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Abstract. Incompressible miscible flows in porous media which characterize tertiary recovery process
in oil reservoir are mathematically modeled by a coupled non-linear partial differential equation system
with appropriate boundary and initial conditions.

This system can be solved by an implicit sequential method breaking it in a elliptic sub-system in-
volving pressure and velocity fields coming from mass conservation equation and Darcy’s law together
with a transport equation predominantly convective for the concentration, which is the most important
variable.

In this work, after rewriting these equations as first order differential equation systems, finite element
method, with least-squares variational formulations is applied to solve this elliptic subsystem as well as
the transport equation.

We also consider and discuss the approximation improvement for the vector variable when adding to
our system the non rotational flux condition.

The formulations here considered besides of being mixed formulations are symmetric and equal order
interpolations can be used for the elliptic sub-system involved fields as well as for the concentration and
its derivative in the transport equation.

Numerical simulations are presented for the tracer injection problem with varied mobility ratios show-
ing the good stability of the proposed formulations.
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1 INTRODUCTION

The development of new numerical methods together with the continuous growth of com-
putational resources, much has contributed to the application of numerical porous media flow
simulations. One of these applications, for instance, aims to provide informations needed to
increase the production in a oil field reservoir.

Our concerning problem is the simulation of cases of tertiary recovery in oil fields which have
its natural conditions altered by fluid injection to increase the internal pressure and consequently
the flow in producing wells.

The mathematical model here used is written as a system of non-linear differential equa-
tions, for which the resolution, used in this work, is the implicit sequential method described
in section 3, that uncouples the problem in an elliptic sub-system, for the determination of the
velocity and pressure fields, and a transport equation for the concentration calculation. Sev-
eral approximations, using finite elements methods based on Galerkin formulations has been
employed to solve this problem as, for instance, those mentioned in references Malta (1995),
Garcia (1997) and Ney (2002).

In this work we evaluate the numerical results for the problem of miscible flows, when least-
squares formulations are used. Velocity and pressure are obtained initially by the least-squares
formulation in its usual form, as presented in section 4. Another least-squares formulation,
considering null curl that improves the velocity approximation is also presented.

In section 5 is shown how is the concentration calculation when using least-squares semi-
discrete formulations, with the transport equation described as a first order equivalent system
(Fernandes, 2007; Fernandes and Leal-Toledo, 2008).

Since in our example of interest the source term is represented by Dirac deltas, we present
in section 6, a singularity removal technique used in (Ewing, 1977; Garcia, 1997; Malta, 1995).

Next, simulations are presented using the proposed formulations comparing their results with
some others described in the literature.

2 MATHEMATICAL MODEL

The mathematical model for incompressible miscible fluids flow simulation in a porous me-
dia as it takes place in a oil reservoir is defined by a coupled non-linear partial differentials
system of equations, together with their respective boundary and initial conditions as described
next:

Consider a domain Ω ⊂ R2, with border Γ, where gravitational effects are neglected. The
governing equations on an interval t ∈ [0, T ], can be written as (Peaceman, 1977; Ewing, 1977):

∇ · u = f in Ω× (0, T ) (1)

u = −k(x)
µ(c)

∇p in Ω× (0, T ) (2)

λ
∂c

∂t
+∇ · (cu)−∇ · (D(u, x)∇c) = f ĉ in Ω× (0, T ) (3)

with boundary and initial conditions:

u · n = 0 in Γ (4)

D(u, x)∇c · n = 0 in Γ (5)
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c(x, 0) = c0(x) in Ω (6)

being x = (x, y) the position vector, p(x, t), the pressure ; u(x, t), Darcy’s velocity of the
mixture with components ux(x, t) and uy(x, t); λ = λ(x), the porosity; k(x), the porous media
permeability; c(x, t), the concentration of the fluids mixture, f = f(x, t), the source and sink
terms and ĉ is the injected concentration at injection wells and the resident concentration at
production wells.

The diffusion-dispersion tensor D in the concentration equation can be expressed by (Peaceman,
1977; Ewing, 1977):

D = αmI+ | u | {αlE(u) + αtE(u)⊥
}

, (7)

where the (i, j) component of tensor E(u) is given by:

E(u)i,j =
1

| u |2uiuj, (8)

and the norm | u | is defined as:
| u |= (u2

1 + u2
2)

1
2 (9)

and
E(u)⊥ = I− E(u) (10)

being I, the identity matrix; αm, the molecular diffusion coefficient, αl, the longitudinal disper-
sion coefficient αt, the transversal dispersion coefficient.

