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Abstract. The so called “hybrid parallelism paradigm”, that combines programming techniques for ar-
chitectures with distributed and shared memories using MPI (’Message Passing Interface’) and OpenMP
(’Open Multi-Processing’) standards, is currently adopted to exploit the growing use of multicore com-
puters in PC’s clusters, thus improving the efficiency of codes in such architectures (several multicore
nodes or clustered symmetric multiprocessors (SMP) connected by a fast net to do exhaustive computa-
tions).

Meanwhile, for large-scale applications projects there is PETSc, a suite of data structures and routines
for the scalable (parallel) solution of scientific applications modeled by partial differential equations,
implementing MPI standard and widely used in parallel finite element codes development.

In this paper a parallel hybrid finite element code is developed and its performance evaluated, using
MPI/PETSc for communication between nodes and OpenMP for parallelism within an SMP node. The
cluster in which the code was run was the CIMEC’s ’Coyote’ cluster, which consists of 8 nodes with 8
cores each, connected through a Fast Ethernet net of 1Gb/sec.
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1 INTRODUCTION

Many engineering and scientific problems related to Computational Fluid Dynamics (CFD)
require intense numerical computation. A lot of research has been carried out using method-
ologies for obtaining solutions to large-scale problems in realistic time, (Behara and Mittal,
2009).

As commodity off-the-shelf symmetric multi-processors (SMPs) and high-speed network de-
vices are widely deployed, SMP clusters have become an attractive platform for high-performance
computing. To exploit such computing systems the tendency is to use the so called hybrid
parallelism paradigm that combines programming techniques for architectures with distributed
and shared memory, often using MPI and OpenMP standards, (Jost and Jin, 2003).The hybrid
MPI/OpenMP approach is based on using MPI for coarse grained parallelism and OpenMP for
fine grained loop level parallelism. The MPI programming paradigm assumes a private address
space for each process. Data is transferred by explicit message exchange via calls to the MPI
library. This model was originally designed for distributed memory architectures but is also
suitable for shared memory systems.

Whilst message passing is necessary to communicate between nodes, it is not an efficient
technique within a SMP node. In theory, a shared memory model such as OpenMP should offer
a more efficient parallelization strategy within an SMP node. Hence a combination of shared
memory and message passing parallelism paradigms within the same application (mixed mode
programming) may provide a more efficient parallelization strategy than pure MPI.

This paper has been focused on mixed MPI/PETSc and OpenMP implementation on a finite
element code for scalar PDE’s and discusses the benefits of developing mixed mode MPI/OpenMP
applications on the CIMEC’s ‘Coyote’ beowulf cluster.

Section 2 provides a comparision of the different characteristics of the OpenMP and MPI
paradigms. Section 3 discusses the implementation of mixed mode applications and Section
4 describes a number of situations where mixed mode programming is potentially beneficial.
In Section 5 we describe the implementation of a mixed mode application and compare and
contrast the performance of the code with pure MPI and OpenMP versions.

The results demonstrate that this style of programming may increase the code performance,
taking account of some rule-of-thumb depending on the application on hand.

2 PROGRAMMING MODEL CHARACTERISTICS

2.1 MPI

The message passing programming model is a distributed memory model with explicit con-
trol paralelism. MPI, (MPI, 2009), is portable to both distributed and shared memory architec-
ture. The explicit parallelism often provides a better performance and a number of optimized
collective communication routines are available for optimal efficiency.

However MPI suffers from a few deficiencies. Debugging of applications can be time con-
suming and communications can create a large overhead and the code granularity often has to
be large to minimise the latency. Finally, global operations can be very expensive.

