 2002; D’Elı́a et al., 2008). On the other hand,
a numerical computation of Eq. (11) by a Galerkin procedure involves the computation of
double surface integrals with a weak singularity. Taylor (2003a,b) developed a systematic way
for handling boundary meshes composed by flat triangules. The formulation is based on a
convenient reordering of the four iterated integrations that moves the weak singularity to the
origin of the four dimensional Euclidean real space (4D or R4) and, then, uses systematically the
Duffy transformation (Duffy, 1982), i.e. regularizes the integrand by using polar coordinates.
Thus, Taylor chooses a Gauss–Legendre numerical quadrature on three coordinates and makes
an analytic integration in the fourth one. As this Taylor scheme is a bit restrictive since it
is specific for wave propagation kernels in computational electromagnetics, a modification is
proposed in D’Elı́a et al. (2009). The modification consists in a full numerical quadrature on the
four coordinates in order to handle kernels with a weak singularity within a general framework.

3.2 Surface traction field computation

On one hand, the body force F = (Fx, Fy, Fz) and body torque F̃ = (F̃x, F̃y, F̃z) can be
computed by the surface integrals (Power and Miranda, 1987)

F =

∫
S

dSyψ ;

F̃ =

∫
S

dSy(r×ψ) .

(12)

On the other hand, the traction field ti(x) at the exterior of the closed surface S, is obtained
using (Ladyzhenskaya, 1969)

ti(x) = − 3

4π

∫
S

dSy
rirjrk

r5
nj(x)ψk(y) for x ∈ S; (13)

where r = x−y. It should be noted that Eq. (13) assumes that the unit normal n is well defined
at the field point x. This restriction precludes the use of this equation for the computation
of the traction field at points with geometric discontinuities, as nodes, edges and vertex on
the polyhedral surface mesh and, then, the panel centroids are employed as field points x in
the numerical examples. Finally, the drag coefficients are computed as K = F/(µUL) and
K̃ = F̃ /(µUL2), as well as Kx = Fx/(µUL) and K̃x = F̃x/(µUL

2), where L is a typical
length. Obviously, the body force obtained by summing the traction field given by Eq. (13)
coincides with the one obtained with Eq. (12).

4 NUMERICAL EXAMPLE

4.1 Steady creeping flow around the unit cube

As it is known, steady creeping flow is restricted to fluid flow problems when the Reynolds
numbers Re = UL/ν are lower than one, where U and L are typical speed and length scales,
while ν and µ = ρν are the fluid kinematic and dynamic viscosities, respectively, and ρ is the
fluid density.
As a sharp body, a unit cube is considered, whose center is placed at the origin in R3, see Fig.
1. The cube case is selected as a very crude simplification of MEMS geometries (Fachinotti
et al., 2007). In the numerical simulations, the following values are adopted: fluid density
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Figure 1: Meridian, equatorial and diagonal (poligonal) coordinates on the unit cube. The Cartesian coordinate
system O(x, y, z) = O(x1, x2, x3) is centered.
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Figure 2: Two–dimensional Stokes flow modes across the middle of the edges of the unit cube: (i) parallel
mode U = (1, 0, 0)U0, with parallel flow along edges J , J ′, J ′′ and J ′′′ (not seen); (ii) splitting mode U =
(1, 0, 1)U0, where the splitting edges K, K ′ have only the symmetric component while the L, L′ edges have only
the antisymmetric one, as given by Mustakis and Kim (1998), while U0 is the unperturbed speed.

ρ = 1 kg/m3, kinematic viscosity ν = 1 m2/s, incoming speed U0 = 0.001 m/s and edge
length A = 1 m. Thus, the typical length is L = A = 1 m.
There is no analytical solution in this case although bounds and semi numerical or experimental
values are taken as a reference. For instance, an open interval bound is known for the drag force
and it is given by Fmin < F < Fmax, with Fmin = 3πµUA and Fmax =

√
3Fmin, where A

is the cube edge length, or expressed as a drag coefficient interval, Kmin < K < Kmax, with
Kmin = 3π and Kmax = 3

√
3π.