The unknown of major interest in the system of equations (1-6) is the concentration c(x, t),
that in the numerical simulations of reservoir recovering techniques indicates how much of the
production is influenced by the injection of a fluid that is, how much oil it can come to be
recovered by this intervention in the reservoir normal production behaviour.

In the equation (2) - Darcy’s law - the viscosity µ is given by the empirical relation (Settari et al.,
1977):

µ(c) = µresident

[
1− c + M

1
4 c

]−4

, c ∈ [0, 1] (11)

where
M =

µresident

µinjected

(12)

is the viscosities ratio between the resident and injected fluids (µresident) and (µinjected), respec-
tively, being this usually known as mobility ratio.

3 SOLUTION ALGORITHM

In this section we present the Implicit Sequential Method (IMPES) as the solving algorithm
for the described mathematical model. Using the notation ∂c

∂t

∣∣
t=ti

to designate the approxima-
tions on time t = ti.

By this method we expand the term ∇ · (uc), from the non-linear transport equation (Garcia,
1997; Pinto, 1991; Coutinho and Alves, 1996) as:

∇ · (uc) = u · ∇c + c∇ · u (13)
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Substituting (1) in (13) one has:

∇ · (uc) = u · ∇c + fc (14)

the linearizaded implicit sequential method is:
For n = 0, 1, 2, ..., N find un, pn and cn+1 in Ω× [0, T ] satisfying to:

∇ · un = fn (15)

un = − k(x)

µ(cn)
∇pn (16)

∂c

∂t

∣∣∣∣
t=tn+1

+ un · ∇cn+1 −∇ ·D(un)∇cn+1 + cn+1fn+1 = ĉn+1fn+1 (17)

with boundary and initial conditions given by Eq. (4), Eq. (5) and Eq. (6).
Noting that in the elliptic sub-system formed by equations Eq. (15) and Eq. (16) there is no

boundary condition for p(x, t). So its solution cannot be determined and in order to raise this
indetermination one needs to prescribe the pressure in some point of the domain in such a way
that the solution p(x, t) has null mean, that is:

∫
Ω

p(x, t)dx = 0 t ∈ (0, T ). (18)

This algorithm, that has been successfully used in others papers(?) (Garcia, 1997; Ney,
2002), is also adopted in the present work. Hence at each time step the pressure and the velocity
are calculated by the elliptic subsystem above described in t = tn, and the velocity results are
used in the concentration calculation in the transport equation.

4 APPROXIMATION FOR THE EQUATIONS IN PRESSURE AND VELOCITY

As is the velocity and not the pressure that appears in the concentration equation, special
attention must be given to the attainment of accurate approximations for this field in order to
minimize the concentration approximation errors so it does not affect his precision. Keeping
the attention to this problem we present, in this section, least-squares formulations applied to
the elliptic sub-system for the determination of the pressure and for the velocity described in
the previous section.

4.1 Problem Statement

Consider for simplicity, Ω ⊂ R2 a regular limited domain with borders Γ, such that Γu∪Γp =
Γ and Γu ∩ Γp = ∅ where ∅ is an empty set.
We describe our problem as:
For a given value of f find the fields u and p satisfying to:

∇ · u = f in Ω (19)

u = −k(x)∇p in Ω (20)

p = p0 in Γp (21)
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u · n = 0 in Γu, (22)

being u = (u1, u2), the velocity vector and p, the scalar value defining the pressure.
The least-squares functional for this system is given by:

J1(u, p) =
1

2

∫

Ω

(∇ · u− f)(∇ · u− f) + (u + k(x)∇p)(k−1(x)u +∇p)dΩ (23)

Together with this functional variation we define the following problem:
Problem P1: Find (u, p), such that:

B {(u, p); (q, η)} = F(q) (24)

with B(·, ·) and F(·), defined as follows.

B {(u, p); (q, η)} =

∫

Ω

(∇ · u) (∇ · q) + (u + k (x)∇p)
(
k−1 (x) q +∇η

)

F(q) =

∫
f∇ · qdΩ (25)

It is possible to show (Leal-Toledo, 1992; Pehlivanov and Carey, 1994) that, besides this
problem be a mixed one there is no need, in this case, of compatibility between the approxima-
tion spaces for the u and p variables. Thus it is possible to accommodate equal order approxi-
mations, obtaining, in this case, the following error estimates:

‖p− ph‖H1
+ ‖u− uh‖Hdiv

≤ chk (26)

where ||u||2Hdiv
e ||p||2H1

are defined as:

||u||2Hdiv
≡ ||u||2L2

+ ||divu||2L2
(27)

and
||p||2H1

≡ ||p||2L2
+ ||∇p||2L2

(28)

being ∇ the gradient operator and || · ||L2 the L2 norm, defined in its usual form.