2.2 PETSc

The Portable Extensible Toolkit for Scientific Computation (PETSc), (Balay et al., 2009), is a
suite of data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It employs the MPI standard for all message-passing
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communication. The original purpose of PETSc was to enable its users to easily experiment
between many different models, solving methods and discretizations and to eliminate the MPI
from MPI programming. It is a freely available research code usable from C/C++, Fortran
77/90 and Python. PETSc has run problems with over 500 million unknowns, also it has run
efficiently on 6, 000 processors. It has also been used in applications running at over 2 Teraflops.
An overview of some of the components of PETSc can be seen in Fig. (1). An important feature
of the package is the posibility to start at a high level and work your way down in level of
abstraction.
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Figure 1: Hierarchical structure of the PETSc library

PETSc employs the distributed memory model. Each process has its own address space
in memory and when needed, information is passed to other processes via MPI. To be more
specific in e.g. a finite element problem, each process will own a contiguous subset of rows of
the system matrix and will primarily work on this subset, sending/receiving information from/to
other processes only when needed. This programming model makes PETSc specially suitable
for clusters.

Unlike OpenMP, PETSc is not easily integrated in existing codes. PETSc is a set of library
interfaces, with its own matrix and vector structures, assembly and solving methods which are
organized in an object oriented way. The user declares the system matrices and vectors, and
then uses PETSc to assemble, precondition and solve the problem by envoking calls to PETSc
methods. Through the whole process,there is ample possibility for the user to customize and
control the solution process. It is also possible to suply most options at the command line,
which makes experimenting between different methods very easy.

2.3 OpenMP

OpenMP stands for Open specifications for Multi Processing. It is a collaborative work be-
tween interested parties from the hardware and software industry, government and academia.
Essentially, OpenMP is an API (Application Program Interface) for writing multithreaded ap-
plications. It allows parallelise existing code, giving to programmer full control over the par-
allelization. It is comprised of three primary API components: compiler directives, runtime
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library options and environment variables.
OpenMP is mainly designed for symmetric multiprocessing (SMP) architectures i.e. systems

with multiple CPUs on a shared memory. OpenMP is available for Fortran (77, 90 and 95)
and C/C++. It has been implemented on many platforms including most Unix platforms and
Windows. A full description of the OpenMP specification can be found in OpenMP (2009).

OpenMP uses a shared memory process consisting of multiple threads. The fork-join model
execution is utilized, see Fig. (2).

thread
Master Master

thread

Parallel region

JoinFork

Figure 2: The master thread creates a team of parallel threads.

The OpenMP program is initially executed as a single process by the master thread. When
entering a parallel region, the master thread creates a team of parallel threads, this is called
fork. The statements in the program that are enclosed by the parallel region are then executed in
parallel among the threads in the team. When all threads have finished their work in the parallel
region, they synchronize and terminate, leaving only the master thread, this is called join. In
the parallel region, OpenMPs memory model dictates that all variables except loop variables by
default are shared by the different threads. One can alter this by specifying variables as private
or shared before entering the parallel region. The model also supports nested parallelism i.e. it
is possible to have parallel regions within other parallel regions.

OpenMP is used by inserting special compiler directives or runtime library routine calls into
the existing code. The compiler directives are inserted as special comments (beginning with
#pragma omp).

2.4 Mixed mode programming

By utilising a mixed mode programming model we should be able to take advantage of the
benefits of both models. For example a mixed mode program may allow the data placement
policies of MPI to be utilised with the finer grain parallelism of OpenMP. The majority of
mixed mode applications involve a hierarchical model; MPI parallelisation ocurring at the top
level, and OpenMP parallelisation ocurring below. Fig. (3) from the work of Smith and Bull
(2001) shows a 2D grid which has been divided geometrically between four MPI processes.

These subarrays have been then further devided between three OpenMP threads. This model
closely maps to the architecture of an SMP cluster, the MPI parallelisation ocurring between
the SMP nodes and the OpenMP parallelisation within the nodes.

3 IMPLEMENTING A MIXED MODE APPLICATION

Although a large number of MPI implementations are thread safe, this cannot be guaranteed.
To ensure the code is portable, all MPI calls should be made within thread sequential regions of
the code. This often creates little problem as generally codes involve OpenMP parallelisation
ocurring beneath the MPI parallelisation and hence the majority of MPI calls occur outside the
OpenMP parallel regions. When MPI calls occur within an OpenMP parallel region the calls
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Figure 3: Schematic representation of hierarchical mixed mode programming model for a 2D array.

should be placed inside a CRITICAL, MASTER or SINGLE region, depending on the nature
of the code, (Smith and Bull, 2001). When writing a mixed mode application it is important to
consider how each paradigm carries out parallelisation, and whether combining the two mech-
anisms provides an optimal parallelisation strategy.

