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Abstract. We provide aclosed-formanalytical expression for the effective stored-energycfiom of
Neo-Hookean solids reinforced by a random distributionni$@tropic cylindrical fibers, subject to gen-
eral finite-strain loading conditions. The expression imwted by means of a homogenization constitu-
tive theory recently proposed by the authors (Lopez-Pafietdiart M.I. Fiber-reinforced hyperelastic
solids: A realizable homogenization constitutive theody.Eng. Math, submitted) to determine the
mechanical response of fiber-reinforced hyperelastidsollhe central idea in this theory is to devise a
special class of random microgeometries —by means of aateéhomogenization procedure together
with an exact dilute result for sequential laminates— thianes to compute exactly the macroscopic
response of the resulting fiber-reinforced solid. The d@eficonstitutive relations incorporate direct
microstructural information up to the two-point statisticSince the resulting effective stored-energy
function is realizable, in the sense that it is exact for s&egiclass of microgeometries, it is guaran-
teed to be theoretically sound and to give physically sémgitedictions. The predictions of the model
are illustrated through stress-strain relations and |ésdlipticity criteria. The mechanical stability of
fiber-reinforced Neo-Hookean solids is analyzed in thetlaftihe new predictions.
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1 INTRODUCTION

Soft solids that are reinforced by stiff cylindrical fibei@nstitute an important class of tech-
nological and biological material systems. The classigah#ple is that of tires. Other promi-
nent examples of more recent interest include nano-stedtinermoplastic elastomers (Ho-
neckeret al., 2000; Honecker and Thomas, 1996) and biological tissuels as arterial walls
(Finlay et al., 1998) and ligaments (Quapp and Weiss, 1998). Experimenidénce suggests
that the macroscopic mechanical response of many amongckasdes of material systems is,
to a first approximation, nonlinearly elastic. Making uselo$ simplifying assumption, there
is a voluminous literature ophenomenologicatonstitutive models for fiber-reinforced hyper-
elastic solids that are based on the theory of transversetyopic invariants (see, for instance,
Qui and Pence, 1997; Horgan and Saccomandi, 2005). Morethgasonstitutive models have
been developed by means of the theorip@inogenizatiofsee, for instance, Lopez-Pamies and
Ponte Castaieda, 2006, deBotadral,, 2006; Agoraset al,, 2009), which depend not only on
the properties of the constituentsi-e; the matrix and the fibers— but also on the microstruc-
ture —i.e, the size, shape, and orientation of the fibers.

In arecent effort, Lopez-Pamies and Idiart (submittedehmoposed a new homogenization-
based constitutive theory for fiber-reinforced hyperétasolids based on the idea of realiz-
abitlity. The theory incorporates microstructural infaton in the form of one- and two-point
probabilities, and is general enough to allow for any mednxl fiber stored-energy functions,
and completely general loading conditions. Moreover, & thee distinguishing virtue of being
realizable in the sense that it reproduces exactly the behavior ofnabsystems with a certain
class of microgeometries. Consequently, the resultinecg¥fe stored-energy function is guar-
anteed to be objective, to satisfy all pertinent boundsntakize properly, to be exact to second
order in the heterogeneity contrast, and to comply with aagnmscopic constraints imposed
by microscopic constraints, such as the strongly nonlineastraint of incompressibility. The
proposed formulation also grants access to informatiorhendistribution of the local fields
within each phase, which is required to characterize théugwa of microstructure and the
onset of instabilities.

This constitutive theory is used in this paper to explore diependence on microstruc-
tural variables of the elastic response and mechanicalista fiber-reinforced Neo-Hookean
solids. The Neo-Hookean model is commonly used to deschibertechanical response of
rubbery materials at small and moderate deformations. lltbei argued, however, that un-
der certain loading conditions the resulting predictiogmain valid for more general material
models.

2 FIBER-REINFORCED NEO-HOOKEAN SOLIDS
2.1 Material model

We idealize a fiber-reinforced solid as a continuous matiege containing aligned cylindri-
cal fibers that areandomlyandisotropicallydistributed on the transverse plane, and are erfectly
bonded to the matrix. The characteristic size of the crossoseof the fibers is assumed to be
much smaller than the size of the specimen and the scaleiatigarof the applied loads. Itis
further assumed that the random microstructure is staistiuniform and ergodic. The most
important microstructural variables are the volume fiati@nd the orientation of the fibers in
theundeformedaonfiguration, denoted by, and by a unit vectoN, respectively.