4.2 Mixed formulation with curl

Looking for better approximations for the velocity field, which is the greatest interest prob-
lem variable, a formulation including the null curl equation for u was proposed in (Leal-Toledo,
1992; Pehlivanov and Carey, 1994)

Thus the elliptic sub-system can be rewritten as:

∇ · u = f in Ω (29)

u = −k(x)∇p in Ω (30)

k−1(x)∇× u = 0 in Ω (31)
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p = p0 in Γp (32)

u · n = 0 in Γu (33)

u× n = 0 in Γp (34)

The least-squares functional for the present problem is

J(u, p) =
1

2

∫

Ω

{
(∇ · u− f)(∇ · u− f) + (k−1(x)∇× u)(k−1(x)∇× u)

}
dΩ+

+
1

2

∫

Ω

{
(u + k(x)∇p)(k−1(x)u +∇p)

}
dΩ (35)

Proceeding to the variation of J , we obtain the folowing variational problem:
Problem P2: Find (u, p), such that:

B {(u, p); (q, η)} = F(q) (36)

with B(·, ·) e F(·), defined as it follows:

B {(u, p); (q, η)} =

∫

Ω

{
(∇ · u) (∇ · q) + (u + k (x)∇p)

(
k−1 (x) q +∇η

)}
dΩ+

+
1

2

∫

Ω

{(
k−1 (x)∇× u

) (
k−1(x

)∇× q)
}

dΩ (37)

F(q) =

∫
f∇ · qdΩ (38)

We can observe that, in the discretization for this system, the unknown nodal number is kept
unchanged respect to the former formulation thus, maintaining the order of the algebraic system
of equations to be solved.
For this formulation error estimate (Leal-Toledo, 1992; Pehlivanov and Carey, 1994) for the
finite element discretization can be found:

‖p− ph‖H1
+ ‖u− uh‖H1

≤ chk (39)

where k is the approximation polymnomium degree booth for p as for u, h is a spatial dis-
cretization parameter and c a constant.

In this case it is also possible to obtain the L2 error estimate (Pehlivanov and Carey, 1994)
given by:

‖p− ph‖L2
+ ‖u− uh‖L2

≤ chk+1 (40)

for equal order interpolations, although different interpolations orders can be used to approxi-
mate p and u (Pehlivanov and Carey, 1994).
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Figure 1: Heterogeneous Permeability — Domain and Results

4.3 Numerical Results

To test the herein proposed formulations we next present results obtained for a heterogenous
domain as shown by Figure 1, using the least-squares formulation as described in problem P2.
By this result it is possible to see, in this same figure, that with the inclusion of the equation
∇ × u = 0 to our formulation there is no oscillations and we can detect the parabolic profile
which is not captured in others formulations such as those presented in (Garcia, 1997).

5 TRANSPORT EQUATION

In this section we present the least-squares formulation applied to the transport advective-
diffusive equation described as first order equivalent equations system using semi-discrete for-
mulations (Vasconcelos, 2001).

5.1 Problem statement

Let Ω ⊂ R2 be a two-dimensional limited domain with regular border Γ such that:

Γd ∪ Γn = Γ

Γd ∩ Γn = ∅ (41)

The transport advective-diffusive equation is given by:

λ
∂c

∂t
+ u · ∇(c)−∇ · (D∇c) = f em Ω× (0, T ) (42)

being λ the porous media porosity and boundary and initial conditions given by:

c = g in Γd × (0, T ) (43)

D∇c · n = g in Γn × (0, T ) (44)

c = c0 in Ω for t = 0, (45)
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where c is the unknown quantity being transported by the constant advective term u = (u1, u2),
f is the source term, D is the diffusion coefficient and g is the prescribed boundary value of c in
Γd.
To employ least-squares formulation the equation (42) is rewritten as:

λ
∂c

∂t
+ u · q−∇ · Dq = f in Ω× (0, T )

q = ∇c in Ω× (0, T )

(46)

On the next section we present semi-discrete least-squares formulations applied to the trans-
port equation when we rewrite it as a system like described by Eqns. (46).

