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Abstract. This work presents a 2D numerical model to obtain seismig@&saf gas hydrate bearing
sediments in fluid-saturated poroelastic media. The @ifféal model consists in Maxwell equations
for the electromagnetic wave fields and Biot’'s equations ofiom for the seismic wave fields, coupled
with a zero-order term representing electrokinetic effedthe numerical model combines the solution
of Maxwell’s equation using a mixed finite element procedusing the edge-element of Nedelec with a
standard Galerkin method to solve Biot's equations of nmt®iot's equation are discretized employing
a nonconforming finite element to approximate the solidldigment and the vector part of the Raviart-
Thomas-Nedelec space of zero order to compute the fluidagispients. The subsurface is modeled as a
2D fluid-saturated layered porous medium under transveesgietic (TM) modes. A numerical example
illustrates the capabilities of the procedure to image galsdte bearing sediments in the subsurface.
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1 INTRODUCTION

In order to increase the hydrocarbon production, the apgle®physics is always looking for
new exploration tools. This fact stimulates the possipditcarrying out numerical simulations
of interactions between conventional electromagneticsmisimic techniques. Electroseismic
effects are acoustic signals that arise when electrom@gmirces are turned on in the surface.
This electroosmotic process takes place in the Electrico®ouayer (EDL). In general, the
surface of the solid matrix becomes negatively chargedmadeaction to that, ions of opposite
charge appear in a thin boundary layer of the surroundind.fldiosed to the surface the ions
are attached to the solid (Stern layer). As one moves away tine contact the ions can move,
forming the diffuse layer because of balance between @&attnd thermal forces. Then, the
movements of ions in the EDL will induce movements of fluidegsure gradients) when an
electromagnetic field is applied. This makes it possibleetmrd a seismic response in surface.
Also, the reciprocal process of recording electromagn#isturbances generated by seismic
sources is possible.

This paper expounds a simulation case study showing thécapiph of electroseismic ef-
fects to gas hydrates which are a combination of water angradagas (methane). Under es-
pecific conditions where pressure is high and temperatldosvishey combine to form a solid
icelike substancelKelle and Amundser2005 Ecker et al.200Q Guerin and Goldber005.
Methane gas hydrates are considered important as a pbtamdigy resource.

The theoretical frame used here is the one developeBrime (1994 in the form given
in, e.g. Haines and Prid¢2006, but some issues regarding Biot’s equations had to be ad-
dressed in order to use them to model deformation and prtipagaf waves both in per-
mafrost and gas-hydrate environments. Several works ssidfh@ampson and Gis(1993;
Thompsor(2005; Thompson et al2009; Hornbostel and ThompsdB007); Thompson et al.
(2007 have proposed and analyzed electroseismics as a progpamti. In addition, different
authors have proposed distinct numerical approximationgmures for both fenomena, among
them Haartsen and Prid€1997); Han and Wang2001); Pain et al.(2005; Haines and Pride
(2009; Santog2009 can be mentioned.

In this work, the coupled Maxwell and Biot's equations of matare solved in an fluid-
saturated poroviscoelastic media with absorbing boundangitions for the case of compres-
sional and vertically polarized seismic waves coupled whih transverse magnetic polariza-
tion, PSVTM mode. These equations are discretized by rgatan finite elements in 2D.
The vector electric field and the scalar magnetic field arepeded using the rotated Raviart-
Thomas-Nedelec space of zero ordBayiart and Thomad977 Nedele¢1980. Besides, the
nonconforming spaces definedDouglas, Jr. et a1999 are used to approximate each com-
ponent of the displacement vector in the solid phase andigpdadement in the fluid phase is
approximated using the vector part of the Raviart-Thomadeiec mixed finite element space
of zero order. The iterative nonoverlapping domain decaitjpm procedure used here al-
lows to solve problems with a large number of unknowns anaaurally parallelizable”, see
(Zyserman and Santp®00Q Gauzellino et a].2009.