On the other hand, following the work of Mustakis and Kim (1998), five modal flow problems
are considered where, as a scaling in the fluid velocity is irrelevant, the incoming speed U0 (a
scalar) is introduced in the flow modes.
The first and second flow problems are the two–dimensional modes across the middle of the
edges of the unit cube, as they are shown in Fig. 2: (i) the parallel mode U = (1, 0, 0)U0,
with flow parallel to edges J , J ′, J ′′ and J ′′′, see Fig. 2 (left), where J ′′′ is not seen in this
sketch; and (ii) the splitting mode U = (1, 0, 1)U0, where the edges K,K ′ and L,L′ have to
be considered, see Fig. 2 (center). The edges K and K ′ have the symmetric component, while
the L and L′ edges have the antisymmetric one, in such a way that each component has its
own eigenvalue. The singularity exponents p were found by Mustakis/Kim as the solution to
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Figure 3: Two–dimensional Stokes flow modes across the middle of the edges of the unit cube. Total traction
coefficients K as a function of the (poligonal) coordinates: front meridian AB (left), rear meridian CD (center),
and equatorial GH (right). Comparison between a GBEM computation with the 6912 panel mesh and the semi-
analytical asymptotic laws O(sp) (Mustakis and Kim, 1998), as a function of the distance s to the edge singularity.
See Fig. 1, left and center, for the position of the points A−H .

an eigenvalue problem, giving, approximately, {−0.4555,−0.0915,−0.3333}, respectively, for
each case.
The third, fourth and fifth flow problems are a symmetric and two antisymmetric 3D modes,
respectively, not sketched in the figures. They are: symmetric with U = (1, 1, 1)U0, antisym-
metric I with U = (1, 0,−1)U0, and antisymmetric II with U = (1,−2, 1)U0. The singularity
exponents p for these were, approximately, {−0.31877,−0.62463}, respectively, i.e. the first
eigenvalue for the symmetric mode and the second one for the two antisymmetric modes.

4.2 Solution with GBEM

The Gauss-Legendre quadrature formula is employed in the Taylor “black box” integrator, with
n1d = 4 Gauss–Legendre quadrature points in each coordinate for flat simplex triangles. Several
GBEM meshes are used for solving this problem in order to check mesh convergence under
refinement, although only results for E = {6912, 13 872} panel meshes are shown.
Semi-analytical asymptotic laws O(sp) for the total traction coefficients K, as a function of the
distance s to the edge or vertex singularity, are given by Mustakis and Kim (1998). Compar-
isons between these and the present GBEM computation obtained with the 6912 panel mesh are
shown in Figs. 3 and 4. It should be noted that Mustakis/Kim give only the traction law as a
function of the distance s to the edge or vertex singularity and, then, only this dependence is
checked in both figures.
For the two–dimensional Stokes flow modes across on the middle of the edges, the total traction
coefficients K are plotted in Fig. 3 as a function of the (poligonal) coordinates: (i) front-
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Figure 4: Three–dimensional Stokes flow modes of the 90 degree vertex of the unit cube. Total traction coefficients
K as a function of the (poligonal) coordinate along the diagonal MI on the top plane. Comparison between a
GBEM computation with the 6912 panel mesh and the semi-analytical asymptotic laws O(sp) (Mustakis and Kim,
1998), as a function of the distance s to the vertex singularity. See Fig. 1 (right), for the position of the points
M − I .

meridian AB (left), rear-meridian CD (center), and equatorial GH (right). These (poligonal)
coordinates are shown in Fig. 1 (left and center).
For the three–dimensional Stokes flow modes of the 90 degree vertex, the total traction coeffi-
cients K are plotted in Fig. 4 as a function of the (poligonal) coordinate along the diagonal MI
(poligonal) coordinate on the top plane.
On the other hand, the parallel mode U = (1, 0, 0)U0, with flow parallel to edges J , J ′, J ′′ and
J ′′′ which is shown in Fig. 3, gives the total traction coefficient in the x-Cartesian direction the
value Kx = 12.3879, using the 13 872 panel mesh.