5.2 Least-squares formulations for transport equation

For comparison purposes we present for equation convection-diffusion, described in (46),
three different least-squares formulations suggested in (Vasconcelos, 2001) namely: one im-
plicit formulation, one weighted least-squares formulation and a θ least-squares formulation as
next described.

5.3 Totally implicit formulation

We call here of totally implicit formulation when all terms in the system are written in time
tn+1. In this case the least-squares functional associated to the equation system (46) is given by:

J(ch, qh) =
1

2

[(
cn+1
h − cn

h

4t
+ u · qn+1

h −∇ · Dqh − fn+1 ,

cn+1
h − cn

h

4t
+ u · qn+1 −∇ · Dqh − fn+1

)
+

(
qn+1

h +∇cn+1
h , qn+1

h +∇cn+1
h

)]
(47)

The problem of find the solution of system (46) based on the minimization of the functional
(47) respect to cn+1

h and to qn+1 can be defined as:
Problem P3: Find cn+1

h e qn+1
h , such that:

(
cn+1
h − cn

h

4t
+ u · qn+1

h −∇ · Dqh,
vn+1

h

4t
+ u · pn+1 −∇ · Dph

)
+

(
qn+1

h +∇cn+1
h , pn+1

h +∇vn+1
h

)
=

(
fn+1,

vn+1
h

4t
+ u · pn+1 −∇ · Dph

)
(48)

The discretization for ch, qh, vh, ph can be given in its usual way by the finite element
method.

5.4 Weighted least-squares formulation

The formulation we call weighted least-squares based on those proposed in (Jiang, 1998;
Vasconcelos, 2001) for others equations , consist in to weight the transport equation of the
system (46) by a θ factor, to obtain the approximation of this equation on time tn+θ, and to
consider the steady equations of this system on time tn+1, that is:

cn+1
h − cn

h

4t
+ u · qn+θ

h −∇ · Dqn+θ
h = fn+θΩ (49)

R.C.P. LEAL-TOLEDO, K. MORAIS FERNANDES, E.M. TOLEDO1570

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



for 0 ≤ θ ≤ 1. The discrete functional of the da weighted least-squares formulation in this case
is then given by:

J(ch, qh) =
1

2

[(
cn+1
h − qn

h

4t
+ u · qn+θ

h −∇ · Dqn+θ
h − fn+θ,

cn+1
h − cn

h

4t
+ u · qn+θ

h −∇ · Dqn+θ
h − fn+θ

)
+

(
qn+1

h −∇cn+1
h , qn+1

h −∇cn+1
h

)]
(50)

The formulation, how it is proposed, uses to approximate qn+θ
h and fn+θ in the functional

(50) the following relations:

qn+θ
h = θqn+1

h + (1− θ)qn
h

fn+θ = θfn+1 + (1− θ)fn

(51)

Substituting these approximations in (50) we have:

J(ch, qh) =
1

2

[(
cn+1
h − cn

h

4t
+ u · (θqn+1

h + (1− θ) θqn
h

)
+∇ · D

(
θqn+1

h + (1− θ) qn
h

) −

θfn+1 + (1− θ) fn,
cn+1
h − cn

h

4t
+ u · (θqn+1

h + (1− θ) θqn
h

)−∇ · D
(
θqn+1

h + (1− θ) qn
h

)−

θfn+1 + (1− θ) fn
)

+
(
qn+1

h −∇vn+1
h , qn+1

h −∇vn+1
h

)]
(52)

Find the solution of system (46) based on the minimization of the functional (52) respect to
cn+1
h and to qn+1

h is:
Problem P4: Find (cn+1

h , qn+1
h ), such that:

(
cn+1
h − cn

h

∆t
+ u · (θqn+1

h + (1− θ)qn
h) +∇ · D(θqn+1

h + (1− θ)qn
h),

vn+1
h

∆t
+ u · θpn+1

h +∇ · Dθpn+1
h

)
+ (qn+1

h −∇cn+1
h , pn+1

h −∇vn+1
h ) =

(
θfn+1 + (1− θ)fn,

vn+1
h

∆t
+ u · θpn+1

h +∇ · Dθpn+1
h

)
(53)

5.5 Formulation θ least-squares

As in the previous formulation, in the θ least-squares formulation firstly proposed in (Vasconcelos,
2001), the whole system variables are assumed to be on time tn+θ and the the θ-weighted ap-
proximation is in the scalar variable cn+θ, that is:

J(ch, qh) =
1

2

[(
cn+1
h − cn

h

∆t
+ u · qn+θ

h +∇ · Dqn+θ
h − fn+θ,

cn+1
h − cn

h

∆t
+ u · qn+θ

h +∇ · Dqn+θ
h − fn+θ

)
+

(
qn+θ

h −∇cn+θ
h , qn+θ

h −∇cn+θ
h

)]
(54)
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In this formulation we approximate cn+θ
h as:

cn+θ
h = θcn+1

h + (1− θ)cn
h. (55)

Substituting (55) in (54) we get:

J(ch, qh) =
1

2

[(
cn+1
h − cn

h

∆t
+ u · qn+θ

h +∇ · Dqn+θ
h − fn+θ,

cn+1
h − cn

h

∆t
+ u · qn+θ

h +∇ · Dqn+θ
h − fn+θ

)
+

(qn+θ
h −∇(θcn+1

h + (1− θ)cn
h), qn+θ

h −∇(θcn+1
h + (1− θ)cn

h))
]

(56)

To solve the system (46) based on the minimization of this functional respect to cn+1
h and to

qn+θ
h can be reduced to:
Problem P5: Find (cn+1

h and qn+θ
h ), such that:

(
cn+1
h − cn

h

∆t
+ u · qn+θ

h +∇ · Dqn+θ
h ,

vn+1
h

∆t
+ u · pn+θ

h +∇ · Dpn+θ
h

)
+

(
qn+θ

h +∇(θcn+1
h + (1− θ)cn+1

h ), pn+θ
h +∇θvn+1

h

)
=

(
fn+θ,

vn+1
h

∆t
+ u · pn+θ

h +∇ · Dpn+θ
h

)
(57)

6 SINGULARITIES REMOVAL

The numerical simulation of tertiary oil recovery technique treats of a single-phase flow with
two components (solvent and oil) in the porous media constituting a reservoir. For this problem
the oil reservoir has injection and production wells and these wells are the sink and source terms
of the model described by the equations (1) to (6).

In this case these source terms are Dirac delta functions applied in the injection as in the
production wells bringing serious implications in the resolution of the elliptic sub-system, like
the loss of regularity of the velocity field.

Having in mind this problem we present next how to cope with this difficulty like described
in (Ewing, 1977) and used in (Garcia, 1997; Malta, 1995). For a configuration with Np wells at
each time step tn, decompose velocity field un of the elliptic sub-system in:

un = un
s + un

r (58)

where un
r is the regular part of the velocity field in t = tn, and un

s is the singular part given by:

un
s =

Np∑
i=1

un,i
s (59)

Then, as in (Ewing, 1977), the equation ∇ · u = f is solved as:
i) Singular part:

∇ · un,i
s = fn (60)
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where

fn(x) =

Np∑
i=1

Qiδ(xi, yi), (61)

being δ(xi, yi) a Dirac delta function in (xi, yi) and Qi are the specified flows in the Np produc-
tion and injection wells.
ii) Regular part:

∇ · un
r = 0. (62)

Substituting the equation (58) in the boundary condition u · n = 0, the regular part of the
problem has non-homogeneous boundary condition in un

r , that is:

ur · n = −un
s · n em Γ (63)

The pressure on time tn is also decomposed in a singular and a regular part as:

pn = pn
s + pn

r (64)

The singular part of the problem is given by the solution of the following problem:

∇ · u = f · δ(xi, yi) (65)

u = ∇p (66)

that has exact solution (Ewing, 1977) given by:

pn
s =

Np∑
i=1

pn,i
s =

Np∑
i=1

Qi

2π(ki/µi)
ln|x− xi| (67)

where ki = k(xi) and µi = µ(cn(xi)) are the values of k and µ in the well i on time tn.
Then with the velocities decomposition (58) the part regular of system is given by:

un
r = −k(x)

µn
∇pn

r +

Np∑
i=1

(
k(x)µi

µ(cn(x))ki

− 1

)
un,i

s (68)

with us being explicitly calculated from equation (67).
The result of the presented operations in this section give us a system in un

r and pn
r with more

regularity, without the source term (62) and with non-homogeneous boundary conditions (63).

7 NUMERICAL SIMULATIONS

For the simulations here presented a two-dimensional domain where, as usual, an alternate
configuration of injection and production wells represented by a distribution known as five spot
pattern as shown in Figure 2, where the oil reservoir is composed by several equal blocks.