2 PRIDE’'STHEORY OF THE COUPLING-FIELDS

The electroseismic equations are a combination of Maxveglagons for electromagnetic
fields and Biot's equations for porous media. Assuming:&f’ temporal dependence, the
Pride’s equationsRride 1994 for the electric and magnetic fields and H, the displacement
vector of the solid:* and the relative fluid displacement vectdr, can be stated in the space-

Copyright © 2009 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecanica Computacional Vol XXVIII, pags. 2521-2532 (2009) 2523

frequency domain as follows:

(o +iew)E -V x H + L(w)ns™" [iww! — L(w)E] = J&, (1)
V X E +iwpH = J& 2
—w?pyu’ — wzpfu —V-7(u) = F®, 3
—wpput + nK” [zwuf L(w)E] + Vpy = F, 4)
Tim (1) = 2G €1 (U®) + 0 (A V-0’ — aKy, §) (5)
pr(u) = —aK,, V- u® — K,V - ul. (6)

In the electromagnetic context, ¢ and i, are the electrical conductivity, the electrical per-
mitivity and the magnetic permeability respectively, lpiff**, J<** external electromagnetic
sources. In the poroviscoelastic equatioBsafd @), ¢ is the porosity ang, = ¢ps+(1—¢)ps,
wherep, andp; denote the mass densities of the solid grains composingotitersatrix and
the saturant fluid; whilg"®) and /) are external seismic sources. The fluid pressure on the
solid is py(u) and the expressiond,(w) andx are the dynamic coupling coefficient and the
dynamic permeabilityJohnston et al.1987 Pride 1994, respectively. The fluid viscosity is
denoted by). The stress tensor i$,,(u) ande;,,,(u®) stands for the strain tensors.

In the constitutive relationf and @), G is the shear modulus of the bulk material, is the
bulk modulus of the saturated material and= K. — % The Biot coupling coefficientgiot,
1956ah, 19632 is o K,,, being K, the fluid-storage coefficient and = 1 — K,,,/ K, where
K,, is the dry solid matrix bulk modulus andd, is the solid grains bulk modulus. The zone
of permafrost and gas hydrates is represented by modulbfoposite media, where different
solid grains constitute the mineral matrix and a portionhef pore space is occupied by ice or
gas hydrate, admitting to cement the mineral matrix.

2.1 Viscoelastic moduli

In order to consider the natural attenuation of the subserfée (real) elastic moduli, K,
and K, are replaced by complex frequency dependent viscoelastdulin The viscoelastic
model presented inL{u et al, 1976 is used through the following formuld{, and K,,, are
dealt in the same way):

~ G
T Be)

Here the frequency dependent functiofiand B, associated with a continuous spectrum of
relaxation times, characterize the viscoelastic behandrare given by

(7)

1 1+ w?T? 2 T, — T
A(w)zl——AlnLQB, B(w):—Atanflw(liﬂ.
ﬂ-Q 1 —+ w T2 77@ 1 +w TlTQ

The model parameter@ T, and T, are taken such that the quality fact@(w) = % IS

approximately equal to the consta@tln the range of frequencies where the equations are
solved. Values of) range fromQ = 10 for highly dissipative materials to abo@t_ 1000 for
almost elastic ones.

2.2 PSVTM modelling equations

The equations are solved in the range of seismic frequentless, the electroseismic cou-
pling coefficientL, the permeability: and the electric conductivity are considered to be real.
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The expression used to compute the real paft &f given byPride and Garambo{2002

TS d
_fTO_QX)’ (8)

Lo =
wheres,x ¢ the fluid electric permitivity\ is a geometric factor representing a weighted volume
to surface ratio] is the tortuosity factor and is the length of the EDL (Debye length). The
potentiall = (0.01+0.025l0g;0C') depends on the chemical properties of the fluid, béiribe
electrolyte molarity. Furthermore, the conduction cutsen the low frequency range (1-500
Hz), are of about 4 orders of magnitud bigger than displacgimarents, so the tervaw E can
be neglected{aines and Pride2006.