Let F = 0x/0X be the deformation gradient, wheke is the position vector of a mate-
rial particle of the undeformed configuration axds the corresponding position vector in the
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deformed configuration. The material systems consideresldre incompressible and exhibit
transversely isotropic symmetry. It is thus convenient¥press their mechanical response in
terms the four incompressible transversely isotropicriaves of the right Cauchy-Green de-
formation tensoC = F”F aboutN:

1
I =trC, I, = 3 [(trC)* = trC?], I,=N-CN, [;=N-C’°N. (1)

Note that/; = det C = 1 in view of the postulated incompressibility.

Throughout the analysis, quantities associated withmtl&ix phase carry a superscript 1,
while those associated with thider phase carry a superscript 2. The elastic response of the
matrix material is characterized by an incompressilgdetropic Neo-Hookean stored-energy
function

WO(F) = @(h —3), @

where the material parametet") represents a shear modulus in the ground state.

Because of their fabrication (or growth) process, fibersl tenbe elastically anisotropic in
such a way that the fiber direction represents a symmetry Agordingly, the elastic response
of the fibers is characterized here by an incompressitdesversely isotropistored-energy

function of the form o

WEOF) = B (- 3) + 62 (L), 3)
where the material paramenef) denotes a longitudinal shear modulus in the ground statke, an
g? : (0,00) — [0, 00) is a twice-differentiableonvexfunction. The functiory® is assumed
to satisfy the standard conditions

2) 2 (2)
@)= 9% o dgi 1) =2 (4@ - @
Al 4L 4

), (4)

where the material consta,nf) > ,uﬁf) corresponds to the axisymmetric shear modulus of the

fibers in the ground state. An example of the fol8) ommonly used in the literature is the
so-called ‘standard reinforcing model’

(2) (2) (2)
n 3 a — Mn
W(z)(F) = %(_]1_3)+%([4_1)2_ (5)

2.2 The macroscopic stored-energy function

An estimate for the macroscopic stored-energy functiomefabove-described class of ma-
terial systems can be obtained by means of the homogemzaéised constitutive theory pro-
posed by Lopez-Pamies and Idiart (submitted). The key poitiis theory is to construct
randomfibrous microgeometries that permit the exact computatfadhemacroscopic proper-
ties of the resulting material systems. The constructiatgss — which closely follows that
of Idiart (2008) in the context of small-strain nonlineaagicity — is comprised of two main
steps. The first step consists of an iterated dilute homag&an procedure in finite elastic-
ity that provides an exact result for the macroscopic stemergy function of large classes of
fiber-reinforced solids directly in terms of an auxiliaryude problem. The second step deals
with the formulation of the auxiliary dilute problem, whighvolves a novel class of sequen-
tial laminates whose matrix phase is present in dilute catnagons, and whose macroscopic
response can be computed explicitly.
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When applied to the above class of material systems, thétirgsastimate for the macro-
scopic stored-energy function is given by (Lopez-Pamiekldiart, submitted)

T (VT 2) (VT —1)
W(F):—([1—3)+“n2“< 3/% )

+ 009(2) (74>7 (6)

where

1—co)p™ + (1 +¢ ug)
( 0) ( 0) 5 M(l) (7)

fi, = (1= co)p™ +cop?) and fi=
(1+ co)p™ + (1 — co)pm

are two effective shear moduli.

It is worth noting that the stored-energy functid@) (s bounded from above by the rigorous
\oigt upper bound of Ogden (1978) for dll, as it should. When the macroscopic loading
corresponds to aligned axisymmetric shear, the exactignlig known to be precisely the
Voigt bound; the function®) recovers such a result, as expected. It is also noted th#tdo
case of isotropic fibers with®® = 0, expression®) reduces to an earlier estimate proposed by
deBottonet al. (2006).

The stored-energy functioB)is expected to be reasonably accurate for Neo-Hookeaussoli
reinforced by a transversely isotropic distribution otaiar fibers with a very wide distribution
of diameters, for thentire rangeof volume fractions;, € [0, 1]. More specifically, for matrix-
dominated modes of deformatione-g, transverse and longitudinal shear— the resbilti§
expected to be accurate but somewhat soft —see comparisibrfsilivfield simulations below.
For fiber-dominated modes of deformatiore-g¢, axisymmetric shear—, on the other hand, the
result @) is expected to be very accurate, in view of the fact thatdtioes to the exact solution
for aligned axisymmetric shear loadings.