By symmetry the domain in all simulations here performed we consider only a quarter of
this five wells arrangement with side length side of L = 1000ft, with a injection well I located
in coordinates (0, 0) and a production well P in (1000, 1000) as it is shown by Figure 2.
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7.1 Five spot configuration

All simulations here treated considered a homogeneous reservoir, discretized with a 50× 50
mesh of bilinear isoparametric elements, with permeability tensor components kx = ky =
100mD, porosity λ = 0.1, molecular diffusivity coefficient αm = 0.0, longitudinal and transver-
sal dispersion coefficients αl = 1.0 and αt = 0.0. The injection well operates with a flow rate
of 200 ft3

day
by a time period to the filling of 5% of its porous volume which give us a total time

of injection of 25days.
Then the injector well operates with a flow rate of 200 ft3

day
during 25 days, so ĉ = 1 until

time equal 25 days and ĉ = 0 after this time.

Figure 2: Configuration of a quarter of the five-spot pattern (Castro, 1999)

7.2 Simulation of tracer injection

We begin by considering the tracer injection problem used to give some characteristics of the
oil reservoir like the flow direction. The coming time and tracer concentration on the production
wells are also important informations to this purpose. Usually the injected tracer does not
interferes in the resident fluid properties which allow us to consider the fluids mixture with
mobility ratio equal one. In this case µ(c), given by equation (11) is constant and the elliptic
sub-system is solved only once.

Numerical results for the concentration are presented on Figures 3 to 5 for (M = 1) and time
step equal ∆t = 1 day.

Although using here a coarse mesh the results obtained by the formulations presented in
this work we obtained comparable results which are in good agreement to those found in an-
other works like (Garcia, 1997; Malta, 1995; Ney, 2002) with the use of stabilized Galerkin
formulations employing finer grids.

7.3 Adverse mobility ratio simulation

The problem of adverse mobility ratio occurs when the injected fluid is less viscous then
the resident fluid. Variations on parameter M and of dispersion parameters are factors directly
related to the reservoir recovery rate which tend to reduce with the increase of the mobility ratio
M (Ney, 2002). Miscible flows with adverse mobility ratio often result in numerical results
with spurious oscillations as it can be seen in Figure 6, besides of have an high computational
cost, since in this case the elliptic sub-system has to be solved at each time step. Numerical
results obtained by the formulations here studied are presented on Figures 7 to 9 for (M = 41),
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Figure 3: Implicit formulation in t = 300 and t = 1500 days
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Figure 4: Weighted formulation(θ = 0, 5) with t = 300 and t = 1500 days
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Figure 5: θ Least-squares formulation (θ = 0, 5) with t = 300 and t = 1500 days

Mecánica Computacional Vol XXVIII, págs. 1563-1578 (2009) 1575

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



with a time step of ∆t = 10 days.
For all the analyzed examples stable solutions with the predicted physical behaviour were

found even with the coarse mesh of e 50× 50 bilinear elements.

Figure 6: Spurious oscillations (Garcia, 1997)

8 CONCLUSIONS

In this work we presented least-squares formulations applied to the incompressible miscible
flow problems. We evaluated the behaviour of those formulations when applied to a elliptic
subsystem as well as to a predominantly convective transport equation .

For the examples here studied with the semi-discrete formulation the best results in terms
of stability and precision, when compared to the literature, were found by the totally implicit
formulation (θ = 1) an by the θ least-squares formulation. For the elliptic sub-system the
formulation is of the mixed type allowing equal order interpolations for the involved variables.

Besides of the symmetry of the proposed formulations the inclusion of the null curl equation
improves the precision for the vector variable without increasing the number of equations of the
discretized system. For the transport equation, described as a first order differential equations
system there is a increase of the number of the equations of the discretized system calling
attention to the fact that these formulations generate symmetric positive definite matrices with
good stability characteristics avoiding the use of adjusting parameters.

Ours results show that least-squares formulations for transient problems are a good option to
classical formulations as well to stabilized formulations thus deserving more studies.

For future work it is worth to mention the stability analysis of the proposed formulations and
the development of adaptive refinement techniques.
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Figure 7: Implicit formulation with t = 300 and t = 1500 days
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Figure 8: Weighted formulation (θ = 0, 5) with t = 300 and t = 1500 days
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Figure 9: θ least-squares formulation (θ = 0, 5) with t = 300 and t = 1500 days
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