Since the modeling is based on electroseismic effé¢t,= FY) = 0. Also, it is reasonable to
assume that the generation of an electric current due totheed pressure gradient (feedback)
can be neglected. Remark that this assumption allows thergkenl electromagnetic field to be
decoupled from the poroviscoelastic response.

Therefore, under the previous considerations and an iefoienoid as electromagnetic source,
(Ward and Hohmanri987 Templin 1995, the electromagnetic fields af&,(z, 2), F.(x, z))
andH,(z, z); while the solid and fluid displacements &té (z, 2), us(x, z)) and(uf(z, 2), ul (z, 2)).
Consider a 2D-rectangular domdn= Q4 U QF, whereQ4 and2” are related to the air and
subsurface parts @b, respectively. The boundary 6f is denoted by" (I'* andI'?) and the
letterst, b, r, and! indicate the top, bottom, right and left edges (or compateti boundaries).
Then, for the PSVTM mode the equationk)-(6) can be rewritten as:

curl E + iwpH, = —J<* in Q, 9)
oE, — curlH =01in €, (20)
—pput —wrppuf — V-1 =0in QP (11)
—w?psut — wigou! + iwkﬁouf + Vpy = %LOE in QF, (12)

with boundary conditions

Jibu—nE-X+H¢:Qonn (13)
7-v=0, p;=00onT"" (24)
—G(u) = iwDS(u) onThomB (15)

whereg, = 1.5% is the mass coupling coefficien§(u) = (—7(u)vv, 7(u)vyx, ps)t and
S(u) = (u* - v,u® - x,u’ - v). In these expressions,is the unit outer normal ofi andy is a
unit tangent ori” oriented counterclockwise. The positive definite mafrimn (15) depende on
Biot’s medium properties,Santos et al.20043, D = R:S2R:, whereS = R-3M 2R3,
and

Pb 0 Pr Ae+2G 0 aKy,,
R={(0 p—pi/go 0], M= 0 G o0 |. (16)
P 0 9o aK 0 K,

The electromagnetic source takes the form of a magnetidedigfonfinite length,J¢** =
—iwpSI(w)d(x — xf)0(2 — z¢)y centered inzy, z¢), with I(w) being the electric current and
S the area of this current loop.
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Finally, it is important to point out that assuming a condutt distribution as,o(z, z) =
o,(2) + 0s(z, z), whereo,(z) is the background conductivity anrd(z, ) is the conductivity
anomaly; it can be distinguished between primary electgratc field and secondary electro-
magnetic field. The former can be computed analyticallylevto calculate the latter a finite
element procedure is employed. The total field= E, + E is found, and set as a part of the
source in Biot’s equationl@).

3 NUMERICAL PROCEDURE

In a first step, the secondary electromagnetic field is obthiand then the poroviscoelastic
equations are solved. The iterative nonoverlapping dordacomposition method at differ-
ential level is applied to both Maxwell and Biot equationsor Each frequency, the idea
is to divide the problem in a collection of small ones whos#iidual solution can be easily
computed. This technique is simple to implement it on paralbmputers. SeSantog1998);
Zyserman et al(1999; Zyserman and Sant¢2000; Gauzellino et al(2001, 2009.

3.1 Maxwell’'sequations

Denote by(); the rectangular elements of the finite element partitiorhefdomaint?, and
assume the domain decomposition exactly coincides witfiinite element partition. Let:, -)
be the inner product in an element, apd) the inner product on the boundary of an element.
Also, denote by’ the common boundary between the adjacents elentgrand )y, and by
Bf the intersection of'; with the computational domain.