3.1 Benefits of mixed mode programming

According to Smith and Bull (2001), the situations where a mixed mode code may be more
efficient than a corresponding MPI implementation are the following:

3.1.1 Codes which scales poorly with MPI

One of the largest areas of potential benefit from mixed mode programming is with codes
which scale poorly with increasing MPI processes. If, for example, the corresponding OpenMP
version scales well then an improvement in performance may be expected for a mixed mode
code. If, however, the equivalent OpenMP implementation scales poorly, it is important to
consider the reasons behind the poor scaling and whether these reasons are different for the
OpenMP and MPI implementations. If both versions scale poorly for diferent reasons, for
example the MPI implementation involves too much load imbalance and the OpenMP version
suffers from cache misses due to data placement problems, then a mixed version may allow the
code to scale to a larger number of processors before either of these problems become apparent.
If however both the MPI and OpenMP codes scale poorly for the same reason, developing a
mixed mode version of the algorithms may be of little use.

3.1.2 Load balance problems

One of the most common reasons for an MPI code to scale poorly is load imbalance. For
example irregular applications such adaptive mesh refinement codes suffer from load balance
problems when parallelised using MPI. By developing a mixed mode code for a clustered SMP
system, MPI need only be used for communication between nodes, creating a coarser grained
problem. The OpenMP implementation does not suffer from load imbalance and hence the
performance of the code would be improved.
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3.1.3 Fine grain parallelism problems

OpenMP generally gives better performance on fine grain problems, where an MPI applica-
tion may become communication dominated. Hence when an application requires good scaling
with a fine grain level of parallelism a mixed mode program may be more efficient. In the-
ory, the performance of a pure MPI implementation should be poorer than a pure OpenMP
implementation for these fine granularity situations. A mixed mode code could provide better
performance, as load balance would only be an issue between SMPs, which may be achieved
with coarser granularity.

3.1.4 Bandwidth and latency limited problems

The bandwidth and latency between SMP nodes can influence the performance of some
codes substantially. Developing a mixed MPI/OpenMP version of a code previously written
in MPI will typically reduce the number of inter-node messages, but increase the size of these
messages.

On a simple interconnect, which only allows one message at a time to be sent/received by a
node, the message bandwidth will be unaffected, since the same total amount of data is being
transferred. The total latency, however, will decrease as there are fewer messages, resulting
in a potential increase in performance. On a more sophisticated interconnect, which allows
concurrent sending/receiving of messages, the smaller number of larger messages may have a
detrimental effect, as the total network bandwidth cannot be exploited as efficiently.

4 HYBRID MPI/OPENMP PARALLELIZATION

The code used to implement the hybrid parallelism is a C++ code for the solution of scalar
partial differential equations (advective-diffusive systems) by means of the stabilized finite el-
ement method. Initially the parallel code was implemented in C++ with MPI as message
passing interface, having five main regions: (I) Problem Partition region: each node stores
all the elements and associated degrees-of-freedom and creates parallel matrix and vectors
(MatCreateMPIAIJ, VecCreateMPI), (II) FEM Matrix Computations: perform a loop
over all elements in the mesh and computes each element matrices, (III) Matrix/Vector Val-
ues Setting: vector and matrix element contributions are stored in PETSc Matrices and Vec-
tors classes (VecSetValue, MatSetValue), (IV) Matrix/Vector Scatters: parallel assemble
all contributions in the global vector/matrix and (V) Linear System Solver: using an iterative
Krylov Space-based linear solver.

The equipment used was the CIMEC’s ’Coyote’ which is a Beowulf kind of cluster, consist-
ing of a server and 8 nodes of Octo-core Intel Xeon E5335 2.00 GHz CPU with 8 Gb RAM per
node (the server has 12 Gb RAM), interconnected via a Gigabit Ethernet network.