2.3 Onset of instabilities

As the imposed level of deformation progresses beyondrieatly elastic neighborhood into
the finite deformation regime, a fiber-reinforced solid magah a point at which it becomes
mechanically unstable. Mechanical instabilities are rotienes the precursors of failure in
fiber-reinforced solids. They can be classified as ‘macnoistmstabilities, that is, geometric
instabilities with wavelengths much larger than the chiaréstic size of the microstructure, and
‘local’ instabilities, which include geometric instaltiés with wavelengths that are comparable
to the characteristic size of the microstructure, as wethagerial instabilities — such as loss
of strong ellipticity and cavitation — of the local consgituts.

Lopez-Pamies and Idiart (submitted) noticed that the dtergrgy functions3) and ©)
were of the separable forilW (F) = F(I;) 4+ G(14). By considering the loss of strong ellipticity
of that class of functions, they derived a closed-form oote for the onset of instabilities of
the localization-band type in such materials.

When applied to the fiber-reinforced Neo-Hookean solidsnéérest here, the following
criterion results: along an arbitrary loading path withrtstg pointF = I, the stored-energy
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function @) first becomes unstable at critical deformati@hs that satisfy

( @ 3,0 _
B 2@ =0
2 dl,
or (8)
—cr 2 d @) —cr 23 1L 2/3
T = |14+ 2205 (14)} (1—_ﬂ)
L :un dI4 :un

wherelI, = |F,.N|?. Here, itis recalled thagt, andji are given, respectively, by expressions
(7) in terms of the shear modyl" and,u,(f) of the matrix and fiber phases, and of the volume
fraction of fibersc.

Physically, when conditior8]; is satisfied, the fibers are prone to switch to a localized mode
of (local) deformation. On the other hand, when conditi® {s met, the fiber-reinforced solid
is prone to switch to a localized mode of (macroscopic) de&dion. Note that both types of
instabilities can occur only when the deformation alongfiber direction, as measured by the
invariant1,, is of a sufficiently largeecompressivevaluel, = I, < 1 determined by certain
ratios between the hard and soft modes of deformation. thdie parameter;a,(f) and x
characterize, respectively, the soft modes of deformatidhe fibers and of the fiber-reinforced
solid, whiledg® /d1, andfi, characterize their hard modes.

From a computational point of view, it is also worth rematkihat the nonlinear algebraic
equations§); and @), cannot be solved explicitly foff in general. For the special case when
the fibers are taken to be Neo-Hookean (ig&), = 0), however, 8), is clearly never satisfied
sinceﬂﬁf) > 0 and equationg), leads to

B ~\ 2/3
17 = <1 . _ﬁ) . (9)
i,

This explicit result shows particulary well that the onskinstabilities is indeed controlled by
the ratio of hard-to-soft modes of deformation (given here:fy,,).

When the fibers are characterized by the standard reinfproodel 6), the criterion 8) can
be written more explicitly as

1= (5/3)%

S

or

—cr 3 C (1 ) ) —cr Co(l — Co)(5 —0 )2

I S 0 (T )| = d

L T an T T T et ot + c0)d - (1= o)y
(10)
where the ratios

e )
Ma Ha

serve to measure, respectively, the heterogeneity cordedween the matrix and the fibers
(in the fiber direction), and the fiber anisotrépyWhile (10), is explicit, condition L0), is

'Recall thatlg® (T,")/dT, > 0(< 0) forT;" > 1(< 1) andz, > fi > 0, so thafl," in (8) is necessarily less
than or equal to 1.
2Fibers are typically stiffer in the axial direction than irettransverse direction, so thigt< 1.
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Figure 1: a) Stress-stretch response of a Neo-Hookean isatitbrced with rigid fibers, subjected to in-plane
pure shear loading. (b-d) Critical deformation for the drefeinstabilities: a) as a function of fiber concentra-
tion ¢y, for one value of fiber anisotropy parametéf (= 0.5) and various values of the heterogeneity contrast
(6 = 0.01,0.1,0.2), b) as a function of the heterogeneity contrsfior one value of fiber anisotropy parameter
(07 = 0.5) and various values of the fiber concentratiof < 0.1,0.3,0.5), ¢) as a function of fiber anisotropy
parameteps, for one value of fiber concentrationy(= 0.3) and various values of the heterogeneity contrast
(6 = 0.01,0.1,0.2). Blue lines are associated with macroscopic instatslitiehile red lines are associated with
fiber instabilities.