To approximate the electromagnetic fields and /", the space¥” andWW" are defined as:

V" ={E" € H(curl,Q) : E"|o, € Py; x Pio},
Wh = {Hh & L2(Q) : ]{h|Qj € PO,O},
th = Vh‘QJ’ th = Wh|9j’

whereP, ; indicates a polynomial of degree less or equal X @&md less or equal O in Note that
these spaces are rotated Raviart-Thomas spaces of zergtbejemay be used to solve second
order elliptic problems using mixed methods). The degréé®edom related to each element
are four to the electric field ubicated in the midpoints of $iees and one to the magnetic field
ubicated at the center of rectangle.
For hybridized domain decomposition, it is also necessamttoduce the Lagrange multiplier
space,

" = {": 0"|p,, = 0% € [Po(Tyx)]” = T}, },

whereF;(I';,) denotes the constant functions defined on the boundaries elé¢ments. These
Lagrange multipliers are related to the magnetic field.
The numerical procedure is defined as follow: Fief" ™", "+, 05" ) € Vi x Wl x 11,
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such that

(OB g, — (HP"™ curl)a, + > (BBl x50 Xy

k
IjxNl'=¢
N n
+((1 —1) mEJh i X5, - Xj)B; =
(0B o, — Y (BB X — HY" 0 Xy, W €V, (17)
rjknkr=¢>
(curl B{™ ), + (iwp H™ p)a, =0, o € WY, (18)
O = 0 = By BY™T X+ BT xi) onTy, TN =6 (19)

The coefficient3; is chosen agy, = %(, /2% + /ﬁ—kﬂ). The electric fields will be the source
for the poroviscoelastic equations.

3.2 Biot'sequations

The Biot's equations are solved analogously to previoublpra. A nonconforming finite el-
ement space is used to approximate the solid displacemmrits the vector part of the Raviart-
Thomas-Nedelec space of zero order is used to approximafliti displacements. For details
of the method the reader can look \gafitos et al2004ab, 2009. Specifically, determine

R=[-1,1*, NC(R) = Spar{l,z,z a(r) — a(z)}, a(z) = 2* - gx4, (20)

and¢"(x) = —1 + , pR(x) = 2, P (2) = 1 + 2, p7(2) = 2, set

RTN(R) = Span{(¢"(x),0), (¢"(2),0), (0,"(2)), (0,¢"(2)) } . (21)

The degrees of freedom associated with each element arofaach solid displacement com-
ponent and two for each fluid displacement component locatdte midpoint of each edge of
R.

The method of hybridization implemented requires the d@édimiof a set of Lagrange mul-

tipliers which are associated to generalized forces on rikerélement boundaries. Setting
v = (v',0f) € NC} x RTNY and A" = {\* : M|p, = N € [Ry(Ty)]* = A%}, where
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Py(I';x) denotes the constant functions definedgn The algorithm is expressed as follow:

2 s,h,n+1 fihn+l s s,h,n+1 s,h,n+1
—w (pbuj + pru; U )QB (,0 uy' + Gou; ) Uf)

+iw (gouf’h’"ﬂ,vf)QjB + lz: (sz(U?’nH)a €lm(US))
- (o7 0T (S, S00)

J

+ Z <zwﬁJkS h”+1),8(v)> :(nk—%(Ep+Es),vf)
0 QJ.B

ij

B
QJ'

B
QJ'

FkaFB 1)

- Y (mswnsw) + ¥ <A£z;",s<v>>rﬂ 22)

k [k k
IxNlB=¢ I'xNlB=¢

N = g = B [S(h ) + Se™)] (). (23)

The parametes;, is a positive definite matrix, and is chosen as the ave%*é@@ + Dy), where
D is the matrix appearing in the absorbing boundary conditidime source is given by the total
electric field, ¢, + E;), and the electroseismic coupling factbg,

4 RESULTS

The geological model is shown in Figuteand Tablel. The information of the physical
parameters was obtained frdRubino et al.(2008 and Petrenko and Whitwort{i1999. The
electroseismic properties of the different layers arewated by using composite and poro-
viscoelastic models, that take into account the total gasatg saturation and the cementation
coefficient.

-1250 m 0Om 1250 m
air seismic receivers
Om_ V¥ A 4 A 4 A 4 A 4 A 4 \ 4 A 4
earth Oy
solenoid
\ 4
v
permafrost well
600 m
sediments
800 m
gas—hydrates
1000 m Y
sediments v
1250 m

Figure 1: Layered subsurface with gas hydrate.