4.1 Test Case: Convection-diffusion skew to the mesh

The linear scalar advection-diffusion equation to be solved is,

a · ∇u−∇ · (ν∇u) = s ∈ Ω

u = uD on ΓD

(1)

where u is the unknown scalar, a(x) is the convection velocity vector (also known as advec-
tion velocity), ν > 0 is the diffusivity (or thermal conductivity) of the medium and s(x) is a
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volumetric source term. The variational formulation of the problem (1) is written as follows:
find uh ∈ Sh such that

∫
Ω

∇ωh · (ν ∇uh) dΩ +

∫
Ω

ωh (a · ∇uh) dΩ +

nel∑
e=1

∫
Ωe

(a · ∇ωh) τ supg [a · ∇uh −∇ · (ν ∇uh)− s] dΩ =

∫
Ω

ωh s dΩ, ∀ωh ∈ Vh

(2)

where

Sh = {uh|uh ∈ H1(Ω), uh|Ωe ∈ Pm(Ωe) ∀e and uh = uD on ΓD}
Vh = {ωh|ωh ∈ H1(Ω), ωh|Ωe ∈ Pm(Ωe) ∀e and ωh = 0 on ΓD}

(3)

where Pm is the finite element interpolating space and for the sake of simplicity only Dirich-
let boundary conditions are considered. According to Tezduyar and Osawa (2000) the stabiliza-
tion parameter τ supg can be defined as

τ supg =
hsupg

2||a||
(4)

where

hsupg = 2

( nen∑
i=1

|s · ∇ωi|
)−1

, (5)

where s is a unit vector pointing to the streamline direction. The problem statement is de-
picted in Fig. (4) where the computational domain is a unit square, i.e., Ω = [0, 1] × [0, 1].
This 2D test case has been widely used to illustrate the effectiveness of stabilized finite element
methods in the modeling of convection-dominated flows, (Donea and Huerta, 2003).
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a

Figure 4: Convection of discontinuous inlet data skew to the mesh: problem statement.

The flow is unidirectional and constant, ‖a‖ = 1, but the convective velocity is skew to the
mesh with an angle of 30◦. The diffusivity coefficient is taken to 104. The inlet boundary data
are continuous and at the oulet an homogeneous natural boundary condition was considered.
The result for this case is displayed in Fig. (5).
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Figure 5: SUPG solution for the 2D convection-diffusion problem with downwind natural conditions.

5 RESULTS

The results for the consumed cpu time when sweep the number of SMP nodes (np) and
number of cores (nc) are shown in Figure (6) for the residual matrix calculation and in Figure (7)
for the MatMult iterative solver operation (the kernel of Krylov Space-based iterative solver
like the Stabilized Bi-Conjugate Gradient (BiCG-Stab) used in this work).

Figure 6: Elapsed time for the residual matrix computation.

The performance analysis of a parallel algorithm A implemented computer system M is
based on the execution time. Let T ∗ be the execution time to solved the problem on 1 node
and 1 thread and Tp denote the execution time of A when there are P processors in M. In this
work ‘processors’ are referred to the SMP nodes as much as to the cores within nodes. Then
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Figure 7: Elapsed time for the MatMult solver operation.

the speedup (S) and efficiency (E) are defined as

S =
T ∗

Tp

(6)

E =
S

P
=

T ∗

Tp P
(7)

respectively. The speedup obtained in the residual matrix calculation is illustrated in Fig-
ure (8) and for the MatMult iterative solver operation in Figure (9). Both figures shows at the
left the speedup considering some node and then sweeping the number of cores available within
each node. Reciprocally, at the right of both figures it can be seen the speedup for some number
of cores and changing the numbers of nodes.

6 CONCLUSIONS

A stabilized finite element formulation of the linear scalar advection-diffusion equation has
been implemented and tested on a cluster of SMP nodes. As shown in Figure (8) (left) a close-
linear scalability of the FEM matrix computation task is achieved for the number of SMP nodes
and threads available, thus improving the cpu consuming time on this typical finite element
application.

Taken into account the linear system solve stage similar appreciations can be made. However,
a 25%-50% of efficiency is achieved when computing in the range of 4-8 threads.
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Figure 8: Speedup for the residual matrix computation.
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