4.3 Solution with FEM

As another validation, a FEM computation had been performed with the open source PETSc-
FEM code, which is a parallel multi-physics finite element library based on the Message Passing
Interface (MPI, http://www.mpi-forum.org) and the Portable Extensible Toolkit for Scientific
Computations (PETSc, http://www-fp.mcs.anl.gov/petsc). Among others applications of this
solver are, for instance, free surface flows (D’Elı́a et al., 2002, 2000; Storti et al., 1998a,b),
inertial waves in closed domains (D’Elı́a et al., 2006), and added mass computations (Storti
and D’Elı́a, 2004). This code solves the Navier-Stokes equations with the SUPG/PSPG algo-
rithm (Tezduyar et al., 1992; Sonzogni et al., 2000), i.e. using equal-order interpolations with
the PSPG stabilization term in order to bypass the Brezzi-Babuska condition. The FEM com-
putation does include the inertial terms, so that in order to compare with the GBEM results a
low Reynolds number must be chosen.
The only flow case considered with a FEM computation is the parallel mode U = (1, 0, 0)U0,
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with flow parallel to the edges J , J ′, J ′′ and J ′′′, see Fig. 2 (left). The Reynolds number was
set to 0.001 by choosing the particular combination of parameters ν = 0.1, U∞ = 10−4 and
L = 1. The flow is aligned with the x axis and, by symmetry, only one fourth of the domain
(y, z ≥ 0) was considered. The mesh was constructed by extrusion of a surface mesh having
50x50 quadrangles on each side of the cube, i.e. the mesh had 50×50×6/4 = 3750 quadrangles
on 1/4th of the cube inside a prismatic domain. The mesh spacing was non-uniform, with a
logarithmic refinement towards the edges of the cube, where the results show that large friction
values are found. This refinement was such that the linear size h of the quadrangles near the
center of the face was in a ratio 5:1 to the size near the edges. This surface mesh was extruded
in the radial direction into 50 layers of hexahedral elements in the radial direction from the cube
surface, up to an external cube of length Lext = 50. The width of layers in the radial direction
were also refined towards the internal cube surface in such a way that the width of the external
layer was in a ratio of 40:1 to the layer adjacent to the cube skin. Boundary conditions were
velocity u = (U∞, 0, 0) at inlet (x = −Lext/2), pressure p = 0 at outlet (x = Lext/2), slip
boundary condition at the lateral walls y, z = ±Lext/2, and non-slip boundary condition u = 0
at the cube.
With this setup the computed value for the drag was K = Fx/(µU∞L) = 13.76. The numerical
experiment was performed with other values of Lext and mesh refinement in order to assess
the sensibility of this result with respect to those parameters. This series of experiments have
shown that this result is particularly sensitive to the size of the computational domain Lext. This
is so because the slip boundary conditions are equivalent to a lattice of mirrors of the cube with
a spacing of ∆y = ∆z = Lext. Then, each cube sees an effective external field given by U∞
plus the velocity induced by the other cubes in the array. This field decays very slowly (as
O(1/Lext)) for Lext →∞, so that very large domains must be used in order to reduce the error.
For instance, the error for Lext = 10 is estimated in 15%. Computations for a sphere for which
the drag can be computed analytically, show a similar behavior (D’Elı́a et al., 2008).
The traction map obtained with GBEM is close to the FEM one, while the traction coefficient
is 10% lower than the FEM value. This difference deserves some comments. Both results fall
within the interval (Kmin, Kmax) predicted by an analytic computation. In the GBEM computa-
tion the result is highly sensitive to the number of integration points, whereas for FEM the most
influential parameter was the size of the computational domain. In both cases, some residual
error may be due to insufficient mesh refinement. This is specially true in this case, because the
strong variation of friction near the edges degrades the convergence with respect to mesh refine-
ment. Figure 5 shows the Cartesian Kx component of the traction coefficient as a function of
the meridian (poligonal) coordinate sm (left), and as a function of the equatorial one se (right),
obtained with FEM (solid line) and GBEM (cross) computation.

5 CONCLUSIONS

The singular behavior of the surface traction edges and corners in the tests cases solved in
this work with a GBEM alternative is close to the singularity exponents obtained with a semi-
analytical computation of Mustakis and Kim (1998). The present numerical solution of the
surface traction near edges and corners has not shown numerical instabilities nor severe preci-
sion loss, although the traction field is somewhat regularized. Future work would be include the
harmonic creeping flow case.
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