In this particular example, the gas hydrate saturationlig bt % and without matrix cemen-
tation. The values of the electrical conductivity arg,,,=3.8 10% S/m, 04.4:,,=0.3 S/m and
044shy=0.11 S/m. Inside of the region with gas hydrates the elsetsmic coupling coefficient
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| Medium [ Vp[m/is]| Vsm/s]| ¢ | w[m? | K, [Gpa]| K.[Gpa]| a | go[Kg/m* |

Permafrost| 4200 2300 | 0.11| 6.56 10°'2 48.9 22.5 0.15| 11.410
Sediment 2240 880 0.30| 1.10° 6.78 8.66 0.92 1.7 10
Gas hydratg 3200 1620 | 0.30| 7.7110° 7.55 1453 | 0.70 5.7 10

Table 1: Seismic properties of the layered subsurface.

was computed to bg,=2.45 10 V/Pa and 2.75 10’ V/Pa for the sediments.

The bulk densities of each layer are as follows;,.,.,=2135 Kg/n?, py ccaim=2650 Kg/n?
and py, 4asn,=2150 Kg/mi. The fluid is water whose density js=1030 Kg/nt y viscosity
1n=0.018 Poise.

In order to characterize viscoelasticity, the quality éact), was chosen to béA;) = 100 for
whole layers.

Distance(km)
590 10‘00 1spo 20‘00

0.14

Permafrost bottom

0.2 LI LLLLC ‘!i';mm““m“““'-

_ .

-:_g jj Gas hydrate botto S S tOp'
e
0.4, (@ @«

@@

Figure 2: Example of 48 seismic traces at surface.

The computational domain has 2.500 kml.250 km and comprises 30681534 elements.
Seismic receivers are separated by a distance of 50 m angraselsaalong the surface. Observe
that the Maxwell equations represent a diffusion procedgfam electroosmotic effect is due to
the Biot’s slow wave (diffusion type wave), therefore, tight way to simulate these fenomena
is taken account at least two or four points per diffusiorgtensee aines and Pride2006.
The CPU time running with 25 processors was 17 hours. The diependence of the current
in the electromagnetic source is given by a Ricker wavel#t wicentral frequency equal to 30
Hz. The equationsl(’), (18), (19), (22) and @3) are solved for 100 equally spaced samples of
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frequency. Once all the results in the space-frequency adoara computed, they are inverse
Fourier transformed to get the space-time responses.
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Figure 3: Example of 51 seismic traces in a well.

Figure2 shows the seismic signals detected by accelerometerg#semasitive to the vertical
particle-acceleration component and are located on thiacgurAlong the layer boundaries, the
seismic sources are activated simultaneously to produsmgewaves that propagate in both
directions of the time axis. The different arrival timesicate the depth of the horizonts below
the surface; in this case, they correspond to permafrosbrincait 0.142 s, gas hydrate top at
0.232 s and gas hydrate bottom at 0.295 s. The strong aravélg! s are related to multiple
reflections. Of course, this is based on the observationertital acceleration component in a
well ubicated at 50 m from the electromagnetic source. EigRishows the seismic signals in
the well and it is possible to perform reliable correlati@nsong time arrivals.

Snapshot of pressure field at t=0.04 s is presented in Fgulotice that the significative
amplitudes of the pressure field inform where the layer fates lie. So, wavefronts generated
by these interfaces start to travel upward and downward.

5 CONCLUSIONS

Electroseismic theory, rock-physics models and numesirallation of wave propagation
have been used to study seismic images of gas hydrate besiligents. The procedures
presented in this work can be implemented to distinguistnsieiresponses generated by elec-
tromagnetic fields for any subsurface and assist to devedapaf new hydrocarbon exploration
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Figure 4: Snapshot of pressure field at t=0.04 s.

tools. It has been achieved, through numerical modelssasecharacterization of the differ-

ent layers, including the gas hydrates. The strong evertshase associated with multiple
reflections, therefore it will be necessary to apply sigmatpssing in order to obtain a clearer
image of the interfaces.
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