a nonlinear algebraic equation fﬁfr that must be solved numerically. If the fibers are much

stiffer than the matrix, however, the ratias very small, and conditiorl(), leads to the explicit

asymptotic result

cr 2(1 + CQ)

y =l-—g—
300(1 — Co>

~I

5+ 0(8?%). (12)

3 RESULTS AND DISCUSSION

The above formulation is used here to explore the effectebénious microstructural param-
eters on the macroscopic response and mechanical staidiliyer-reinforced Neo-Hookean
solids with anisotropic fibers with stored-energy funct{n

Figure la shows stress-stretch curves for a Neo-Hookean solidoresd with rigid fibers,
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subjected to in-plane pure shear deformatforighe new predictions are compared with full-
field numerical simulations of Neo-Hookean solids reinéatevith a random and isotropic dis-
tribution of monodisperse circular fibers (Moraleda et2009). Good agreement is found for
the three levels of reinforcement concentration=£ 0.2, 0.3, 0.4) and the entire range of de-
formations considered. The fact that the predictions ansistently lower than the simulations
is in agreement with the observation that the above cotisgtinodel should be appropriate
for material systems with polydisperse fiber size distidng. In any event, the accuracy of
the predictions is remarkable given that the numerical Etans reveal a severe evolution of
the microstructure and a strongly heterogeneous disimibof the mechanical fields within the
matrix phase with increasing stretch (see fig. 6 in Moralédd. £2009).

Figureslb-d show the effect of the various material parameters ormretitieal deformation
for the onset of instabilities in fiber-reinforced Neo-Heak solids. In these figures, blue
and red lines correspond, respectively, to the loss oftaliip of the macroscopic and fiber
stored-energy functions, as characterized, respectibglgonditions 8), and 8);. The effect
of reinforcement concentratiofy and heterogeneity contrastis shown in figs. 1b & c, at
a particular value of fiber anisotropy /(= 0.5). It is recalled that the Neo-Hookean stored-
energy function is strongly elliptic. As soon as fibers ardeatj however, the effective stored-
energy function loses strong ellipticity at some finite aefation level. Predictions show that
fiber-reinforced solids are progressively more unstablee—i, tends to 1— with increasing
contrast —i.e., decreasing as expected. By contrast, the effect of the fiber conceoiras
not monotonic. At smalt,, the composite is most stable and fails by loss of elliptioit the
fiber phase. As the fiber concentration increases, the éathade switches to macroscopic loss
of ellipticity and the composite becomes progressivelyenanstable up to a certain value of
¢o after which the trend reverses. Thus, the model predictstiieae are certain values of
at which fiber-reinforced solids are most unstable, andtti@fiber-reinforced solid cannot be
more stable than the fiber phase.

Finally, the effect of fiber anisotropy is considered in fitd. Recall that the constitutive
model adopted for the fibers reduces to the Neo-Hookean nvdukst the fibers are isotropic
(0y = 1). In this case, both the matrix and the fiber phases are dyreliiptic, but the effective
stored-energy function predicted by the model still losesrg ellipticity at a finite value of,
due to the rotation of the fibers.

4 CONCLUDING REMARKS

More often than not, the fibers in these material systems achrstiffer than the matrix. In
that case, the above constitutive model predict%flénlose to 1, given by the asymptotic result
(9). As already argued by Agoras et al. (2009), a practical icagibn of this result is that,
when considering the compressive failure in fiber-reirédraonlinearly elastic materials with
very stiff fibers, it suffices to model the matrix phase as Kiemkean.

Finally, we note that expressio8)(for TZT describes an onset-of-failure surfacefirspace.
This surface accounts for two failure mechanisms: localrfibstabilities and macroscopic
— or long wavelength — instabilities. However, other locatehanisms that are precursors
of failure can also be incorporated to the proposed forrmariat Two notable examples are
fiber debonding and matrix cavitation. Failure surfaces #itaount for all these mechanisms
simultaneously are of great practical importance and &fftrr determine them are currently

SF-1= ®er+ (N | —1)es®es, wheree; - N = e, - N = 0. The stress is given b§ = 1/ (X),

e,
whereW (X)) = W(F

Copyright © 2009 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



2174 M.I. IDIART, O. LOPEZ-PAMIES

under way.
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